SlideShare une entreprise Scribd logo
1  sur  88
Télécharger pour lire hors ligne
1
RESUMEN
El presente estudio mide las posibilidades de aplicación de un sistema de reutilización y
el cambio de tecnología de disposición final de residuos sólidos con la finalidad de
contribuir a la solución del problema de acumulación de inventarios de productos
obsoletos de la Corporación Internacional BELCORP.
Se realizó un diagnóstico inicial de los procesos que conllevan a generar residuos
sólidos en la empresa y se ejecutó la caracterización del tipo de resina de los materiales
plásticos. Además, se evaluó el mercado de empresas recicladoras y fabricadoras de
materiales plásticos, como también se el análisis de una nueva tecnología de disposición
de residuos sólidos que mejore dicho proceso en la empresa.
Finalmente, se elaboró un análisis preliminar de variables económicas con los datos
obtenidos en pasos anteriores. Los resultados se sintetizan en valores monetarios que
comprueban la viabilidad económica tanto del sistema de reutilización de residuos
sólidos plásticos planteado como de la propuesta de utilización de la Incineración
Controlada como nueva tecnología de disposición final de residuos sólidos no
reutilizados.
Palabras Clave: Reutilización de residuos sólidos plásticos, Reciclaje de materiales
plásticos, Disposición final y destrucción de residuos sólidos industriales, Relleno
sanitario y de seguridad, Incineración controlada.
2
GLOSARIO DE TERMINOLOGÍAS Y ABREVIATURAS
• RSP: Residuos Sólidos Plásticos
• PET: Polietileno Teraftalato
• PP: Polipropileno
• PEAD: Polietileno de Alta Densidad
• PVC: Policloruro de Vinilo
• PS: Poliestireno
• EPA: Agencia de Protección Ambiental
• SAP: Solutions Applications and Services
• MWIG: Mind West International Group Inc.
• XX: Codificación inventario para destruir
• BL: Codificación Inventario dañado.
• ENEM: Codificación de Inventario de Envases
• STAKE HOLDERS: Término usado para referirse a la persona o identidad que
sea participante, inversor o accionista de una empresa.
3
I. INTRODUCCIÓN
La generación y acumulación desmesurada de residuos provenientes de los
diferentes tipos de industrias es uno de los temas en materia ambiental que ha tomando
importancia en todo el mundo. La proliferación de industrias en el mercado actual ha
aumentado la generación de residuos exponencialmente, lo que causa graves problemas
ambientales, sociales y económicos, con especial perjuicio en los países
subdesarrollados como el nuestro, que al no realizar control y reducción adecuados de
los residuos producidos ven afectados su entorno socio-ambiental y su propia economía.
Todo residuo industrial debe y es materia de control y fiscalización en cualquiera de las
empresas debido a la cantidad de sustancias peligrosas que contienen. Es por ello que
toda empresa debe disponer de manera adecuada sus residuos y más aún debe adoptar
un adecuado manejo de los mismos, intentando reducir, rehusar y reciclar en la medida
que les sea posible.
Esta situación se ahonda más si se conoce que la mayoría de industrias no pueden
reducir sus residuos debido a que dependen completamente del mercado, debido a que si
una empresa no se adapta al mercado no sobrevive en él. En el caso de la generación de
residuos sólidos, una empresa generalmente no busca aplicar alguna estrategia de
minimización y control de sus residuos, sino que se conforma con deshacerse de los
mismos por medio de alguna compañía de disposición final que asegure la rápida pero
quizás no adecuada forma de eliminar sus residuos.
A pesar de que el presente estudio se limite a la evaluación de un sistema de
reutilización y disposición final de los residuos sólidos de una sola empresa llamada
BELCORP S.A., dueña de las firmas L’bel, Ésika y CyZone, especialistas en productos
de belleza para mujeres, éste contribuirá como modelo a otros de características
similares que estén en la búsqueda de soluciones eficientes para la reducción de los
residuos industriales desde una perspectiva ambiental y económicamente sostenible.
Por otro lado, el objetivo general del presente estudio fue la evaluación del sistema de
reutilización y disposición final de los residuos sólidos de la empresa Belcorp S.A. Los
4
objetivos específicos desarrollados como parte del cumplimiento del objetivo general se
describen a continuación:
• Realizar un diagnóstico del sistema de manejo, generación y disposición final
de los residuos sólidos de la empresa.
• Analizar el tipo de resina que poseen los residuos sólidos plásticos (RSP1
) de la
empresa para comprobar su compatibilidad para ser usado en un proceso de
reciclaje y reutilización.
• Analizar el mercado de empresas de reciclaje y de fabricación de productos
plásticos con materia prima no virgen.
• Calcular el valor del ahorro económico que alcanzaría la empresa con la
aplicación del sistema de reutilización de sus RSP acumulados.
• Analizar la alternativa tecnológica de disposición final de residuos sólidos
propuesta, bajo términos económicos y ambientales para verificar la viabilidad
de aplicación en la empresa.
1
A partir de este momento se usarán las iniciales RSP para referirse a los residuos sólidos plásticos.
5
II. REVISIÓN DE LITERATURA
2.1 PLÁSTICOS
2.1.1 ORÍGENES
Según Sosa (2003), la gran industria de los plásticos se remonta al año 1869,
cuando una firma fabricante de bolas de billar, Phelan & Collander2
, ofreció miles de
dólares a quien pudiera desarrollar un sustituto del marfil usado para fabricar las bolas.
El afán de la compañía más que proteger a los elefantes era encontrar un material
alternativo al cada vez más escaso y costoso marfil. Alentados por esta oferta, los
estadounidenses Isaiah3
y John Hyatt desarrollaron el plástico celuloide. A pesar de que
lograron popularizarlo, nunca ganaron premio alguno porque las bolas de billar
fabricadas con este nuevo material tenían la tendencia a explotar al ser golpeadas. Ello
no impidió que pueda ser usado en reemplazo de objetos hechos en base de madera y
para crear otros nuevos, que conocemos hasta nuestros días.
Hoy en día se conoce que el plástico está compuesto de polímeros, moléculas gigantes
que resultan de la unión de miles de moléculas más pequeñas, llamadas monómeros.
Las sorprendentes y variadas propiedades que pueden darse a estas sustancias dependen
precisamente del tipo de monómero, la longitud de las cadenas y la forma en que éstas
se acomodan en el material. En ello radican los diferentes tipos de resinas con las que se
fabrican los plásticos en la actualidad.
Aunque por lo general se utilizan los términos “plástico” y “polímero” como sinónimos,
plástico hace referencia a cualquier material que puede moldearse fácilmente, mientras
que polímero clasifica a una sustancia por su estructura molecular (Sosa, 2003). Desde
la aparición de los primeros plásticos en el mercado, el progresivo conocimiento de sus
2
Nombre de los dueños de dicha firma, los que ofrecieron $10 000 a quien presentara un
material resistente que pudiera reemplazar al marfil, material escaso y costoso para la época
con el que se fabricaban las bolas de billar.
3
Inventores estadounidenses que patentaron en 1870 la primera máquina inyectora de
plásticos luego de ser incentivados a crearla debido a la millonaria recompensa propuesta por
la empresa fabricadora de bolas de billar.
6
propiedades de aislante eléctrico, su impermeabilidad y resistencia lo han llevado a que,
hasta la actualidad, sea preferida para la fabricación de diversos productos o para ser
parte indispensable de accesorios como piezas de equipos tecnológicos, envases de
productos de consumo masivo (bebidas, productos de limpieza, cuidado personal, etc.).
Estos pocos ejemplos muestran que las posibilidades de aplicación de los plásticos son
amplias. Además, estos materiales sintéticos se pueden producir en su totalidad a partir
del petróleo.
2.1.2 FABRICACIÓN DE PRODUCTOS PLÁSTICOS
En el mercado local de fabricantes de materiales plásticos se hace uso de dos
métodos comunes: la inyección y el soplado. Para la comprensión cabal de cómo se
realizan ambos, se describen a continuación, según Lorenzo (2008):
• Soplado de plásticos: este proceso se realiza para generar productos plásticos
huecos; es decir, envases plásticos de todo tipo de modelos. Es semi-continuo,
pues se divide en dos fases: primero, la extrusión (prensado, moldeado) del
polímero inicial a altas temperaturas para formar un objeto llamado párison, con
forma de tubo sin salida y paredes muy gruesas, que es de donde nacerá el nuevo
producto plástico. La segunda fase es el inflado (entrada de aire) de esta especie
de tubo en un molde del envase que se desea fabricar. Este molde consiste en
dos partes que al cerrarse encierran el párison, y al inflarse toma la forma del
molde; de este modo la forma queda estable al enfriarse el material. La ventaja
de este proceso incluye la posibilidad de crear efectos de colores diversos,
principalmente atractivos para cosméticos y envases de champús, y que ayudan a
disminuir el costo de los materiales iniciales al permitir también unir diferentes
características de polímeros como los de material reciclado y virgen.
• Inyección de plásticos: este proceso se inicia al inyectar el polímero en estado
fundido en un molde cerrado a presión y frío a través de un orificio pequeño
llamado compuerta. En este molde el material se solidifica, hasta que la pieza
plástica se obtiene al abrir el molde y sacar de la cavidad la pieza moldeada. Este
método es muy popular debido a la versatilidad de envases plásticos que pueden
fabricarse, la rapidez de fabricación, el diseño de prototipos rápidos, los altos
7
niveles de producción y bajos costos, y también debido a que las piezas
moldeadas requieren muy poco o nulo acabado pues son terminadas con la
rugosidad de superficie deseada, color y transparencia u opacidad. Por otro lado,
este método puede hacer uso también de material reciclado con cierta tolerancia
dimensional de piezas moldeadas y con ciertos colores.
Cabe señalar que la diferencia en costos entre los moldes de inyección y soplado es
bastante alta: los moldes de inyección son más caros y difíciles de producir, aunque
depende de las partes y tamaño de materiales a fabricar.
Según Lorenzo (2008), estas dos metodologías de fabricación poseen un proceso
ambientalmente favorable comparado con las de otros materiales, debido a que no hacen
uso de recursos naturales, como árboles, por ejemplo, en el caso del papel; no emiten
gases, desechos acuosos ni altos niveles de ruido; y no contaminan el ambiente de forma
directa. Además, permite el uso de materia prima reciclada para la fabricación de
nuevos productos, los cuales pueden volver a ser reciclados varias veces dependiendo
de la calidad final del material que se requiera.
2.1.3 DESTRUCCIÓN DE PLÁSTICOS
A pesar de que la durabilidad de los plásticos se consideró en un principio como
una de sus cualidades más preciadas, actualmente esa misma propiedad ha provocado
uno de los problemas más graves de contaminación en el ambiente.
El problema empieza cuando las empresas tienen que deshacerse de él una vez
convertidos en residuos sólidos. Al contrario de lo que muchos creen, los plásticos se
degradan en largos períodos, en algunos casos de más de 300 años, motivo por el cual
tienden a acumularse. El problema se agrava en la medida en que aumenta el número de
artículos desechables elaborados con plásticos; según Puerta (2004), se estima que
alrededor de un 30% de los millones de toneladas de residuos sólidos generados son
plásticos.
8
Las empresas buscan la alternativa más fácil y rápida de eliminar estos residuos: por un
lado está la incineración y por otro el uso de relleno sanitario; ambas, aunque en grado
distinto, son contaminadoras del medio ambiente.
La incineración de sustancias plásticas conduce a la formación de nuevas sustancias
cloradas, como las dioxinas4
, que se liberan en los gases de las chimeneas, cenizas y
otros residuos. Entre la gran variedad de sustancias químicas emitidas se incluye
innumerables productos químicos que permanecen sin identificar, pero que en grandes
cantidades pueden causar gran daño ambiental y a la salud humana (Allsopp, Costner,
Johnston, 2004).
Por otro lado, los rellenos sanitarios acumulan plástico bajo tierra en mezcla con otros
materiales y sustancias que causan tanto su degradación como la liberación de sus
compuestos químicos. En consecuencia, suelo, aire y aguas subterráneas son
contaminados por los químicos, los gases que emanan y el contacto con los líquidos que
se infiltren en el subsuelo.
2.1.4 RECICLAJE DE PLÁSTICO
Hoy en día la acumulación de residuos sólidos es un problema social en especial
en países en vías de desarrollo como el nuestro. En el campo de los residuos, los
plásticos tienen un rol de importancia debido a su baja densidad, se hacen especialmente
“visibles”; es decir, ocupan espacios relevantes de superficie al ser acumulados (Vargas,
2004).
La incineración con recuperación energética y el reciclado o transformación de un
producto en otro, están entre las vías posibles de reutilización del plástico. Según
Vargas (2004), la selección del procedimiento más adecuado para el reciclado no es
fácil ni generalista, ya que deben contemplarse aspectos como la composición, la
legislación ambiental, la adecuada tecnología y las posibilidades económicas dispuestas
para este proceso.
4
Compuesto químico en reciente análisis para conocer los límites máximos que deben emitirse, puesto
que no está dentro de la actual legislación nacional de contaminantes atmosféricos.
9
El reciclaje juega un papel importante en la conservación y protección del ecosistema al
resolver el problema de la sobreacumulación de residuos y evitar su mala disposición
final. Los programas aplicativos sobre reciclaje y su puesta en práctica resultan
fundamentales para países como el nuestro.
De acuerdo a García (2007), los orígenes del reciclaje de plásticos a nivel mundial y en
Latinoamérica son inciertos. No se conocen fechas ni lugares de inicio de esta actividad,
pero afirma que para 1960 la EPA5
ya liberaba de subsidios a las pequeñas empresas
recicladoras de los Estados Unidos. La principal causa de la falta de información acerca
de los orígenes del reciclaje de plásticos es que el negocio fue informal, pero la
resistencia y larga duración de este material han logrado que sea uno de los materiales
más comercializados en la industria del reciclaje.
En 1991, Matthes menciona que los principales actores en la industria del reciclado son
los recicladores, personas encargadas de rescatar los RSP de las calles antes de ser
llevados al relleno sanitario, mientras que las empresas transformadoras, donde los
recicladores venden lo recolectado, se involucran en los procesos de selección, molido,
aglutinado, lavado, secado y pelletizado6
, resultando materia prima no virgen de plástico
que puede ser utilizada nuevamente.
Por otro lado, García (2007) afirma que más del 90% de plásticos son reciclables; se les
puede encontrar en numerosas formas y presentaciones aunque de difícil clasificación.
Por ello se han acordado símbolos para su identificación, que apenas empiezan a
generalizarse en nuestro país. Ésta clasificación se dio inicialmente por el SPI (Society
of Plastics Industry) es la más usada y conocida mundialmente. La Figura 1, muestra los
símbolos que provienen de dicha clasificación:
5
Siglas para la Environmental Protection Agency o Agencia de Protección Ambiental Americana
6
Nombre que se le da al producto libre de impurezas y finalmente tratado, que consiste en pequeños
trozos de plástico seleccionados por color y por calidad de resina.
10
FUENTE: Carrillo (2004)
Figura 1: Clasificación de materiales plásticos por el tipo de resina
Carrillo (2007) describe cada tipo de material plástico mencionado en la figura anterior:
• PET (Polietileno Teraftalato)
El PET es un plástico de alta calidad que requiere un proceso sumamente
complicado para ser recuperado. Además, la baja densidad del mismo, incluso
prensado, produce altos costos de transporte. No existe reciclaje casero para este
material, por lo que muy pocos países latinoamericanos tienen la posibilidad de
reciclar el PET. En el Perú existen fábricas que tienen la capacidad de procesar
este tipo de resina plástica. Con las tecnologías convencionales no es posible
utilizar el PET para volver a fabricar botellas de bebidas, pero se puede elaborar
otros productos como prendas de vestir y frazadas. En los EE.UU. se ha
desarrollado una nueva tecnología que permite despolimerizar el PET en sus dos
componentes, el etilenglicol y el ácido tereftálico, y luego repolimerizarlo como
resina virgen para la producción de embalajes de alimento.
11
Otros productos a base del PET reciclado son las fibras para la producción de
fundas para dormir, como almohadas, cobijas y ropa protectora de lluvia.
Además se puede utilizar en la industria automotriz y para la producción de
tablas aislantes.
• PEAD (Polietileno de Alta Densidad)
El PEAD es un material muy valioso debido a que su valorización es siempre
alta en el mercado y es el más cotizado por los recicladores. Por su naturaleza es
inerte y no sufre degradación a corto plazo, no genera lixiviados, líquidos ni
gases que puedan emitirse al suelo, aire o aguas subterráneas en caso de que se
agregue como relleno sanitario. El PEAD reciclado se reutiliza en la producción
de fundas, tuberías, mangueras, recipientes para productos no alimenticios,
botellas para champú, acondicionadores, entre otros.
1. PVC (Policloruro de Vinilo)
El PVC es un plástico que se puede reprocesar fácilmente aun con métodos
caseros. Los productos de PVC reciclado suelen ser recipientes para productos
no alimenticios, mangueras, productos moldeados como juguetes de niños
mayores de 5 años -para evitar casos de intoxicación-, productos de uso
sanitario, etc.
En las grandes ciudades existe mercado para el PVC reciclado, pero se requiere
una buena clasificación porque no debe ser mezclado con PEAD, PP o PET.
• PEBD (Polietileno de baja Densidad)
El PEBD es el plástico con mayor campo en el mercado. Existen muchos
talleres pequeños y medianos que elaboran productos de PEBD reciclado pues
es fácil de procesar incluso con equipo casero. Para procesar el PEBD sólo se
puede ejecutar un reciclaje mecánico, el cual puede terminar en la granulación.
Los productos más comunes son mangueras de aguas servidas y fundas negras.
12
• PP (Polipropileno)
La óptima relación entre rigidez y peso específico del PP permite el diseño de
piezas adecuadamente resistentes con un mínimo de requerimiento material y la
alta resistencia a temperaturas permite el llenado en caliente para el caso de
envases. Ambas características hacen del PP un producto cien por ciento
reciclable y que puede ser usado para la fabricación de nuevos productos con
cualquiera de los métodos existentes (inyección y soplado). Suele usarse en la
fabricación de envases, empaques y en baldes de pintura, accesorios y más en
la industria de la construcción.
• PS (Poliestireno)
Esta clase de resina se divide en dos: PS y PS-E (Poliestireno Extendido),
conocido como espumaflex. El PS es un polímero de Estireno, de apariencia
cristalina y alto brillo, que se asemeja mucho al vidrio. Puede usarse para la
fabricación de contrapuertas y anaqueles, en envases para cosméticos, máquinas
