AUTOMATIC VOLTAGE CONTROL OF TRANSFORMER USING MICROCONTROLLER AND SCADA
LABVIEW PROJECT FINAL YEAR EEE
ABSTRACT: A tap changer control operates to connect appropriate tap position of winding in power transformers to maintain correct voltage level in the power transmission and distribution system. Automatic tap changing can be implemented by using µC. This improved tap-changing decision and operational flexibility of this new technique make it attractive for deployment in practical power system network. This paper deals with the implementation of µC based tap changer control practically, using special purpose digital hardware as a built-in semiconductor chip or software simulation in conventional computers. Two strategies are suggested for its implementation as a software module in the paper. One is to integrate it with the supervisory system in a substation control room operating in a LAN environment. In this configuration, the parallel transformers can be controlled locally. The other is to integrate it into the SCADA (Supervisory Control and Data Acquisition) system, which allows the transformers to be monitored and controlled remotely over a wide area of power-network. The implementation of µC based tap changer control needs interfacing between the power system and the control circuitry. µC s may need to interact with people for the purpose of configuration, alarm reporting or everyday control.
A human-machine interface (HMI) is employed for this purpose. An HMI is usually linked to the SCADA system’s databases and software programs, to provide trending, diagnostic data, and management information such as scheduled maintenance procedures, logistic information, detailed schematics for a particular sensor or machine, and expert-system troubleshooting guides.
OBJECTIVES: The original system can afford the following features:
- Complete information about the plant (circuit breakers status, source of feeding, and level of the consumed power).
- Information about the operating values of the voltage, operating values of the transformers, operating values of the medium voltage, load feeders, operating values of the generators. These values will assist in getting any action to return the plant to its normal operation by minimum costs.
- Information about the quality of the system (harmonics, current, voltages, power factors, flickers, etc.). These values will be very essential in case of future correction.
- Recorded information such case voltage spikes, reducing the voltage on the medium or current interruption.
- implementation of µC based tap changer control practically, using special purpose digital hardware as a built-in semiconductor chip or software simulation in conventional computers.