de afeitar descartables, platos, cubiertos, bandejas y también en juguetes,
cassettes, blisters, etc. Por otro lado, el PS-E es comúnmente usado en aislantes
y planchas espumadas que sirven como amortiguador en embalajes de
electrodomésticos y otros productos frágiles.
• OTROS
En esta clasificación se incluyen muchas otras resinas y materiales que poseen
propiedades que se derivan de la combinación de varios tipos de resinas,
generalmente usadas para la fabricación de autopartes, hieleras, electrónicos y
piezas para empaques. Algunos de los nombres de resinas que podemos
encontrar en este conjunto son PETG (Polietileno Teraftalato Glicol), ABS
(Acrilonitrilo Butadieno Estireno), PC (Policarbonato) y Nylon.
Del mismo modo, Carrillo (2007) describe los métodos de reciclaje de materiales más
conocidos y mundialmente usados, resumidos a continuación:
13
• El reciclaje químico: proceso que tiene por objetivo la descomposición de los
plásticos usados en sus componentes más sencillos, los monómeros. De esta
forma pueden ser usados nuevamente como materia prima en la industria
productora. Existe diferentes procesos para realizar el reciclaje químico:
pirólisis, hidrogenación, gasificación y tratamiento con disolventes. Los
procesos de reciclaje químico son laboriosos, nuevos y necesitan costos de
inversión mucho más altos que el reciclaje mecánico.
• La recuperación de energía: debido a que los plásticos se producen a base de
petróleo, tienen un valor calorífico elevado, a veces incluso más elevado que el
del carbón. Su incineración genera una gran cantidad de energía que puede ser
usada de diversas formas para otras actividades de producción.
• Reciclaje mecánico: se basa en procesos físicos que funden el material plástico
con transmisión de calor para ser procesado en pequeños pedazos semejantes al
utilizado como material plástico virgen. Este proceso se describirá con mayor
detalle en el siguiente punto.
Por último, según García (2007), se conocen cuatro niveles de reciclado de plástico
diferenciados por la pureza de la resina resultante. Son los siguientes:
• El reciclaje primario consiste en conseguir la conversión de los RSP en materia
prima con propiedades físicas y químicas casi idénticas al material original.
• El reciclaje secundario obtiene materia prima convirtiendo el plástico en
artículos con propiedades inferiores a las del polímero original.
• El reciclaje terciario degrada el polímero en compuestos químicos básicos y
combustibles. Se diferencia de los niveles anteriores porque involucra un
cambio químico además del físico.
14
• El reciclaje cuaternario consiste en el calentamiento del plástico con el objetivo
de usar la energía térmica liberada de este proceso. El plástico es usado como
un combustible para reciclar energía.
Está claro que el plástico es unos de los materiales pioneros del reciclaje en el mundo y
seguirá siendo uno de los más usados por la industria a nivel mundial.
2.1.5 RECICLAJE MECÁNICO DE PLÁSTICOS
Es uno de los métodos más sencillos y baratos de realizar, siendo el más usado
en el mercado local del reciclaje. Por este motivo muchas organizaciones
internacionales lo impulsan como método para la reducción mundial de RSP
acumulados en las calles. La OPS (Organización Panamericana de la Salud, 2006)
describe las fases más importantes del proceso, que se explican a continuación:
• Se inicia con la selección y clasificación del material por tipo de resinas
plásticas y colores para evitar mezclas indebidas en la fase final llamada
pelletizado. Se necesita que la nueva materia prima generada esté dividida en
colores y por tipo de resina para ser reutilizada.
• Sigue la limpieza del material plástico, donde se le libra de etiquetas, papeles y
residuos de material biodegradable, si fuera el caso, para pasar a la siguiente fase
sin contaminantes. Este proceso se puede realizar en diferentes órdenes de
sucesión, dependiendo del grado de contaminación de los plásticos y de la
calidad requerida del producto reciclado.
• Después todo material clasificado y limpio pasa a un equipo de molino o una
trituradora para ser destruido, hasta obtener pequeños trozos del material inicial.
• Luego el material pasa por una centrifugadora y secadora para almacenarse en
un silo intermedio que sirve también para homogeneizar el material y obtener
una calidad constante.
15
• El producto triturado, limpio, seco y homogéneo se alimenta a una extrusora
donde se realiza el proceso de granceado, en el que la resina se calienta hasta
alcanzar punto de fusión y adopta la figura de un hilo continuo que luego se
enfría.
• Finalmente, el pelletizado consiste en cortar los hilos del tamaño aproximado de
una lenteja, de modo que puedan ser procesados con diferentes técnicas para la
fabricación de nuevos productos plásticos.
Según Laguna (2003), el pellet de plásticos reciclados se puede utilizar de distintas
formas según los requerimientos solicitados para el producto final, estos se resumen a
continuación:
• Uso exclusivo de materia prima reciclada. En este caso, las piezas obtenidas
tienen propiedades menores o similares a las fabricadas con polímero virgen,
suficiente para la utilidad deseada.
• Mezcla de pellet reciclado con polímero virgen para alcanzar las prestaciones
requeridas, este es usado cuando se requiere obtener un producto plástico de
mayor calidad.
• La coextrusión del producto reciclado, consiste en combinarlo con otros
materiales. Por ejemplo, en la fabricación de recipientes en forma de cajas, la
capa intermedia puede ser de polímero reciclado mientras que el interior, que
tiene contacto con el producto, y el exterior son de polímero virgen.
16
2.1.6 PRINCIPALES PROBLEMAS DEL RECICLAJE DE MATERIALES
PLÁSTICOS
Como se ha referido, de la variedad de productos plásticos en el mercado sólo es
posible recuperar los más comunes, bajo la condición de que puedan separarse
completamente en materiales con potencial para formar un nuevo producto. Según
Matthes (1991), el reciclaje ilimitado del plástico no es posible, ya que siempre se
obtiene un producto de menor calidad comparado con el original. El autor llama a esta
restricción downcycling: cada vez que se recicla un mismo producto reduce su potencial
de reciclamiento, disminuye su calidad.
Otro inconveniente en el reciclaje son los químicos aditivos (suavizantes, colores,
estabilizadores, ablandadores) con los que los plásticos usados han estado en contacto.
Éstos cambian sus propiedades: dos productos hechos del mismo tipo de plástico
pueden tener características diferentes y afectar la calidad de un nuevo producto hecho
de plástico reciclado. La manera más conveniente de pronosticar la calidad del plástico
que se obtendrá luego del reciclaje es conocer el uso anterior y procedencia del original.
2.1 LA ECOEFICIENCIA A NIVEL EMPRESARIAL
La ecoeficiencia se apoya en dos pilares: reducir la sobreexplotación de recursos
naturales (lograr un uso más sostenible) y disminuir la contaminación asociada a los
procesos productivos. Busca un incremento de la productividad de los recursos
naturales así como a reducir los impactos ambientales a lo largo de todo el ciclo de vida
de los productos.
El lema “producir más con menos” es común a todas las aproximaciones al tema. Tal
enfoque no es novedoso; según Leal (2005), es usado desde 1972, en la Conferencia de
Estocolmo, que lanzó al mundo la preocupación por el deterioro ambiental. Desde
entonces ha habido un importante desarrollo en casi todos los países del mundo que han
establecido arreglos jurídicos, institucionales y empresariales para la implementación de
estrategias y políticas para impulsar el tema ambiental; lo que se ha traducido a su vez
en planes, programas y regulaciones para lidiar con los múltiples y complejos aspectos
que conlleva la problemática del medio ambiente y los recursos naturales.
17
Es así como nacen y se desarrollan en la década de los 90 conceptos como la
“producción más limpia” y la ecoeficiencia, que intentan traducir este aporte de los
sectores productivos a la práctica de la gestión ambiental en la empresa. La
ecoeficiencia es una estrategia corporativa, una iniciativa empresarial,
fundamentalmente privada, pero que cuenta con cada vez mayor apoyo de la instancia
pública (Leal, 2005).
Por ello, operar de manera ecoeficiente significa aunar los conceptos de desarrollo
económico sostenible y protección ambiental en un marco de aplicación a los procesos
concretos del sector productivo. La ecoeficiencia ha sido calificada como una nueva
“revolución tecnológica”, siendo la manera en que se mide la vinculación entre
economía y medio ambiente en una perspectiva práctica de la sostenibilidad. En muchos
casos cuando el empresario decide formar parte de una estrategia de ecoeficiencia,
apoyándola e impulsándola, provoca que sus promotores se transformen en aliados
importantes de la acción pública de protección del medio ambiente y uso de los recursos
naturales.
Por último, la ecoeficiencia es uno de los movimientos más expandidos en la actualidad
para colocar la necesaria y fundamental colaboración público-privada dentro de las
estrategias de sostenibilidad, en un contexto global de crecimiento económico y
desarrollo de los mercados. Esto es argumento suficientemente importante como para
hacer de la estrategia un punto central en el enfoque que el sector empresarial debe
poseer respecto al tema ambiental.
2.3 ECOEFICIENCIA EN LOS CONCEPTOS DE ECOLOGÍA INDUSTRIAL Y
SIMBIOSIS INDUSTRIAL
Los conceptos de Ecología Industrial y Simbiosis Industrial nacen de los mismos
antecedentes mundiales que trajo consigo el término ecoeficiencia. Según Ayres y
Ayres (2001), los precedentes más importantes de la Ecología Industrial se encuentran
18
cimentados bajo los conceptos de Simbiosis Industrial y Sinergia7
de Subproductos,
nacidos en los años 70. El principio que siguen estos conceptos es que el flujo de
residuos de una industria se incorpore a otra convirtiéndose en materia prima para la
segunda, con lo que se busca cerrar el ciclo de materia.
De la década de los 90 hasta nuestros días, el concepto de Ecología Industrial se ha
consolidado incluyendo los tres sectores del desarrollo sostenible: ambiente, economía y
sociedad. La Ecología Industrial puede describirse también, como el estudio de las
interacciones e interrelaciones físicas, químicas y biológicas dentro de los sistemas
industriales, naturales, sociales y las interacciones entre ellos, como se ilustra en la
Figura 2.
Figura 2: Interacción de actores en una sociedad como un ecosistema
natural.
FUENTE: Elaboración Propia
La Simbiosis Industrial es un concepto del que se sirve la Ecología Industrial, según
Cervantes et al. (2009), para el intercambio de materiales entre varios sistemas
productivos de manera que el residuo de uno sea materia prima para otros y su
implantación promueva una red de empresas. El objetivo inicial de la Simbiosis
Industrial es económico, pero tiene consecuencias ambientales y sociales positivas; la
Simbiosis Industrial se encuentra contenida en la Ecología Industrial, de manera que no
7
En referencia a la integración de elementos que da como resultado algo más grande que la
simple suma de éstos; es decir, cuando dos o más elementos se unen sinérgicamente crean un
resultado que aprovecha y maximiza las cualidades de cada uno de los elementos.
Ciudades Industria
Entidades
públicas
Industria II
19
se puede aplicar ésta última sin utilizar el método de la primera. Sin embargo, la
ecología industrial es más amplia, contempla aspectos económicos, ambientales y
sociales para entender la sostenibilidad. Esto contribuye a buscar la ecoeficiencia
empresarial ya que la aplicación de la Ecología Industrial asume que una empresa opera
ecoeficientemente.
2.4 DISPOSICIÓN FINAL DE RESIDUOS SÓLIDOS
El continuo aumento de población y el cambio de costumbres alimenticias y de
consumo en las últimas décadas ha producido un considerable aumento de residuos
sólidos urbanos, lo que genera que en todo el mundo la disposición de residuos esté en
situación de emergencia.
Los diversos métodos de disposición final se pueden resumir a dos, por ser los más
conocidos y usados a nivel mundial.
2.4.1 RELLENO SANITARIO Y DE SEGURIDAD
En este contexto, el uso de relleno sanitario (residuos no peligrosos) o de
seguridad (residuos peligrosos) es en la actualidad, sin duda, el método más usado y
económico del mercado. Se deriva de sus antecesores directos, los botaderos y
botaderos controlados, que con el tiempo fueron tomando medidas más específicas para
el control de la contaminación y el uso efectivo de la superficie.
Jairo (2002) reconoce que el relleno sanitario es entendido hoy en día como una
instalación destinada a la disposición final de residuos municipales no reciclables ni
aprovechables, y que está diseñado para minimizar los impactos ambientales y reducir
riesgos sanitarios generados por mala disposición en botaderos no controlados.
En el contexto internacional, Gago (2009) menciona que en 1930 empezó a utilizarse
por primera vez la expresión “relleno sanitario” (sanitary landfill) en la ciudad
estadounidense de Fresno, California. También afirma que el término surgió para
designar “la cubierta diaria de los residuos y la supresión de su quema”. En las
siguientes décadas, el método de relleno sanitario se desarrolló de manera notable en los
20
EE.UU. por lo que impulsó la construcción de centros de disposición final hasta cubrir
prácticamente todas las áreas urbanas.
El uso de un relleno sanitario consiste en enterrar residuos sólidos junto a una adecuada
cantidad de tierra que permita su total confinamiento. Un relleno de seguridad difiere
del anterior en que antes del entierro de residuos peligrosos se recubre la base del
terreno con una geomembrana o capa impermeable de protección para el subsuelo.
Según las cifras de la Environmental Protection Agency (EPA), en 1988 había 7 924
rellenos operando en territorio estadounidense, aunque a partir de ese año la cantidad de
rellenos disminuyó de manera considerable. En el 2006 sólo el 55 % de los residuos
sólidos generados en EE.UU. fueron dispuestos en rellenos sanitarios.
De acuerdo a Gago (2009) la causa de tal tendencia decreciente son los procesos de
regionalización estadounidense y la aplicación de nuevas tecnologías de disposición
final de residuos sólidos como la incineración controlada. También atribuye la
disminución al aumento del uso del reciclaje y compostaje, que se ocupan actualmente
del 32,6% de los residuos generados en territorio estadounidense. De esta forma se evita
incinerar o disponer en relleno sanitario más de 81,8 millones de toneladas de residuos.
Si bien el número total de rellenos en Estados Unidos ha declinado, la capacidad total
de los existentes se ha incrementado. Los tres rellenos regionales más grandes pasaron a
tener una capacidad de hasta de 1.3 billones de toneladas.
Siguiendo a Gago (2009), en Europa se muestra que en el año 2004 alrededor del 45%
del total de residuos municipales e industriales era dispuesto en rellenos mientras que el
18% era incinerado. Actualmente esta tendencia está variando y se hace notar en países
como Holanda, Dinamarca, Suecia y Bélgica, que poseen un bajo y casi nulo nivel de
disposición en rellenos debido al empleo de la incineración y a los altos porcentajes de
recuperación de materiales. El sistema de rellenos a nivel mundial está en decadencia
debido a las nuevas e innovadoras tecnologías que buscan realizar la misma función
pero con mayor eficiencia y cuidado del medio ambiente. A pesar de que la incineración
controlada es el método más usado en países desarrollados, en Latinoamérica no es
tomado en cuenta lo suficiente por municipalidades y empresas industriales.
21
Las principales características ambientales encontradas en el proceso de Relleno
Sanitario están relacionas con la generación de gases y lixiviados. Al disponer los
residuos en el relleno se forman espacios vacíos entre ellos ocupados con oxigeno (O2),
que inicia la descomposición aeróbica de la materia orgánica biodegradable. En esta
fase se forman dióxido de carbono, agua y otros subproductos. Cuando el O2 en el
Relleno se agota, se inicia la fase anaeróbica de la descomposición que es la fase más
importante desde la perspectiva de formación de gases.
La generación de gas en un sistema anaerobio depende de diversas variables que
incluyen las características de los residuos, humedad, temperatura, pH, disponibilidad
de nutrientes y microbios y presencia de inhibidores. Durante el proceso de
estabilización de los residuos sólidos dispuestos en un Relleno se generan desechos
líquidos que se filtran a través de ellos extrayendo material disuelto o en suspensión,
estos se denominan lixiviados. La composición química de los lixiviados varía según la
antigüedad del relleno.
La producción de lixiviados tiene su origen en la humedad que traen consigo los
residuos y en el agua que ingresa al relleno a través de las lluvias y entra en contacto
con los residuos sólidos , estos compuestos posteriormente pueden dispersarse en el
medio ambiente circundante (aguas superficiales, subterráneas y aire).
Los mecanismos de dispersión de los lixiviados son la escorrentía dentro de la zona de
disposición, la infiltración y la penetración de aguas subterráneas hacia las capas
inferiores del relleno. Cuando los residuos quedan saturados, el agua resbala entre ellos
por acción de la gravedad y se contamina por contacto con el material dispuesto.
(Méndez et al., 2006).
Los gases emitidos a la atmósfera desde un Relleno Sanitario se dividen en gases
principales, producidos en mayor cantidad y que proceden de la descomposición
orgánica. También se producen gases como el metano, el cual tiene características de
combustión y explosividad en concentraciones que fluctúan entre 5 -15 %,
especialmente cuando migra del lugar y se mezcla con el aire.
22
En general, el porcentaje de gases principales que se emiten depende de la antigüedad
del Relleno Sanitario, estos son (Theisen et al. ,1994):
• Metano (CH4) 45 – 60%
• Dióxido de Carbono (CO2) 40 – 60%
• Nitrógeno (N2) 2 – 5%
• Oxigeno (O2) 0,1 -1,0%
Con base en estudios realizados por la EPA, se encontró que los rellenos sanitarios se
ubican como la veintiseisava fuente de emisión de compuestos peligrosos al aire, siendo
los principales los Compuestos Orgánicos Volátiles (COV), el Metano (CH4) y el
Dióxido de Carbono (CO2), generados en el Relleno Sanitario durante la
descomposición anaeróbica de la materia orgánica. Otro de los gases emitidos por el
Relleno Sanitario es el ácido sulfhídrico (H2S) cuyo principal efecto es la generación de
olores desagradables. Como se mencionó, del total de gases emitidos a la atmósfera por
un Relleno Sanitario el Metano (CH4) representa entre el 45 al 50% y hace parte de los
hidrocarburos cuya presencia además son uno de los principales causantes del efecto
invernadero. (Méndez et al., 2006).
En el control de gases generados por procesos químico-biológicos de residuos
confinados, como el biogás8
, se dispone de chimeneas que salen de la superficie
terrestre y por donde son expulsados. En la evolución del uso de este método las
empresas de rellenos sanitarios más grandes del mundo han generado diversas
tecnologías de mejoramiento para sus procesos, en las que han incluido, por ejemplo, un
sistema de canalización de gases, como los CO2 y CH4, en una chimenea principal
donde se queman antes de ser liberados al medio ambiente, de esta manera disminuir su
capacidad de generación de calentamiento global. (Noguera y Olivero, 2010)
2.4.2 INCINERACIÓN CONTROLADA
La incineración es para muchos la opción más rápida y sencilla para eliminar
grandes cantidades de residuos municipales, industriales, etc. Países altamente
8
Biogás con alta concentración de metano CH4
23
industrializados como los de la Comunidad Europea y EE.UU. han incursionado en una
nueva alternativa técnica, el proceso de incineración mejorado, con visibles y buenos
resultados en el orden ambiental además de capitalizar el aprovechamiento de varios
sub-productos que se obtienen del tratamiento por incineración de residuos.
De acuerdo a Kaynak y Topal (2005), en la incineración se utiliza la descomposición
térmica mediante el proceso de oxidación a altas temperatura (1800 - 2500º F). Se
consume la fracción orgánica del residuo hasta reducir su volumen. Corresponden a sus
criterios de funcionamiento y operación: la alta eficiencia de combustión, destrucción y
remoción de gases tóxicos, el límite permisible en la emisión de partículas y un
monitoreo continuo en el proceso, con temperatura mínima específica y niveles
aceptables de tiempo de residencia de los gases generados en el combustor.
La labor de estos potentes combustores contrasta con la antigua y ya conocida técnica
simple de incineración, altamente dañina para el ambiente. Estos componentes
representan una de las tecnologías más prometedoras para reducir las emisiones a la
atmósfera por medio de su combustión controlada (Terán, et. al 2008).
Ayres y Ayres (2001) ya reconocía que esta tecnología proporciona un significativo
valor agregado al proceso de reciclaje. La trituración de residuos inicia una cadena de
reciclaje técnico que culmina con incineración, cabe decir, no contaminante debido a la
disposición de filtros especiales que retienen las partículas volátiles evitando que estos
lleguen a la atmósfera. Como agregado se pueden tratar los restos de la incineración
para obtener abono orgánico, alimento para la industria ganadera y materia prima para
bloques de tipo cementoso.
Esta exitosa y probada tecnología de producción energética constituye lo más novedoso,
rentable y adecuado para proveer soluciones con beneficios adicionales. Convierte un
gasto en una operación lucrativa de alto contenido social que previene la contaminación
y cuida la salud humana.
El proceso de incineración técnica de residuos sólidos, comienza con la preparación de
los materiales a través de clasificación y reciclaje, el cual pasa a utilizar un molino
especial de martillos de alta resistencia. Luego pasa al incinerador de acuerdo al
24
material del desecho, si es hospitalario o toxico, industrial, doméstico o agrícola. Los
gases provenientes de esta incineración calientan el agua de la caldera que producirá
vapor para mover la turbina que se utiliza para la generación de energía eléctrica de 1a
20 megavatios por hora por línea de proceso. Después la ceniza es clasificada para
prepararla y utilizarla como material cementoso en la creación de prefabricado de
concreto.
En cuanto al resumen analítico del proceso de incineración, esta se basa en un sistema
de reciclaje técnico y de trituración para realizar una incineración con una mínima
contaminación atmosférica con filtros especiales siendo un sistema de alta tecnología.
Este proceso tiene las siguientes etapas: (Mind West International Group Inc, 2004).
1. Barrido y aseo de calles, recolección domiciliaria con equipos compactadores
ambientales: El diseño del plan de barrido será realizado y ejecutado por las
municipalidades y/o una empresa local con gran experiencia en la región. Los
camiones de la empresa transportaran la basura de los puntos de acopio a la
planta procesadora donde son recibidos y pesados para entrar a clasificación.
2. La recepción de la basura: Entra a un área donde se lleva a cabo el proceso de
clasificación para reciclaje de una manera aséptica e higiénica, por recicladores
expertos de acuerdo a los requerimientos de la “Environmental Protection
Agency” (EPA). El producto de esta tarea se almacena en una bodega para su
elaboración y comercialización de acuerdo al uso que se les vaya a dar. Si los
desperdicios son altamente orgánicos tales como los de las galerías y mercados
locales, podrían deshidratarse y molerse para utilizarlos como base y agregado
abono. El reciclaje debe iniciarse en los hogares, procedimientos que se lleva a
cabo a través de campañas de educación ambiental.
3. Molinos: El desperdicio que no tiene valor reciclable pasa por el molino
reduciendo la basura en partículas uniformes, preparándola así para una
incineración más efectiva y dejando una ceniza utilizable.
25
4. Cámara Incineradora: Al entrar al incinerador la basura en pequeñas partículas
se recibe a temperaturas que oscilan entre 1,800 a 2,500 grados Fahrenheit
dependiendo de su humedad y queda así reducida en el 5% del volumen inicial
en cenizas. Las basuras industriales y hospitalarias pueden ser tratadas
directamente a 1,800 grados Fahrenheit en este mismo incinerador y para
eliminar cualquier tipo de contaminación patológica, el equipo lleva una casa de
filtros de alta tecnología limpiando el 95% en su chimenea.
Entre las principales características del sistema de incineración, se hace uso de una torre
acondicionadora de paneles refractarios HAC (“High Aluminuous Content”) sólidos, la
cual no se ve afectada por calor excesivo y ambiente con alto contenido de productos
químicos húmedos.
También se utiliza un fogón en V totalmente refractario el cual ha demostrado ser
superior en el manejo de las cenizas y especialmente su facilidad de mantenimiento, si
se compara con las rejillas móviles de los demás sistemas combustión. Esto también es
un aspecto importante para lograr una incineración, donde la mayor parte de los
derivados nocivos de la combustión tienden a desaparecer debido a la sobre exposición
a altas temperaturas y a una combinación de altas presiones y aire de combustión
secundario. Las pruebas también indican que este diseño permite una mínima
producción de “NOX” y una acumulación de cenizas reciclables de buena calidad con
una reducción en el volumen de más del 90%. (Mind West International Group Inc,
2004).
La cámara de combustión principal posee las siguientes características:
• Una cámara de combustión de 21 pies de diámetro y 30 pies de altura.
• Colector de distribución de aire principal con apertura sanitaria y características
de manejo de distribución de aire manual.
• Colector de distribución de aire secundario de alta presión a cuatro bocas.
• Calderas principales y secundarias con motores y compuertas de mariposa.
• Fogón en V refractario.
• Combustión computarizada, combustible, manejo de la carga y de las cenizas.
26
• Quemador auxiliar para el encendido y mantenimiento de la temperatura.
• Paneles refractarios de repuestos.
La planta de Incineración Controlada posee mecanismos de recuperación de energía,
debido a que genera aproximadamente 1 a 20 MW de electricidad. Para ello se utiliza
una turbina que activa el Generador Eléctrico, este generador es suministrado por
empresas como Murray Turbomachinery o algún proveedor similar.
Mind West International Group Inc. (2004) indica que para el control ambiental una
planta de Incineración controlada aplica los siguientes mecanismos:
• Torre de acondicionamiento con control automático de protección de
temperatura.
• Sistema de inyección de carbón activado seco en polvo.
• Sistema de control de gases ácidos por inyección de absorbente cáustico seco.
• Deposito de filtrado, bolsas de fibra de vidrio, selladas, sacado continuo de
cenizas mediante válvula rotativa, compresor de aire.
• Supervisión continua, grabación y control de gases a diversas temperaturas.
• Supervisión de las operaciones de la planta por computadora.
Con la utilización de la tecnología expuesta una planta de Incineración Controlada, es
una de las alternativas de disposición final de residuos que es cada vez más usada a
nivel mundial, demostrando ser eficiente en la reducción del volumen de residuos y con
medidas necesarias para el control de la contaminación ambiental.
2.5 REUTILIZACIÓN DE RESIDUOS SÓLIDOS: CASO TETRA PAK
La empresa TETRA PAK no sólo es famosa en el mercado por la diversa gama de
productos usados como envases de diversas marcas de venta de alimentos y bebidas,
sino también por su planeamiento verde: aplicación de técnicas de segregación y
reciclaje para crear nuevos productos en base a desechos de fabricación y recolección de
envases usados.
27
Un claro ejemplo de ello es la creación de la empresa ECOPLAK y su producto estrella,
el Tectán, que Chung (2003) describe como un material aglomerado que utiliza como
materia prima los envases de TETRA PAK. Este producto está siendo usado en muchos
países de Europa y algunos otros sudamericanos (por ejemplo, Chile) en reemplazo de
la madera en la fabricación de diversos artículos como muebles, escritorios, etc.
La técnica de fabricación de este producto no es muy complicada y sigue lineamientos
básicos que se explican a continuación (Chung, 2003):
• Los cartones triturados se lavan, secan y extienden en una capa del espesor
deseado.
• Después se ponen en una prensa y se calientan a unos 170º C.
• El calor funde el contenido de polietileno (PE) que une la fibra densamente
comprimida y los fragmentos de aluminio en una matriz elástica.
• La matriz resultante se enfría rápidamente formando un duro aglomerado con
una superficie brillante e impermeable.
Este tipo de reciclaje es una de las técnicas más adecuadas para enfrentar la
problemática de los residuos sólidos no peligrosos en países en vías de desarrollo, según
Aguilar (1999). Se considera la opción del reciclaje comunitario como una modalidad
específica que responde mejor a la realidad socioeconómica de un país como el nuestro.
La empresa TETRA PAK incentiva a diversas comunidades, pueblos y barrios a la
colección de estos envases a cambio de diversos incentivos que favorecen a toda la
comunidad. Así recolecta más del noventa por ciento de los residuos sólidos que serán
transformados en un nuevo producto. Del mismo modo, la aplicación de esta técnica
suele ir acompañada de una fuerte sensibilización, ya que en otros países la fabricación
del producto Tectán es el tramo final de una campaña de segregación y reciclaje que
lleva la empresa durante todo el año con los mismos consumidores de cada país.
28
III. MATERIALES Y MÉTODOS
3.1 ÁREA DE ESTUDIO
La casa matriz de BELCORP se ubica en la Avenida Canaval y Moreyra 480,
San Isidro, y la planta de producción en la Avenida San Andrés 150, Los Olivos (zona
industrial), ambas en la Provincia y Departamento de Lima.
BELCORP es una corporación internacional fundada en el Perú hace más de 40 años, es
dueña de las firmas de cosméticos, productos de cuidado personal, moda, hogar y
accesorios L’bel, Ésika y CyZone. Actualmente comercializa sus productos en más de
quince países en Latinoamérica y posee dos plantas principales de producción, una
ubicada en Lima – Perú y la otra en Bogotá – Colombia, siendo la de Perú
subcontratada por la empresa YOBEL.
3.2 MATERIALES
Los diversos materiales y equipos que se usaron en esta tesis fueron
proporcionados en su totalidad por la empresa BELCORP, y se detallan a continuación:
3.2.1 MATERIALES PARA LA CARACTERIZACIÓN
Los equipos de protección personal:
• 2 pares de guantes
• 2 mascarillas
• Mandil
Materiales para la experimentación:
• Muestras de los productos plásticos a trabajar
• 1 encendedor
• 1 máquina trituradora
29
• 1 envase hondo con agua
• 1 cámara fotográfica
3.2.2 MATERIALES DE ESCRITORIO
• 1 computadora
• Libreta de anotaciones
• Útiles de escritorio
• 1 calculadora
3.3 MÉTODOS
El estudio se realizó en cinco fases secuenciales articuladas entre sí, de tal forma
que la información recabada en la fase anterior sirviera de instrumento para
comprender la siguiente.
3.3.1 DIAGNÓSTICO INICIAL DE LA EMPRESA BELCORP
Esta primera fase consistió en conocer el proceso actual de generación y
organización de residuos sólidos en la empresa Belcorp. Para ello se describió cada
actividad involucrada con los residuos sólidos dentro de la empresa y también a los
actores principales que intervinieron en la generación de los mismos.
Esta información se obtuvo por medio de visitas a la casa matriz de Belcorp y la planta
de producción donde la empresa Yobel se encarga de la fabricación de los productos
comercializados por Belcorp. Durante estas visitas se recopiló información por medio
de reuniones con los responsables de la suministración de materiales, producción y
eliminación de residuos, lográndose conocer a detalle el funcionamiento de estas
actividades principales.
El principal objetivo de esta fase fue obtener datos específicos útiles para comparar el
desenvolvimiento normal de la empresa y su posible funcionamiento de aplicarse el
sistema de reutilización de RSP planteado.
30
Por otro lado, las empresas Belcorp y Yobel colaboraron en esta fase poniendo a total
disposición la data que se requería para describir la ejecución de cada uno de los
procesos evaluados.
Finalmente para lograr una comprensión total de la data brindada por estas empresas se
tuvo que aprender a utilizar el software Solutions Applications and Services (SAP), el
cual sirve para el almacenamiento y manejo de data en ambas empresas.
Las actividades que se desarrollaron para ello fueron las siguientes:
• Visualización del uso de este programa en los trabajadores administrativos, con
el fin de memorizar los comandos y forma de uso.
• Simulación de utilización del programa supervisado por un trabajador
administrativo para familiarizarse con el programa.
• Elaboración de un glosario de terminologías usadas por el programa que
permitió conocer y utilizar la data almacenada en códigos, que sirven para
inventariar cada material fabricado o adquirido por la empresa.
El SAP es un programa de computación usado para ordenar y mantener un correcto
sistema de información de inventarios. Este complejo programa informático es utilizado
y consultado diariamente para obtener información requerida, actualizar la data, ingresar
nuevos materiales adquiridos o fabricados, etc.
El principal objetivo de esta fase fue conocer el significado de los términos usados en el
control y almacenamiento del inventario de suministros plásticos inactivos y/o obsoletos
para la empresa, debido a que representan los RSP que fueron utilizados en la
evaluación del sistema de reutilización planteado.
Otra ventaja del programa es que brinda datos específicos de cada uno de los materiales
presentes en los almacenes de la empresa, permitiendo conocer el material de
fabricación (vidrio, papel y plástico), su estado de producción (producto terminado,
envases o materia prima), estado en el ciclo de vida (apto para la venta, inactivo,
bloqueado, para destrucción) y sus características físicas como peso, color, volumen,
densidad, etc.
31
Sólo hacía falta conocer el tipo de resina de los RSP, hecho que motiva la siguiente
fase.
3.3.2 CARACTERIZACIÓN DEL TIPO DE RESINA PLÁSTICA
Esta fase consistió en conocer los diversos tipos de resinas con que fueron
elaborados los RSP de la empresa, hecho determinante para la viabilidad técnica del
sistema de reutilización propuesto, pues permite conocer si dichos materiales plásticos
son útiles para ser reciclados.
Las actividades realizadas en el desarrollo de la caracterización fueron las siguientes:
• Selección de muestras de RSP
• Aplicación de pruebas físicas a las muestras seleccionadas.
Para la selección de muestras se tomó en cuenta los siguientes pasos:
Paso 1: a través del SAP se obtuvo la data del total de materiales acumulados hasta la
fecha en los almacenes de inventarios inactivos (materiales considerados como residuos
sólidos para la empresa). Esta data fue exportada en el mismo programa a un cuadro de
Excel para poder trabajar en él.
Paso 2: con el uso de la herramienta filtro automático de Excel se seleccionó la data que
representara productos con las siguientes características: elaborados en base a plástico,
que fueran envases (frasco y tapa), y que no fueran aptas para el comercio, es decir RSP
que podían ser usados en el sistema de reutilización planteado.
Paso 3: una vez filtrada la data se eligió un producto de cada línea de venta (como
perfumes, champú, desodorantes, probadores, labiales, cremas, etc.), debido a que existe
una uniformidad en las características técnicas exigidas a los proveedores de envases
dentro de cada línea de venta, lo que asegura que todos los envases de en una de ellas
estén elaborados con el mismo tipo de material plástico, variando únicamente en el
modelo y color por cada producto.
32
Paso 4: Por último, se envió los datos de las muestras representativas seleccionadas a la
empresa Yobel, para que substrajeran lo solicitado de los almacenes y fueran entregadas
físicamente.
En el caso de las pruebas físicas, estas se describen a continuación:
• Visual: consiste en verificar visualmente las muestras seleccionadas y anotar el
código del tipo de resina, colocado generalmente en la base del material plástico
al momento de su fabricación.
• Quemado: se cortó un pedazo de la muestra estudiada y se llevó al fuego por
diez segundos. Si la muestra se mantenía intacta, sin caer en pedazos flameantes
al suelo, se trataba de un pedazo de muestra plástica con resina tipo PP
(Polipropileno).
• Trituración: se hizo uso de una trituradora generalmente usada para destruir
productos dañados en el proceso de fabricación. Se introdujo parte o todo el
envase de plástico, y tras ser triturado se inspecciona el resultado: si presentaba
escamas era plástico con resina PET (Polietileno Teraftalato); de caso contrario,
era del tipo PEAD (Polietileno de Alta Densidad).
• Inmersión en agua: se cortó la muestra en pequeños pedazos homogéneos de
aproximadamente 2 cm. y se esparcieron uniformemente en un envase con agua.
Si permanecían flotando en la superficie era plástico con resina tipo PEBD
(Polietileno de Baja Densidad).
33
3.3.3 ANÁLISIS DEL MERCADO DE RECICLAJE Y FABRICACIÓN DE
PRODUCTOS PLÁSTICOS
Paso seguido se inició la búsqueda de empresas especialistas en reciclaje de
plástico en el mercado local que trabajen con los tipos de resinas hallados.
Esta fase se ejecutó con el fin de encontrar empresas en el mercado local que puedan ser
partícipes del sistema de reutilización evaluado y que deseen ser parte de la cartera de
proveedores y subcontratistas de Belcorp.
Una vez contactadas y seleccionadas se organizaron visitas para comprobar su
capacidad de trabajo con grandes volúmenes de RSP. Las visitas consistieron en
reuniones con los jefes de comercio y producción de cada empresa para evaluar las
cotizaciones por los servicios a prestar: reciclaje y fabricación de materiales plásticos.
La información recopilada se usó en el análisis preliminar de variables económicas,
como consta más adelante en el presente estudio.
3.3.4 ANÁLISIS PRELIMINAR DE VARIABLES ECONÓMICAS DE LA
REUTILIZACIÓN DE RESIDUOS SÓLIDOS PLÁSTICOS.
Última fase compila las anteriores plasmadas en números y cantidades
monetarias. Se trata de la parte económica del análisis de prefactibilidad de la tesis y
estuvo basado en una relación simple de costo y beneficio. Consistió en la creación de
supuestos que ayudaran a entender de manera más lógica el desarrollo del análisis
preliminar de variables económicas.
Los supuestos involucrados se dieron tomando como base a un producto terminado de la
empresa, que en este caso fue el envase del desodorante llamado “Mercy” de la marca
Ésika, se eligió este producto debido a que el envase del mismo puede ser hecho con el
tipo de resina encontrada en mayor proporción en los RSP acumulados de la empresa,
además de ser uno de los productos más vendidos anualmente en el mercado.
Estos supuestos se basaron en la fabricación de dicho envase, pero desarrollados en
dos escenarios diferentes:
34
Escenario A: fabricación del producto elegido haciendo uso de la materia prima no
virgen obtenida del proceso de reciclaje de RSP, evaluándose los gastos en los que
incurriría al aplicar el sistema de reutilización planteado.
Escenario B: fabricación normal del producto elegido con los mismos suministros y
materia prima virgen que otorga el proveedor de la empresa.
Planteando estos escenarios se obtuvo una diferencia en gastos brutos finales de
fabricación, que muestra qué opción es económicamente más rentable para la empresa,
sin olvidar que el sistema de reutilización sí es ambientalmente viable para la empresa y
que permite ahorrar recursos evitando la adquisición de materia prima virgen y
reduciendo el volumen de RSP que van a disposición final.
La fórmula usada en esta fase fue la siguiente:
BT = IT – CT
Donde: BT= Beneficio Total
IT= Ingreso Total (ventas)
CT= Costo Total (gastos fabricación)
Esta fórmula fue aplicada de la misma forma en ambos escenarios. La variable a
calcular era CT y la variable IT representaba a una misma cantidad debido a que se usó
un mismo precio de venta para ambos casos, mientras que la variable BT fue la que se
comparó al final para poder constatar cual de los dos escenarios favorecía
económicamente a la empresa.
35
3.3.5 ANALISIS DE LA TECNOLOGÍA DE DISPOSICION FINAL DE
RESIDUOS SÓLIDOS PROPUESTO.
Esta fase consistió en evaluar la nueva tecnología propuesta a Belcorp para ser
usada en el proceso de disposición final de residuos sólidos de la empresa, con la
finalidad de evaluar si es conveniente para a la empresa en términos económicos y
ambientales. Esta tecnología fue la de Incineración Controlada.
Para conocer más sobre ésta tecnología, se realizaron reuniones con el representante de
ventas en Perú del MID WEST INTERNATIONAL GROUP (MWIG), empresa
estadounidense que llegó al Perú pocos años atrás y que actualmente posee cuatro
plantas de Incineración controlada para la disposición final de residuos municipales e
industriales.
Se analizó la tecnología de Incineración Controlada, porque garantiza la rápida
destrucción de grandes volúmenes de residuos en menos tiempo, y brinda un servicio
que favorece el cuidado del medio ambiente, características que permitirían a Belcorp
una mejor disposición final mensual del inventario bloqueado.
Por otro lado, se decidió trabajar con la empresa MWIG, por ser de las únicas en el
Perú que brindan el servicio de la Incineración Controlada, además de contar con varias
plantas en funcionamiento, estando una de ellas ubicada en la provincia de Huacho,
siendo la más cercana a la ciudad de Lima.
Con la información brindada por la empresa MWIG, se realizó un análisis de gastos en
materia de disposición final en la empresa y se comparó con la cotización brindada por
la empresa MWIG. Los principales puntos considerados en este análisis fueron los
siguientes:
• Variables económicas, como costos de servicio, transporte y otros gastos.
• Peso total de residuos sólidos a disponer en un año por cada tecnología.
Mientras que para la evaluación del cuidado ambiental se elaboró un cuadro resumen
en el que se describen cada uno de los criterios tomados por la empresa MWIG en el
control y protección del ambiente.
36
IV. RESULTADOS Y DISCUSIONES
4.1 RESULTADOS DEL DIAGNÓSTICO INICIAL A LA EMPRESA
BELCORP
La empresa BELCORP usa un sistema de venta promotor-cliente a través de
catálogos para sus tres marcas: Ésika, CyZone y L’bel. Cada promotor interacciona
directamente con los clientes, que realizan los pagos una vez entregados los productos.
Las consultoras pueden colocar cerca de 150 millones de órdenes de compra para la
empresa, con una participación del 27% para L’bel, 41% para Ésika y 32% para
CyZone.
Una campaña consiste en el lanzamiento de un nuevo catálogo para las tres marcas,
señala el inicio y el final de un periodo de trabajo así como el ritmo con que se mueve la
empresa de mes a mes.
Con dieciocho campañas en todo el año, cada una se prepara hasta dos meses antes de la
fecha de lanzamiento al mercado. La cantidad y clase de producto que se lanzan en cada
catálogo son determinadas por los análisis de mercado que se realizan en base a
estadísticas de ventas pasadas; de este modo se aproxima a la cantidad de productos que
deben tener fabricados para la venta. Según registros de la empresa, cada mes se
mueven aproximadamente 1, 800 toneladas de mercadería, lo cual es casi 1.8 millones
de kilos de productos por mes que salen de Lima y Bogotá, las dos principales orígenes.
Factores como el corto periodo entre campañas, la aproximación de datos para la
fabricación de productos y el mismo mercado variante entre nuevas tendencias y gustos,
causan que el tiempo de vida de un producto lanzado al mercado sea muy corto. Las
ventas pueden reducirse hasta en menos de la mitad de lo inicialmente programado. Éste
fenómeno se refleja en la cantidad de productos que Belcorp lanza al mercado, que
suelen llegar hasta doscientos setenta nuevos productos por año, y en la cantidad de
productos vendidos por catálogo en cada campaña, que supera los cuatrocientos
noventa.
37
Estos importantes motivos provocan un incremento en la acumulación de inventario de
productos terminados, insumos, y suministros inutilizables en los almacenes de Belcorp,
lo que incrementa a su vez la cantidad de residuos sólidos que la empresa finalmente
tiene que disponer al medio ambiente.
Bajo términos de Ecología Industrial, la empresa Belcorp estaría interactuando con los
diversos actores que se muestran en la Figura 3, si aplicase un sistema de reutilización
de RSP.
FUENTE: Elaboración propia
Figura 3: Ciclo de Ecología Industrial de la empresa Belcorp
La interrelación entre la empresa (comercializadores), Yobel (fabricantes), proveedores
y la empresa recicladora, tiene como objetivo lograr satisfacer sus necesidades y a la par
hacer uso del RSP generado, de manera que maximiza sus posibles usos y recupera su
valor, logrando así cerrar el ciclo que la aplicación de la ecología industrial busca.
Para conocer más a fondo el sistema de trabajo que lleva Belcorp al completar todas las
campañas programadas, se describirán los procesos principales que involucran la
generación de residuos sólidos.
BELCORP
YOBEL
RECICLADORA
(Paletiza)
PROVEEDORES /
NUEVAS EMPRESAS
FABRICADORAS
Envases de plástico
sobrantes
Envases de plástico
sobrantes
Pellets de plástico
reciclado
Nuevos envases de plástico
útiles
Productos
terminados
38
La Figura 4 muestra un diagrama de flujo de la interacción entre actores y procesos, así
como los pasos para la eliminación de residuos sólidos generados en el proceso de
interacción.
FUENTE: Elaboración propia
Figura 4: Actores y Procesos en la generación de residuos sólidos
La numeración mostrada indica el orden correlativo de participación de cada uno de los
actores y de los principales procesos que se describirán líneas abajo.
En la Figura 4, se inicia con la subcontratación que realiza Belcorp a la empresa Yobel,
encargada de la fabricación del contenido (bulk9
), envasado y almacenamiento de los
productos a lanzar en las campañas. En este paso Belcorp tiene establecido la cantidad
de productos que debe fabricar Yobel según sus estadísticas de venta.
En algunos casos, la propia Yobel brinda los suministros usados para el envasado de los
productos terminados10
, los cuales están bajo el control directo de Belcorp.
Esta situación no se da con frecuencia, puesto que Belcorp cuenta con una cartera de
proveedores con quienes se encarga de suplir la mayoría de los materiales para la
fabricación. Los proveedores, se encargan de brindar insumos (materias primas) y
suministros (envases, tapas, etiquetas, etc.) a Yobel en cuento ésta lo solicite.
9
Nombre que da la empresa BELCORP a todo lo que se consume en el producto terminado, ya sea este
líquido, gel o sólido; como por ejemplo, la fragancia líquida de un perfume y el gel crema de un shampoo.
10
Producto terminado es el que está listo para la venta y tuvo la participación directa de BELCORP para
su elaboración.
BELCORP
YOBEL PROVEEDORES
Fabricación de
contenido
Almacenaje
RESIDUOS
SÓLIDOS
Disposición
Final
1
2
3
4
5
6
7RELIMA
39
Se puede encontrar productos terminados y residuos sólidos como resultado de los
procesos de fabricación y almacenamiento. Los residuos sólidos le pertenecen a la
empresa Belcorp, por lo que tiene responsabilidad directa en su disposición final.
Ellos son confinados en un espacio especial que se alquila a la empresa Yobel, como
inventario obsoleto y luego, dependiendo del tipo de residuo, son transportados en
partes y periodos definidos para su disposición final en un relleno sanitario o de
seguridad de Relima. Este proceso se lleva a cabo después de una venta previa de los
residuos sólidos reciclables a pequeños comercializadores; venta que se limita a
suministros, ya que no se permite comercializar residuos que son productos terminados
y etiquetados con los logos de las marcas de la empresa: se corre el riesgo de
adulteramiento y venta de dichos productos a terceros para comercio ilícito.
Seguidamente se describen de manera más detallada cada uno de los actores y procesos
anteriormente mencionados:
a) PROVEEDORES
La empresa Belcorp divide a sus proveedores de acuerdo al tipo de material que
les proporcionan, como plásticos, vidrios, cartones, materias primas, y, entre estos,
químicos y esencias.
Los proveedores son nacionales y extranjeros, siendo los últimos de países como
Estados Unidos, China, Italia, Francia (para productos de la marca L’Bel), Colombia,
Argentina, entre otros de Latinoamérica.
Las principales características que posee Belcorp en cuanto a la relación con sus
proveedores se describen a continuación:
• Todo proveedor que intervienen en la fase de fabricación está bajo control
directo de Belcorp, por lo que todo tipo de contratación se realiza directamente
entre Belcorp y el proveedor. Siendo Yobel únicamente un nexo entre la relación
proveedor-cliente.
40
• La empresa Yobel interviene en la recepción de mercadería, recayendo en ellos
la responsabilidad de realizar la verificación y control de calidad de los
productos que los proveedores entregan.
• Si la mercadería fue rechazada en proceso de control y verificación de calidad, la
empresa Belcorp es quien da la última palabra para tomar las acciones necesarias
ante la situación que se encuentre. Del mismo modo, es la que decide si desea
dejar de contar con los servicios de algún proveedor, si este incumple numerosas
veces las reglas de calidad en el producto pedido.
• El procedimiento que se sigue cuando una mercadería es rechazada varía de
acuerdo al tipo de proveedor, dado que Belcorp sólo posee 24 horas para la
devolución de mercadería, según reglas exigidas por el proveedor. Estos
procedimientos son:
a. Proveedores Nacionales: se procede a sellar nuevamente la mercadería
revisada y se comunica al proveedor, indicando que por fallas técnicas su
mercadería será devuelta inmediatamente, luego de ello el proveedor
tiene un periodo definido de tiempo para devolver dicha mercadería en
las condiciones requeridas.
b. Proveedores Extranjeros: se sella la mercadería y se marca para que
luego sea enviada a los almacenes de Belcorp, debido a que al tratarse de
proveedores extranjeros, la mercadería no puede ser enviada dentro de
las 24 horas, por lo que Belcorp debe hacer un nuevo pedido al
proveedor indicando lo sucedido, teniendo éste un plazo límite de
tiempo para reenviar nueva mercadería en las condiciones requeridas.
• La mercadería rechazada que no pudo ser devuelta al proveedor, termina siendo
almacenada como inventario bloqueado, lo que significa que no podrá ser usada
para la fabricación de ningún producto. Por este motivo, este tipo de mercadería
permanece almacenada hasta pasar al proceso de disposición final.
41
En relación a los materiales plásticos, Belcorp posee como proveedores principales a
las empresas Pieriplast, Proenfar, y Qualiplast. El trato con estas empresas es constante,
debido a que campaña a campaña Belcorp desarrolla nuevos modelos y diseños para los
envases que estos proveedores elaboraran.
Se conoce que la empresa Belcorp diseña cada molde que los proveedores de envases
plásticos usan, estos diseños pueden variar de campaña a campaña siguiendo las
tendencias del mercado. Por lo que el proveedor debe adecuarse y realizar cada cambio
solicitado por la empresa.
Dentro de la evaluación a los proveedores de la empresa, se realizó una visita a la
planta de fabricación de proveedor Pieriplast, ubicada en el distrito de San Juan de
Lurigancho, Zárate. Esta empresa se especializa en la elaboración de envases plásticos
para la industria cosmética y de perfumería; además de brindar sus servicios a Belcorp,
también trabaja para Unique y Avon.
En la planta de fabricación del proveedor, se pudo observar la tecnología especializada
que usaba para el control de los procesos de inyectado y soplado de plástico, puesto que
estos eran monitoreados por computadores sin la necesidad de contar con un operario a
tiempo completo.
b) FABRICACIÓN
La empresa Belcorp es la responsable de la fabricación de casi todos los
productos de sus catálogos, exceptuándose únicamente los accesorios, como artículos de
vestir, joyas y todos los obsequios para incentivos de ventas, que son comprados hechos
para luego agregarles una de las marcas de la compañía.
De las dos plantas principales de Belcorp, se conoce que sólo la ubicada en Colombia
está bajo el control directo de la empresa, mientras que la de Perú está subcontratada por
otra empresa. Ambas cubren la demanda de consumo en otros países además de sus
respectivos países de ubicación.
42
En el Cuadro 1 se muestra qué producto de los que comercializa Belcorp se fabrican
bajo la subcontratada de Yobel.
Cuadro 1: Productos que comercializa Belcorp
PRODUCTO
PROCEDENCIA
YOBEL Otros
L’BEL
Productos de tratamiento facial X
Fragancias X
Maquillaje X
Productos de tratamiento corporal X
Productos de cuidado personal X
Accesorios X
ÉSIKA
Maquillaje X
Esmaltes para uñas X
Fragancias X
Accesorios X X
Productos para el rostro y cuerpo X
CYZONE
Ropa de vestir X
Accesorios X X
Fragancias X
Maquillaje X
Productos para el rostro y cuerpo X
Esmalte para uñas X
FUENTE: Elaboración propia
La procedencia “otros” que aparece en el cuadro anterior, indica para la marca L’bel,
que el producto fue importado, debido a que la tecnología usada en la elaboración de
estos productos sólo se encuentra en países como Francia, Italia y otros. Para el caso de
43
las marcas Ésika y CyZone, significa que los productos descritos son accesorios y ropa
de vestir.
Las principales características que se observaron en el proceso de fabricación utilizado
por Belcorp, se describen a continuación:
• Los cálculos y el control de cantidad de entrada de materia prima, suministros y
productos terminados que deben salir, se llevan acabo en la casa matriz de la
empresa. En este proceso el factor clave es la estimación de venta, la cual
depende de la innovación y actualización permanente de cada producto.
• La estimación de la cantidad total de productos a fabricar se da al inicio de cada
periodo de producción. La cantidad propuesta debe prever el agotamiento del
producto antes de cerrar la campaña de venta, por lo que se considera un
número mayor al inicialmente calculado.
• Durante la etapa de producción, la cantidad de productos que se van fabricando
depende de las tazas actuales de ventas, puesto que cuando se tiene más stock11
de lo que realmente se está vendiendo se detiene automáticamente su
fabricación hasta que este se agote.
• Finalmente, la cantidad estimada de producción no es igual a la que realmente
se fabrica, en la mayoría de casos la última es menor, hecho que genera la
acumulación de los insumos que no fueron usados debido a que los proveedores
entregan la misma cantidad que la estimada inicialmente.
• La empresa maneja estadísticas de ventas hasta con un año que le permite
gestionar la capacidad de fábrica, proveedores, centros de distribución y de
transporte.
• Los materiales que quedaron al final del proceso de producción pasan a ser
almacenados hasta próximo aviso; es decir, hasta que la empresa se asegure de
11
Número de mercadería que en inventario aún se encuentra disponible para la venta.
44
que las ventas de los productos inactivos suban en el mercado, o, en caso
contrario, hasta que pasen al proceso de disposición final en un relleno sanitario
o de seguridad.
Para entender mejor el proceso de fabricación, se tomó uno de los productos que mejor
describía dicho proceso. En este caso, la producción de un perfume, que se describe a
continuación:
i. Control de Calidad: se inicia con la entrada de insumos y suministros que
cubren la demanda para la fabricación de una cantidad X de perfumes, de
acuerdo a una cantidad inicial estimada. Al tratarse de un perfume, los
suministros (envases, empaques y etiquetas) se fabrican con anticipación y los
insumos (alcohol y la esencia) se compran en el exterior (por ejemplo, Francia).
Una vez llegados a las instalaciones de la planta, pasan a ser evaluados en una
verificación de estándares de calidad, siempre altos en el caso de perfumes. Si
son rechazados, la mercadería es inmediatamente devuelta al proveedor, si fuera
el caso de uno nacional, o es llevada a almacenes de productos listos para su
disposición final hasta su traslado, si el proveedor es internacional y no se le
puede devolver el producto. Si pasan el control son llevados al proceso de
fabricación.
ii. Producción del bulk: es el contenido de todo producto fabricado. El alcohol y
las esencias que pasaron el control de calidad son mezcladas en cantidades
establecidas para formar un buen perfume. La mezcla se realiza en un lugar
totalmente sellado y bajo normas de sanidad, ya que ningún olor extraño puede
interferir en la determinación de la fragancia.
iii. Envasado: luego de su elaboración, el bulk pasa a ser envasado con la ayuda de
equipos electrónicos que controlan la cantidad exacta de volumen que debe
contener cada envase. Antes de envasar todo el volumen fabricado, Yobel espera
la confirmación de la cantidad final de productos terminados que Belcorp desea
obtener, de acuerdo a los datos actuales de ventas. Luego del envasado se pasa a
sellar cada perfume, procurando que su presión sea la adecuada como para que
proteja el producto en el momento del transporte y almacenaje.
45
iv. Almacenaje y Transporte: luego de concluir la etapa de envasado, los
productos terminados pasan a ser almacenados hasta ser distribuidos en los
respectivos puntos de ventas nacionales e internacionales de Belcorp.
Finalmente, los insumos y suministros que no llegaron a usarse en el proceso
son llevados a los almacenes hasta nuevo aviso de inicio de producción por parte
de Belcorp.
La empresa Belcorp y Yobel hacen uso de una terminología especial para describir el
ciclo de vida del producto, desde el planeamiento hasta la venta final a los
consumidores. Esta terminología deriva de la codificación del SAP12
, la cual está
debidamente dirigida y organizada por un sistema de información que engloba todas las
operaciones de la empresa. En este programa se pueden visualizar cada uno de los
productos terminados, insumos y suministros que posee Belcorp.
El complejo sistema de codificación utilizado define el estado en el que se encuentra
cada producto dentro de un contexto en tiempo real y es actualizado cada vez que se
realiza una variación en la cantidad de inventario de un producto. La codificación
mencionada se resume a continuación:
• Estatus: este conjunto de códigos, muestra en qué etapa del “ciclo de vida del
producto” se encuentra un producto específico, estos códigos se mencionan en
el Cuadro 2:
12
SAP: Business Management Software Solutions Applications and Services, software usado en grandes
compañías, que facilita el manejo de datos e inventaros dentro de la corporación que la use
adecuadamente.
46
Cuadro 2: Codificación de inventarios según su Estatus
CÓDIGO DESCRIPCIÓN
AA
(Antes de Aparecer)
Producto nuevo, incluye productos terminados, insumos y
suministros, antes de lanzarse al mercado.
AC (Activos,
productos de línea)
Productos que están siendo vendidos en el mercado, que son
comercialmente activos.
DC/DA
(Discontinuados para
la venta por catálogo)
Productos que están siendo comercializados, pero ya poseen
una fecha exacta de discontinuación; es decir, que poseen una
campaña ya programada para detener su venta.
LQ/LP
(Liquidación)
Productos que se encuentran en “Remate”, es decir son
comercializados en un catálogo de ofertas llamado “Expo
ofertas”.
XX
(Destrucción):
Aquellos productos que ya no se venden, que están inactivos
definitivamente. Pasan a almacenamiento hasta que se realice
la etapa de disposición final.
FUENTE: Elaboración propia
• Estados de Calidad: este conjunto de códigos muestra si el producto califica
cualitativamente para ser comercializado sin temor alguno, y son descritos en el
Cuadro 3:
Cuadro 3: Codificación de inventarios según Estado de Calidad
CÓDIGO DESCRIPCIÓN
CC
(Control de calidad)
Significa que el producto se encuentra en inspección, que está
pasando por exámenes específicos para comprobar su calidad
antes de ser puesto en el mercado.
LU
(Libre Utilización)
Estado en el que los productos fueron aprobados por control
de calidad y pasan directamente a ser comercializados.
DISC
(Discontinua)
Mercadería con bajo movimiento en el mercado, que posee un
plazo específico de tiempo para detener su venta.
BL
(Bloqueado)
Los productos están fuera de especificación, es decir no
pueden ser comercializados por encontrarse con alguna
mínima falla en él.
FUENTE: Elaboración propia
47
De acuerdo a este software los datos que poseen los códigos XX y BL, son los que la
empresa Belcorp considera como residuos sólidos, puesto que engloba los productos
que la empresa finalmente debe deshacerse en el proceso de disposición final. Para la
evaluación del sistema de reutilización de RSP, esta codificación indica los materiales
que se disponen para su elaboración.
La Figura 5, indica cómo los códigos explicados anteriormente proporcionan la
información necesaria para conocer el ciclo de vida de un producto en Belcorp.
Además, resalta qué mercadería puede utilizarse para la evaluación del sistema de
reutilización.
FUENTE: Belcorp – 2010
Nota: (Fechas negras: ciclo de vida normal, flechas rojas: inventarios que no han pasado CC y pasan
directamente a BL y XX)
Figura 5: Ciclo de vida de un producto de Belcorp
La figura anterior muestra claramente sombreado de color verde claro la codificación
del inventario que se usó en el presente estudio. Además de las diferentes rutas que
puede tomar un producto en su ciclo de vida, que no siempre termina en una venta final
48
sino que por diferentes factores puede llegar a ser considerado residuo sólido a enviar al
relleno de Portillo Grande.
En la Figura 5, las flechas de color negro y rojo significan que un producto puede seguir
dos tipos de ciclos de vida:
• Dependiente del Mercado: las flechas negras describen el ciclo de vida que
lleva un producto por influencia del mercado y las ventas. Se inicia con el
nacimiento (AA) de un producto que sólo existe en planeamiento; es decir,
antes de que salga al mercado. El crecimiento del producto en el mercado
(AC) significa que se está vendiendo activamente. Luego de un periodo pasa
a decaimiento (DC - DA) cuando disminuyen las ventas y se comercializan
en catálogos de ofertas como productos con códigos LP- LQ. Finalmente, los
productos que restan pasan a la fase de muerte (XX) del producto, que es
cuando está inactivo, no se vende más y está listo para ser dispuesto.
• Dependiente de otros factores: las flechas de color rojo demuestran como el
mercado no es el único que determina la existencia del ciclo de vida de un
producto; diversos factores como proveedores, almacenaje, transporte y
distribución también generan un tipo de flujo distinto al explicado con las
flechas negras. Existen cortes en puntos iniciales donde un producto puede ir
directamente a la fase final del ciclo de vida, donde termina con
codificación de inventario bloqueado (BL), y también debe pasar al proceso
de disposición final.
Al final de cada ciclo el conjunto de inventario con códigos XX y BL llega a formar la
aglomeración de residuos sólidos que Belcorp acumula en sus almacenes hasta su
disposición final.
c) ALMACENAJE
La empresa Belcorp posee en total cinco almacenes, cuatro de estos se alquilan a
Yobel y se ubican cerca a las instalaciones de la planta de producción. De éstos cuatro,
sólo uno se encuentra dentro de la misma planta; mientras que las demás se ubican a
49
pocas cuadras de la planta, específicamente en la urbanización industrial San Andrés,
distrito de Los Olivos. El quinto almacén que resta, se ubica Zárate, distrito de San Juan
del Lurigancho, siendo el único que pertenece directamente a la empresa Belcorp.
Los productos cuya fabricación están bajo el control de la empresa Belcorp, se ubican
en los almacenes alquilados a Yobel. Estos almacenes generalmente contienen
productos terminados, insumos y suministros que provienen del proceso de fabricación.
Por otro lado, los accesorios y ropa de vestir, que son adquiridos ya fabricados, se
encuentran en el almacén de Zárate.
Para facilitar el traslado y ubicación de productos dentro de cada almacén, la empresa
Yobel, junto a Belcorp, maneja términos especiales (usados en SAP) para referirse a
cada tipo de mercadería. Tal codificación difiere parcialmente a la descrita en el proceso
de fabricación, puesto que se basa en el tipo de material y procedencia de fabricación,
antes que en el ciclo de vida del producto.
Por ello, en el sistema de almacenaje las codificaciones se dividen en dos:
• Por tipo de material: clasificación que normalmente hace referencia a la
procedencia de los productos, si fueron fabricados por Yobel o si provienen de
terceros, como proveedores o tiendas externas. La codificación se muestra en el
Cuadro 4.
50
Cuadro 4: Codificación clasificada por tipo de material
CÓDIGO SIGNIFICADO
MERC
(Mercadería)
Productos importados y nacionales que se adquieren ya
fabricados, como carteras, mochilas, cuadernos, ropa, etc.,
brindados como ofertas por compras de productos de belleza
y como incentivos para las consultoras de venta.
PRTE
(Producto Terminado)
Son todos los productos que han concluido su proceso de
fabricación.
MPCL
(Materia prima)
Insumos que está siendo usado en la fabricación.
ENEM
(Envases)
Incluye suministros como envases y empaques dados
directamente por los proveedores.
MPSL
(Materia prima)
Insumos recién adquirido que no está en uso
BULK
(Bulk)
Incluye al contenido que se dispone en los envases, como
cremas y las fragancias en líquido.
PRSE
(Productos semi-terminados)
Productos que no han concluido con el proceso de
fabricación.
FUENTE: Elaboración propia
• Por estado del material: Esta clasificación es igual a la mostrada en el proceso de
fabricación, puesto que se refiere al Estado de Calidad de dicho producto. Por
lo que esta codificación se ubica en el Cuadro 3.
Cada almacén posee un nombre y posee características específicas de acuerdo al tipo de
mercadería que en ellos se almacena. La Figura 6 muestra los cinco almacenes que
posee la empresa Belcorp y el nombre que se le asigna a cada uno, él que suele estar
directamente relacionado con el lugar donde se ubica.
51
FUENTE: Elaboración propia
Figura 6: Almacenes de Belcorp
Las características y tipos de inventarios que se encuentran en los almacenes mostrados
en la Figura 6, se describen a continuación:
i. San Andrés I:
Contienen mercadería que posee codificación XX; es decir que está en espera
del proceso de disposición final. No posee movimiento en el mercado desde hace
más de dos años y tiene fecha de vencimiento ya caducada, o próxima a
cumplirse. Al contener ese tipo de mercadería el almacén se encuentra al aire
libre y todo material se ubica en cajas embaladas puestas directamente sobre el
suelo.
ii. San Andrés III:
Contiene mercadería considerada en estado bloqueada (BL – código SAP) que
posee hasta un año de almacenamiento. Estos productos son llevados al almacén
por fallas en la presentación del producto, lo que imposibilita cualquier intento
de venta; aun como producto en oferta la empresa no puede vender un producto
con fallas notorias para el consumidor. La infraestructura del almacén tiene piso
de concreto y posee techo, debido a que de tener techo abierto, la mercadería aún
apta para el uso humano, correría riesgo de ser hurtada.
San Andrés
I (XX)
ALMACENES
San Andrés
V
PlantaSan Andrés
III (BL)
Zárate
52
iii. Planta:
En este almacén se encuentran los insumos y materia prima de mayor prioridad
para la fabricación de productos, por ello permanecen dentro de la planta porque
la cercanía facilita y favorece la producción diaria. Las condiciones de
almacenaje son las mejores que se puede encontrar en la fábrica de Yobel; sin
embargo, existen casos, pese a las condiciones, de insumos dañados debido a la
poca protección de las cajas donde los proveedores transportan y contienen los
productos.
También se puede encontrar productos recientemente pasados al estado BL
(bloqueado). Estos permanecen en planta hasta que se los transporte al almacén
que corresponde. Además se puede encontrar, aunque en poca cantidad,
materiales de código DC – DA que deriva de Discontinuados (productos de bajo
movimiento) y que al igual que la mercadería con código BL esperan ser
trasladados al almacén que corresponda.
iv. San Andrés V:
Generalmente almacena productos terminados en estado LU (de libre
utilización) y que poseen como destino final las grandes tiendas, distribuidoras y
consultoras de belleza (donde se realizan venta personalizada por catálogo). Por
otro lado, también almacena productos en estado DC- DA (productos de bajo
movimiento) y LQ (Liquidación).
Al contener productos que aún son comercializados por la empresa, posee una
infraestructura con piso y techo que ofrece un buen ambiente para evitar el
deterioro de esta mercadería.
v. Almacén Zárate:
Posee mercadería con código MERC (mercadería), que corresponde a
inventarios que se ofrecen en los catálogos como regalo o incentivo de compra
de los productos de belleza. También son usados para premiar a aquellas
53
consultoras de belleza que lograron alcanzar el record máximo de ventas
campaña a campaña.
Para la evaluación llevada a cabo en el presente estudio se tuvo en cuenta los almacenes
San Andrés I y III, que contienen los materiales para disposición final (XX) y los de
estado BL, es decir, los inventarios que llegan a convertirse en residuos sólidos listos
para ser procesados en el sistema de disposición final que utiliza la empresa.
Debido a que la cantidad de inventario en los almacenes varía de periodo en periodo, en
la evaluación del sistema de reutilización de RSP se tomó la cantidad total de materiales
con códigos XX, BL y ENEM al tiempo que se realizó este estudio, siendo este el 22 de
Febrero de 2010.
Esta misma fecha la empresa Belcorp proporcionó los siguientes diagramas, para ser
evaluados en el presente estudio, estos se encuentran en las Figuras 7 y 8.
FUENTE: Belcorp – 2010
Figura 7: Inventario disponible para la evaluación al 22/02/10
La figura anterior muestra la cantidad total de envases (ENEM) que se encuentran en los
almacenes de San Andrés (I, III) con el código BL y XX, que según la figura, es el
inventario con mayor proporción, pues abarca el 48.23 % del total en soles. La
empresa posee 3 192 105, 463 soles en material no apto para la venta y que pueden
pasar al proceso de disposición final, pero si útiles para la propuesta del sistema de
reutilización de RSP.
54
Del dato anterior, se debe conocer qué cantidad de total corresponden a productos
plásticos únicamente, por lo que en la Figura 8, se señala el inventario con código
ENEM subdividido en tipos de material, esta es mostrada a continuación:
FUENTE: Belcorp – 2010
Figura 8: Inventario de envases plásticos obsoletos en soles al 22/02/10
La figura anterior indica, que del total de envases que se disponen para la evaluación del
sistema de reutilización, se cuenta con S/. 1 513 727.48 en materiales plásticos, y que
representa el 47.42 % del total.
Es decir, casi la mitad del inventario ENEM de los almacenes San Andrés I y III es
plástico, lo que demuestra que la empresa genera predominantemente RSP en su
proceso de comercialización y ciclo de vida de sus productos.
d) DISPOSICIÓN FINAL
El sistema de disposición final de residuos que realiza la empresa Belcorp, se
lleva a cabo mensualmente, este consiste en la aplicación de la tecnología de relleno
Sanitario y de Seguridad, para los residuos no peligrosos y peligrosos respectivamente,
para ello se subcontrata los servicios de la empresa Relima.
55
El proceso de disposición final utilizado, incluye la destrucción de todos los residuos
antes de ser dispuestos en cada relleno, del mismo modo para la realización del mismo
se sigue una serie de pasos que son descritos a continuación:
i. Reporte
En esta fase la empresa Yobel, hace llegar a Belcorp un informe de calidad
elaborado por un Ingeniero Industrial responsable de la verificación de
productos. En el reporte se indican los productos rechazados en el proceso de
Control de Calidad, y que no pudieron ser devueltos a su respectivo proveedor.
Dentro del conjunto de productos rechazados se pueden encontrar tanto
productos terminados, como insumos y materias primas.
ii. Almacenaje
Luego de que Belcorp realiza la aprobación y verificación del reporte de calidad,
se verifica la veracidad de los datos en la misma planta. Inmediatamente después
los productos son llevados al almacén, que por estado y características les
corresponde. En este caso resulta competencia del almacén San Andrés III por
tratarse de inventario con código BL, correspondiente a productos con fallas que
no pueden ser vendidos de ningún modo.
iii. Cuantificación
Los trabajadores de Belcorp que laboran en la planta de fabricación de Yobel,
reciben cada mes un informe procedente del área contable. En dicho informe se
indica la cantidad de mercadería en unidades monetarias (dólares) que se va
destruir, este puede ascender hasta tres mil por mes.
El dato es dado en unidades monetarias puesto que por flujo de caja la empresa
no puede eliminar todos los materiales obsoletos acumulados en un solo mes;
debido a que cada material, en unidad, posee un valor monetario de producción
por el cual Belcorp ya se hizo cargo.
56
Por ello, de acuerdo a las ventas y la solvencia de la empresa en cada mes se
establece una cantidad aproximada de dinero en la que se ve reflejada la cantidad
de mercadería que puede ser destruida, de tal modo que no exista la posibilidad
de desestabilizar el equilibrio del flujo de caja, que equivaldría a destruir activos
que aún sostienen la económica de la empresa.
Una vez seleccionados los productos de los almacenes San Andrés I y San
Andrés III, que en sumatoria llegan a formar la cantidad de dólares a disponer en
dicho mes, son separados y agrupados en un sector específico del primer
almacén, por medio de un cerco de mayas de metal, de modo que podrán ser
reconocidos el día que se realice su transporte al relleno de Relima.
iv. Selección
Luego de separar la cantidad de residuos sólidos a destruir en cada mes,
trabajadores de Belcorp se dirigen al almacén San Andrés I días antes del
transporte al relleno. Durante su permanencia en el almacén realizan una
selección del conjunto, dividiéndolo en productos terminados más insumos
(materias primas) y suministros, de los envases y empaques.
La selección se realiza antes del transporte de residuos sólidos al relleno, debido
a que los envases y empaques ya separados son vendidos a pequeños micro-
recicladores según su interés. De esa forma se logra, aunque en medida
minúscula, recuperar parte del dinero que se invirtió en la producción de dicha
mercadería.
v. Comercialización de los residuos sólidos reciclables
Para la venta de los residuos sólidos reciclables, se reúnen en el almacén San
Andrés I representantes de la empresa Belcorp y Yobel, un notario público, un
representante de la Sunat, y los micro recicladores convocados.
El proceso inicia con la completa destrucción de la marca impresa de los
envases, cajas y tapas que se van ha comercializar. Para ello, en el caso de los
productos plásticos y vidrios, se hace uso de una máquina de moler que reduce el
57
producto a pequeños pedazos; mientras que para los productos de papel se utiliza
una máquina cortadora.
Luego, cada reciclador se encarga de recolectar la cantidad en kilogramos por la
que ha pagado y se retira del establecimiento. Más tarde los aún reunidos firman
un acta para constatar el termino de la actividad realizada y volver a sus labores.
Los envases y empaques reciclables que no pudieron ser comercializados son
mezclados nuevamente con los demás productos para ser llevados al relleno de
Relima un día después.
vi. Transporte de los residuos sólidos
Llegada la fecha de destrucción y disposición final de los residuos sólidos,
Belcorp contrata dos tipos de camiones para transportar los residuos. Un camión
convencional transporta residuos no peligrosos como productos terminados,
envases, etiquetas y empaques. Mientras, que un conteiner especial transporta
los residuos peligrosos que son materias primas inflamables como esencias en
base a alcohol.
Los residuos peligrosos se ubican en grandes envases de PVC fáciles de llevar,
mientras los residuos no peligrosos, se extraen de las cajas donde están ubicados,
para lograr transportar mayor volumen con menos camiones. Además las cajas
que se dejan son compactadas y comercializadas del mismo modo que los
envases y empaques.
Al finalizar la carga del inventario a destruir, se reúnen representantes de la
empresa Yobel y Belcorp, para presentar la ficha de salida de todos los
materiales que están siendo transportados, quienes a su vez acompañan a cada
conductor de los camiones, por el trayecto hacia Lurín, donde se ubican los
rellenos.
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948
44872948

Contenu connexe

Tendances

Proyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferior
Proyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferiorProyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferior
Proyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferiorJavier Morales More
 
Proyecto planta de acondicionamiento de granos y mecanización siembra) agrop...
Proyecto  planta de acondicionamiento de granos y mecanización siembra) agrop...Proyecto  planta de acondicionamiento de granos y mecanización siembra) agrop...
Proyecto planta de acondicionamiento de granos y mecanización siembra) agrop...Carlos González
 
Fabricación y comercialización de joyas finas 29 de noviembre de 2013
Fabricación y comercialización de joyas finas 29 de noviembre de 2013Fabricación y comercialización de joyas finas 29 de noviembre de 2013
Fabricación y comercialización de joyas finas 29 de noviembre de 2013JULIAN DARIO COMBARIZA GONZALEZ
 
Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...
Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...
Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...yency yasnith niño rosas
 
Copia de caso_gloria (1)
Copia de caso_gloria (1)Copia de caso_gloria (1)
Copia de caso_gloria (1)decklam
 
Planeamiento Estrategico-Saga Falabella.docx
Planeamiento Estrategico-Saga Falabella.docxPlaneamiento Estrategico-Saga Falabella.docx
Planeamiento Estrategico-Saga Falabella.docxLal xsl
 
Proyecto creacion de empresa delilacteos Ltda
Proyecto creacion de empresa delilacteos LtdaProyecto creacion de empresa delilacteos Ltda
Proyecto creacion de empresa delilacteos LtdaKellyDLop
 
PPT SESIÓN 2.pptx
PPT SESIÓN 2.pptxPPT SESIÓN 2.pptx
PPT SESIÓN 2.pptxwilmer432746
 

Tendances (20)

Bon bon bum
Bon bon bumBon bon bum
Bon bon bum
 
Alicorp Análisis Financiero 2014
Alicorp Análisis Financiero 2014 Alicorp Análisis Financiero 2014
Alicorp Análisis Financiero 2014
 
Oei - tommy hilfiger
Oei  - tommy hilfigerOei  - tommy hilfiger
Oei - tommy hilfiger
 
Proyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferior
Proyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferiorProyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferior
Proyecto de mejora Gloria Reduccion de la lamina termocontraible parte inferior
 
Alicorp
AlicorpAlicorp
Alicorp
 
Proyecto planta de acondicionamiento de granos y mecanización siembra) agrop...
Proyecto  planta de acondicionamiento de granos y mecanización siembra) agrop...Proyecto  planta de acondicionamiento de granos y mecanización siembra) agrop...
Proyecto planta de acondicionamiento de granos y mecanización siembra) agrop...
 
Desarrollo De Mercado
Desarrollo De MercadoDesarrollo De Mercado
Desarrollo De Mercado
 
Fabricación y comercialización de joyas finas 29 de noviembre de 2013
Fabricación y comercialización de joyas finas 29 de noviembre de 2013Fabricación y comercialización de joyas finas 29 de noviembre de 2013
Fabricación y comercialización de joyas finas 29 de noviembre de 2013
 
Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...
Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...
Unidad 2 - Fase 2 - Determinar requisitos enfocados a la Gestión Ambiental y ...
 
Tema bimbo
Tema bimboTema bimbo
Tema bimbo
 
271212276 analisis-situacion-financiera-de-saga-falabella
271212276 analisis-situacion-financiera-de-saga-falabella271212276 analisis-situacion-financiera-de-saga-falabella
271212276 analisis-situacion-financiera-de-saga-falabella
 
Avance 1 Trabajo final OPE avance 01
Avance 1 Trabajo final OPE   avance 01Avance 1 Trabajo final OPE   avance 01
Avance 1 Trabajo final OPE avance 01
 
Copia de caso_gloria (1)
Copia de caso_gloria (1)Copia de caso_gloria (1)
Copia de caso_gloria (1)
 
Planeamiento Estrategico-Saga Falabella.docx
Planeamiento Estrategico-Saga Falabella.docxPlaneamiento Estrategico-Saga Falabella.docx
Planeamiento Estrategico-Saga Falabella.docx
 
Proyecto creacion de empresa delilacteos Ltda
Proyecto creacion de empresa delilacteos LtdaProyecto creacion de empresa delilacteos Ltda
Proyecto creacion de empresa delilacteos Ltda
 
58457678 bcp
58457678 bcp58457678 bcp
58457678 bcp
 
PPT SESIÓN 2.pptx
PPT SESIÓN 2.pptxPPT SESIÓN 2.pptx
PPT SESIÓN 2.pptx
 
Clase
ClaseClase
Clase
 
Saga falabella
Saga falabellaSaga falabella
Saga falabella
 
Alicorp
AlicorpAlicorp
Alicorp
 

En vedette

Primeros pasos para organizar un evento
Primeros pasos para organizar un eventoPrimeros pasos para organizar un evento
Primeros pasos para organizar un eventoEventioz Argentina
 
Estructura de la organización y empresa como sistema abierto
Estructura de la organización y empresa como sistema abiertoEstructura de la organización y empresa como sistema abierto
Estructura de la organización y empresa como sistema abiertoFernández Gorka
 
Ficha de evaluación del crecimiento y del neurodesarrollo infantil
Ficha de evaluación del crecimiento y del neurodesarrollo infantilFicha de evaluación del crecimiento y del neurodesarrollo infantil
Ficha de evaluación del crecimiento y del neurodesarrollo infantilJuan Gomez Villa
 
Organización y Funciones Del área de desarrollo De productos.
Organización y Funciones Del área de desarrollo De productos.  Organización y Funciones Del área de desarrollo De productos.
Organización y Funciones Del área de desarrollo De productos. Rocio Román
 
PROCESOS DE PRODUCCION
PROCESOS DE PRODUCCIONPROCESOS DE PRODUCCION
PROCESOS DE PRODUCCIONalejodiazota7
 

En vedette (8)

Primeros pasos para organizar un evento
Primeros pasos para organizar un eventoPrimeros pasos para organizar un evento
Primeros pasos para organizar un evento
 
Estructura de la organización y empresa como sistema abierto
Estructura de la organización y empresa como sistema abiertoEstructura de la organización y empresa como sistema abierto
Estructura de la organización y empresa como sistema abierto
 
Ficha de evaluación del crecimiento y del neurodesarrollo infantil
Ficha de evaluación del crecimiento y del neurodesarrollo infantilFicha de evaluación del crecimiento y del neurodesarrollo infantil
Ficha de evaluación del crecimiento y del neurodesarrollo infantil
 
Pronaca
PronacaPronaca
Pronaca
 
Proyecto
ProyectoProyecto
Proyecto
 
Organización y Funciones Del área de desarrollo De productos.
Organización y Funciones Del área de desarrollo De productos.  Organización y Funciones Del área de desarrollo De productos.
Organización y Funciones Del área de desarrollo De productos.
 
PROCESOS DE PRODUCCION
PROCESOS DE PRODUCCIONPROCESOS DE PRODUCCION
PROCESOS DE PRODUCCION
 
Cosméticos natura
Cosméticos naturaCosméticos natura
Cosméticos natura
 

Similaire à 44872948

Proyecto reciclaje
Proyecto reciclajeProyecto reciclaje
Proyecto reciclajemaestraVicky
 
Plan de Negocios (Industria del Plastico)
Plan de Negocios (Industria del Plastico)Plan de Negocios (Industria del Plastico)
Plan de Negocios (Industria del Plastico)Angel Matute Agurcia
 
Trabajo final diseño de proyectos
Trabajo final diseño de proyectosTrabajo final diseño de proyectos
Trabajo final diseño de proyectosmartaninosierra
 
Momento individaul silvia gomez
Momento individaul silvia gomezMomento individaul silvia gomez
Momento individaul silvia gomezSilvia Gomez
 
Reciclaje del plástico
Reciclaje del plásticoReciclaje del plástico
Reciclaje del plásticoblogdevon
 
Actividad 01 crear empresa
Actividad 01 crear empresaActividad 01 crear empresa
Actividad 01 crear empresaPaola Garcia
 
Plásticos sergio lucas
Plásticos sergio lucasPlásticos sergio lucas
Plásticos sergio lucasLeyre_prof
 
Materiales Plásticos con Etiqueta Ecológica
Materiales Plásticos con Etiqueta EcológicaMateriales Plásticos con Etiqueta Ecológica
Materiales Plásticos con Etiqueta EcológicaVirtualEsumer
 
Materiales plasticos
Materiales plasticos  Materiales plasticos
Materiales plasticos julieth
 
Materiales plasticos
Materiales plasticos  Materiales plasticos
Materiales plasticos julieth
 
Identificaciion variables
Identificaciion variablesIdentificaciion variables
Identificaciion variablesjuliethotalora
 
Propuestas de rediseños industrial_Unad_2015
Propuestas de rediseños industrial_Unad_2015Propuestas de rediseños industrial_Unad_2015
Propuestas de rediseños industrial_Unad_2015Alexandra Zuniga
 

Similaire à 44872948 (20)

Los plastcos
Los plastcosLos plastcos
Los plastcos
 
Proyecto reciclaje
Proyecto reciclajeProyecto reciclaje
Proyecto reciclaje
 
Plan de Negocios (Industria del Plastico)
Plan de Negocios (Industria del Plastico)Plan de Negocios (Industria del Plastico)
Plan de Negocios (Industria del Plastico)
 
Trabajo final
Trabajo finalTrabajo final
Trabajo final
 
Trabajo final diseño de proyectos
Trabajo final diseño de proyectosTrabajo final diseño de proyectos
Trabajo final diseño de proyectos
 
Trabajo tecno
Trabajo tecnoTrabajo tecno
Trabajo tecno
 
Momento individaul silvia gomez
Momento individaul silvia gomezMomento individaul silvia gomez
Momento individaul silvia gomez
 
El Plástico
El PlásticoEl Plástico
El Plástico
 
Reciclaje del plástico
Reciclaje del plásticoReciclaje del plástico
Reciclaje del plástico
 
Actividad 01 crear empresa
Actividad 01 crear empresaActividad 01 crear empresa
Actividad 01 crear empresa
 
20. creatividad en el reciclado
20. creatividad en el reciclado20. creatividad en el reciclado
20. creatividad en el reciclado
 
Plásticos sergio lucas
Plásticos sergio lucasPlásticos sergio lucas
Plásticos sergio lucas
 
Materiales Plásticos con Etiqueta Ecológica
Materiales Plásticos con Etiqueta EcológicaMateriales Plásticos con Etiqueta Ecológica
Materiales Plásticos con Etiqueta Ecológica
 
Proyectos pet
Proyectos petProyectos pet
Proyectos pet
 
Trabajo de naturales[1]
Trabajo de naturales[1]Trabajo de naturales[1]
Trabajo de naturales[1]
 
Materiales plasticos
Materiales plasticos  Materiales plasticos
Materiales plasticos
 
Materiales plasticos
Materiales plasticos  Materiales plasticos
Materiales plasticos
 
Identificaciion variables
Identificaciion variablesIdentificaciion variables
Identificaciion variables
 
Propuestas de rediseños industrial_Unad_2015
Propuestas de rediseños industrial_Unad_2015Propuestas de rediseños industrial_Unad_2015
Propuestas de rediseños industrial_Unad_2015
 
Plásticos
PlásticosPlásticos
Plásticos
 

Dernier

SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdffredyflores58
 
Libro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdfLibro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdferick82709
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOCamiloSaavedra30
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptxluiscisnerosayala23
 
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdfLIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdfManuelVillarreal44
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionOsdelTacusiPancorbo
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptxNayeliZarzosa1
 
Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----AdministracionSSTGru
 
FORMATO REPORTE SEMANAL KLEF - Sem 15.pptx
FORMATO REPORTE SEMANAL KLEF - Sem 15.pptxFORMATO REPORTE SEMANAL KLEF - Sem 15.pptx
FORMATO REPORTE SEMANAL KLEF - Sem 15.pptxSAMAELAUGURIOFIGUERE
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.pptVitobailon
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosfranchescamassielmor
 
La mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacionLa mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacionnewspotify528
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...esandoval7
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1victorrodrigues972054
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesjohannyrmnatejeda
 
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALESMAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALESjhosselinvargas
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaANDECE
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosJeanCarlosLorenzo1
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCANDECE
 

Dernier (20)

SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdfSEMANA  6 MEDIDAS DE TENDENCIA CENTRAL.pdf
SEMANA 6 MEDIDAS DE TENDENCIA CENTRAL.pdf
 
Libro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdfLibro teoria de los vehiculos Aparicio.pdf
Libro teoria de los vehiculos Aparicio.pdf
 
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTOESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
ESTUDIO TÉCNICO DEL PROYECTO DE CREACION DE SOFTWARE PARA MANTENIMIENTO
 
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
01 COSTOS UNITARIOS Y PRESUPUESTO DE OBRA-EXPEDIENTE TECNICO DE OBRA.pptx
 
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdfLIQUIDACION OBRAS PUBLICAS  POR CONTRATA.pdf
LIQUIDACION OBRAS PUBLICAS POR CONTRATA.pdf
 
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdfMATPEL COMPLETO DESDE NIVEL I AL III.pdf
MATPEL COMPLETO DESDE NIVEL I AL III.pdf
 
Peligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacionPeligros de Excavaciones y Zanjas presentacion
Peligros de Excavaciones y Zanjas presentacion
 
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
5.1 MATERIAL COMPLEMENTARIO Sesión 02.pptx
 
Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----Ley 29783 ALCANCES E INTERPRETACION ----
Ley 29783 ALCANCES E INTERPRETACION ----
 
FORMATO REPORTE SEMANAL KLEF - Sem 15.pptx
FORMATO REPORTE SEMANAL KLEF - Sem 15.pptxFORMATO REPORTE SEMANAL KLEF - Sem 15.pptx
FORMATO REPORTE SEMANAL KLEF - Sem 15.pptx
 
Fe_C_Tratamientos termicos_uap _3_.ppt
Fe_C_Tratamientos termicos_uap   _3_.pptFe_C_Tratamientos termicos_uap   _3_.ppt
Fe_C_Tratamientos termicos_uap _3_.ppt
 
Sistema de gestión de turnos para negocios
Sistema de gestión de turnos para negociosSistema de gestión de turnos para negocios
Sistema de gestión de turnos para negocios
 
La mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacionLa mineralogia y minerales, clasificacion
La mineralogia y minerales, clasificacion
 
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...Simbología de Soldadura,  interpretacion y aplicacion en dibujo tecnico indus...
Simbología de Soldadura, interpretacion y aplicacion en dibujo tecnico indus...
 
Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1Electricidad y electronica industrial unidad 1
Electricidad y electronica industrial unidad 1
 
Sistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajesSistema de Base de Datos para renta de trajes
Sistema de Base de Datos para renta de trajes
 
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALESMAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
MAPA CONCEPTUAL: MANIFESTACIONES CULTURALES
 
Edificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes GranadaEdificio residencial Tarsia de AEDAS Homes Granada
Edificio residencial Tarsia de AEDAS Homes Granada
 
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de ProyectosRevista estudiantil, trabajo final Materia ingeniería de Proyectos
Revista estudiantil, trabajo final Materia ingeniería de Proyectos
 
Edificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRCEdificio residencial Becrux en Madrid. Fachada de GRC
Edificio residencial Becrux en Madrid. Fachada de GRC
 

44872948

  • 1. 1 RESUMEN El presente estudio mide las posibilidades de aplicación de un sistema de reutilización y el cambio de tecnología de disposición final de residuos sólidos con la finalidad de contribuir a la solución del problema de acumulación de inventarios de productos obsoletos de la Corporación Internacional BELCORP. Se realizó un diagnóstico inicial de los procesos que conllevan a generar residuos sólidos en la empresa y se ejecutó la caracterización del tipo de resina de los materiales plásticos. Además, se evaluó el mercado de empresas recicladoras y fabricadoras de materiales plásticos, como también se el análisis de una nueva tecnología de disposición de residuos sólidos que mejore dicho proceso en la empresa. Finalmente, se elaboró un análisis preliminar de variables económicas con los datos obtenidos en pasos anteriores. Los resultados se sintetizan en valores monetarios que comprueban la viabilidad económica tanto del sistema de reutilización de residuos sólidos plásticos planteado como de la propuesta de utilización de la Incineración Controlada como nueva tecnología de disposición final de residuos sólidos no reutilizados. Palabras Clave: Reutilización de residuos sólidos plásticos, Reciclaje de materiales plásticos, Disposición final y destrucción de residuos sólidos industriales, Relleno sanitario y de seguridad, Incineración controlada.
  • 2. 2 GLOSARIO DE TERMINOLOGÍAS Y ABREVIATURAS • RSP: Residuos Sólidos Plásticos • PET: Polietileno Teraftalato • PP: Polipropileno • PEAD: Polietileno de Alta Densidad • PVC: Policloruro de Vinilo • PS: Poliestireno • EPA: Agencia de Protección Ambiental • SAP: Solutions Applications and Services • MWIG: Mind West International Group Inc. • XX: Codificación inventario para destruir • BL: Codificación Inventario dañado. • ENEM: Codificación de Inventario de Envases • STAKE HOLDERS: Término usado para referirse a la persona o identidad que sea participante, inversor o accionista de una empresa.
  • 3. 3 I. INTRODUCCIÓN La generación y acumulación desmesurada de residuos provenientes de los diferentes tipos de industrias es uno de los temas en materia ambiental que ha tomando importancia en todo el mundo. La proliferación de industrias en el mercado actual ha aumentado la generación de residuos exponencialmente, lo que causa graves problemas ambientales, sociales y económicos, con especial perjuicio en los países subdesarrollados como el nuestro, que al no realizar control y reducción adecuados de los residuos producidos ven afectados su entorno socio-ambiental y su propia economía. Todo residuo industrial debe y es materia de control y fiscalización en cualquiera de las empresas debido a la cantidad de sustancias peligrosas que contienen. Es por ello que toda empresa debe disponer de manera adecuada sus residuos y más aún debe adoptar un adecuado manejo de los mismos, intentando reducir, rehusar y reciclar en la medida que les sea posible. Esta situación se ahonda más si se conoce que la mayoría de industrias no pueden reducir sus residuos debido a que dependen completamente del mercado, debido a que si una empresa no se adapta al mercado no sobrevive en él. En el caso de la generación de residuos sólidos, una empresa generalmente no busca aplicar alguna estrategia de minimización y control de sus residuos, sino que se conforma con deshacerse de los mismos por medio de alguna compañía de disposición final que asegure la rápida pero quizás no adecuada forma de eliminar sus residuos. A pesar de que el presente estudio se limite a la evaluación de un sistema de reutilización y disposición final de los residuos sólidos de una sola empresa llamada BELCORP S.A., dueña de las firmas L’bel, Ésika y CyZone, especialistas en productos de belleza para mujeres, éste contribuirá como modelo a otros de características similares que estén en la búsqueda de soluciones eficientes para la reducción de los residuos industriales desde una perspectiva ambiental y económicamente sostenible. Por otro lado, el objetivo general del presente estudio fue la evaluación del sistema de reutilización y disposición final de los residuos sólidos de la empresa Belcorp S.A. Los
  • 4. 4 objetivos específicos desarrollados como parte del cumplimiento del objetivo general se describen a continuación: • Realizar un diagnóstico del sistema de manejo, generación y disposición final de los residuos sólidos de la empresa. • Analizar el tipo de resina que poseen los residuos sólidos plásticos (RSP1 ) de la empresa para comprobar su compatibilidad para ser usado en un proceso de reciclaje y reutilización. • Analizar el mercado de empresas de reciclaje y de fabricación de productos plásticos con materia prima no virgen. • Calcular el valor del ahorro económico que alcanzaría la empresa con la aplicación del sistema de reutilización de sus RSP acumulados. • Analizar la alternativa tecnológica de disposición final de residuos sólidos propuesta, bajo términos económicos y ambientales para verificar la viabilidad de aplicación en la empresa. 1 A partir de este momento se usarán las iniciales RSP para referirse a los residuos sólidos plásticos.
  • 5. 5 II. REVISIÓN DE LITERATURA 2.1 PLÁSTICOS 2.1.1 ORÍGENES Según Sosa (2003), la gran industria de los plásticos se remonta al año 1869, cuando una firma fabricante de bolas de billar, Phelan & Collander2 , ofreció miles de dólares a quien pudiera desarrollar un sustituto del marfil usado para fabricar las bolas. El afán de la compañía más que proteger a los elefantes era encontrar un material alternativo al cada vez más escaso y costoso marfil. Alentados por esta oferta, los estadounidenses Isaiah3 y John Hyatt desarrollaron el plástico celuloide. A pesar de que lograron popularizarlo, nunca ganaron premio alguno porque las bolas de billar fabricadas con este nuevo material tenían la tendencia a explotar al ser golpeadas. Ello no impidió que pueda ser usado en reemplazo de objetos hechos en base de madera y para crear otros nuevos, que conocemos hasta nuestros días. Hoy en día se conoce que el plástico está compuesto de polímeros, moléculas gigantes que resultan de la unión de miles de moléculas más pequeñas, llamadas monómeros. Las sorprendentes y variadas propiedades que pueden darse a estas sustancias dependen precisamente del tipo de monómero, la longitud de las cadenas y la forma en que éstas se acomodan en el material. En ello radican los diferentes tipos de resinas con las que se fabrican los plásticos en la actualidad. Aunque por lo general se utilizan los términos “plástico” y “polímero” como sinónimos, plástico hace referencia a cualquier material que puede moldearse fácilmente, mientras que polímero clasifica a una sustancia por su estructura molecular (Sosa, 2003). Desde la aparición de los primeros plásticos en el mercado, el progresivo conocimiento de sus 2 Nombre de los dueños de dicha firma, los que ofrecieron $10 000 a quien presentara un material resistente que pudiera reemplazar al marfil, material escaso y costoso para la época con el que se fabricaban las bolas de billar. 3 Inventores estadounidenses que patentaron en 1870 la primera máquina inyectora de plásticos luego de ser incentivados a crearla debido a la millonaria recompensa propuesta por la empresa fabricadora de bolas de billar.
  • 6. 6 propiedades de aislante eléctrico, su impermeabilidad y resistencia lo han llevado a que, hasta la actualidad, sea preferida para la fabricación de diversos productos o para ser parte indispensable de accesorios como piezas de equipos tecnológicos, envases de productos de consumo masivo (bebidas, productos de limpieza, cuidado personal, etc.). Estos pocos ejemplos muestran que las posibilidades de aplicación de los plásticos son amplias. Además, estos materiales sintéticos se pueden producir en su totalidad a partir del petróleo. 2.1.2 FABRICACIÓN DE PRODUCTOS PLÁSTICOS En el mercado local de fabricantes de materiales plásticos se hace uso de dos métodos comunes: la inyección y el soplado. Para la comprensión cabal de cómo se realizan ambos, se describen a continuación, según Lorenzo (2008): • Soplado de plásticos: este proceso se realiza para generar productos plásticos huecos; es decir, envases plásticos de todo tipo de modelos. Es semi-continuo, pues se divide en dos fases: primero, la extrusión (prensado, moldeado) del polímero inicial a altas temperaturas para formar un objeto llamado párison, con forma de tubo sin salida y paredes muy gruesas, que es de donde nacerá el nuevo producto plástico. La segunda fase es el inflado (entrada de aire) de esta especie de tubo en un molde del envase que se desea fabricar. Este molde consiste en dos partes que al cerrarse encierran el párison, y al inflarse toma la forma del molde; de este modo la forma queda estable al enfriarse el material. La ventaja de este proceso incluye la posibilidad de crear efectos de colores diversos, principalmente atractivos para cosméticos y envases de champús, y que ayudan a disminuir el costo de los materiales iniciales al permitir también unir diferentes características de polímeros como los de material reciclado y virgen. • Inyección de plásticos: este proceso se inicia al inyectar el polímero en estado fundido en un molde cerrado a presión y frío a través de un orificio pequeño llamado compuerta. En este molde el material se solidifica, hasta que la pieza plástica se obtiene al abrir el molde y sacar de la cavidad la pieza moldeada. Este método es muy popular debido a la versatilidad de envases plásticos que pueden fabricarse, la rapidez de fabricación, el diseño de prototipos rápidos, los altos
  • 7. 7 niveles de producción y bajos costos, y también debido a que las piezas moldeadas requieren muy poco o nulo acabado pues son terminadas con la rugosidad de superficie deseada, color y transparencia u opacidad. Por otro lado, este método puede hacer uso también de material reciclado con cierta tolerancia dimensional de piezas moldeadas y con ciertos colores. Cabe señalar que la diferencia en costos entre los moldes de inyección y soplado es bastante alta: los moldes de inyección son más caros y difíciles de producir, aunque depende de las partes y tamaño de materiales a fabricar. Según Lorenzo (2008), estas dos metodologías de fabricación poseen un proceso ambientalmente favorable comparado con las de otros materiales, debido a que no hacen uso de recursos naturales, como árboles, por ejemplo, en el caso del papel; no emiten gases, desechos acuosos ni altos niveles de ruido; y no contaminan el ambiente de forma directa. Además, permite el uso de materia prima reciclada para la fabricación de nuevos productos, los cuales pueden volver a ser reciclados varias veces dependiendo de la calidad final del material que se requiera. 2.1.3 DESTRUCCIÓN DE PLÁSTICOS A pesar de que la durabilidad de los plásticos se consideró en un principio como una de sus cualidades más preciadas, actualmente esa misma propiedad ha provocado uno de los problemas más graves de contaminación en el ambiente. El problema empieza cuando las empresas tienen que deshacerse de él una vez convertidos en residuos sólidos. Al contrario de lo que muchos creen, los plásticos se degradan en largos períodos, en algunos casos de más de 300 años, motivo por el cual tienden a acumularse. El problema se agrava en la medida en que aumenta el número de artículos desechables elaborados con plásticos; según Puerta (2004), se estima que alrededor de un 30% de los millones de toneladas de residuos sólidos generados son plásticos.
  • 8. 8 Las empresas buscan la alternativa más fácil y rápida de eliminar estos residuos: por un lado está la incineración y por otro el uso de relleno sanitario; ambas, aunque en grado distinto, son contaminadoras del medio ambiente. La incineración de sustancias plásticas conduce a la formación de nuevas sustancias cloradas, como las dioxinas4 , que se liberan en los gases de las chimeneas, cenizas y otros residuos. Entre la gran variedad de sustancias químicas emitidas se incluye innumerables productos químicos que permanecen sin identificar, pero que en grandes cantidades pueden causar gran daño ambiental y a la salud humana (Allsopp, Costner, Johnston, 2004). Por otro lado, los rellenos sanitarios acumulan plástico bajo tierra en mezcla con otros materiales y sustancias que causan tanto su degradación como la liberación de sus compuestos químicos. En consecuencia, suelo, aire y aguas subterráneas son contaminados por los químicos, los gases que emanan y el contacto con los líquidos que se infiltren en el subsuelo. 2.1.4 RECICLAJE DE PLÁSTICO Hoy en día la acumulación de residuos sólidos es un problema social en especial en países en vías de desarrollo como el nuestro. En el campo de los residuos, los plásticos tienen un rol de importancia debido a su baja densidad, se hacen especialmente “visibles”; es decir, ocupan espacios relevantes de superficie al ser acumulados (Vargas, 2004). La incineración con recuperación energética y el reciclado o transformación de un producto en otro, están entre las vías posibles de reutilización del plástico. Según Vargas (2004), la selección del procedimiento más adecuado para el reciclado no es fácil ni generalista, ya que deben contemplarse aspectos como la composición, la legislación ambiental, la adecuada tecnología y las posibilidades económicas dispuestas para este proceso. 4 Compuesto químico en reciente análisis para conocer los límites máximos que deben emitirse, puesto que no está dentro de la actual legislación nacional de contaminantes atmosféricos.
  • 9. 9 El reciclaje juega un papel importante en la conservación y protección del ecosistema al resolver el problema de la sobreacumulación de residuos y evitar su mala disposición final. Los programas aplicativos sobre reciclaje y su puesta en práctica resultan fundamentales para países como el nuestro. De acuerdo a García (2007), los orígenes del reciclaje de plásticos a nivel mundial y en Latinoamérica son inciertos. No se conocen fechas ni lugares de inicio de esta actividad, pero afirma que para 1960 la EPA5 ya liberaba de subsidios a las pequeñas empresas recicladoras de los Estados Unidos. La principal causa de la falta de información acerca de los orígenes del reciclaje de plásticos es que el negocio fue informal, pero la resistencia y larga duración de este material han logrado que sea uno de los materiales más comercializados en la industria del reciclaje. En 1991, Matthes menciona que los principales actores en la industria del reciclado son los recicladores, personas encargadas de rescatar los RSP de las calles antes de ser llevados al relleno sanitario, mientras que las empresas transformadoras, donde los recicladores venden lo recolectado, se involucran en los procesos de selección, molido, aglutinado, lavado, secado y pelletizado6 , resultando materia prima no virgen de plástico que puede ser utilizada nuevamente. Por otro lado, García (2007) afirma que más del 90% de plásticos son reciclables; se les puede encontrar en numerosas formas y presentaciones aunque de difícil clasificación. Por ello se han acordado símbolos para su identificación, que apenas empiezan a generalizarse en nuestro país. Ésta clasificación se dio inicialmente por el SPI (Society of Plastics Industry) es la más usada y conocida mundialmente. La Figura 1, muestra los símbolos que provienen de dicha clasificación: 5 Siglas para la Environmental Protection Agency o Agencia de Protección Ambiental Americana 6 Nombre que se le da al producto libre de impurezas y finalmente tratado, que consiste en pequeños trozos de plástico seleccionados por color y por calidad de resina.
  • 10. 10 FUENTE: Carrillo (2004) Figura 1: Clasificación de materiales plásticos por el tipo de resina Carrillo (2007) describe cada tipo de material plástico mencionado en la figura anterior: • PET (Polietileno Teraftalato) El PET es un plástico de alta calidad que requiere un proceso sumamente complicado para ser recuperado. Además, la baja densidad del mismo, incluso prensado, produce altos costos de transporte. No existe reciclaje casero para este material, por lo que muy pocos países latinoamericanos tienen la posibilidad de reciclar el PET. En el Perú existen fábricas que tienen la capacidad de procesar este tipo de resina plástica. Con las tecnologías convencionales no es posible utilizar el PET para volver a fabricar botellas de bebidas, pero se puede elaborar otros productos como prendas de vestir y frazadas. En los EE.UU. se ha desarrollado una nueva tecnología que permite despolimerizar el PET en sus dos componentes, el etilenglicol y el ácido tereftálico, y luego repolimerizarlo como resina virgen para la producción de embalajes de alimento.
  • 11. 11 Otros productos a base del PET reciclado son las fibras para la producción de fundas para dormir, como almohadas, cobijas y ropa protectora de lluvia. Además se puede utilizar en la industria automotriz y para la producción de tablas aislantes. • PEAD (Polietileno de Alta Densidad) El PEAD es un material muy valioso debido a que su valorización es siempre alta en el mercado y es el más cotizado por los recicladores. Por su naturaleza es inerte y no sufre degradación a corto plazo, no genera lixiviados, líquidos ni gases que puedan emitirse al suelo, aire o aguas subterráneas en caso de que se agregue como relleno sanitario. El PEAD reciclado se reutiliza en la producción de fundas, tuberías, mangueras, recipientes para productos no alimenticios, botellas para champú, acondicionadores, entre otros. 1. PVC (Policloruro de Vinilo) El PVC es un plástico que se puede reprocesar fácilmente aun con métodos caseros. Los productos de PVC reciclado suelen ser recipientes para productos no alimenticios, mangueras, productos moldeados como juguetes de niños mayores de 5 años -para evitar casos de intoxicación-, productos de uso sanitario, etc. En las grandes ciudades existe mercado para el PVC reciclado, pero se requiere una buena clasificación porque no debe ser mezclado con PEAD, PP o PET. • PEBD (Polietileno de baja Densidad) El PEBD es el plástico con mayor campo en el mercado. Existen muchos talleres pequeños y medianos que elaboran productos de PEBD reciclado pues es fácil de procesar incluso con equipo casero. Para procesar el PEBD sólo se puede ejecutar un reciclaje mecánico, el cual puede terminar en la granulación. Los productos más comunes son mangueras de aguas servidas y fundas negras.
  • 12. 12 • PP (Polipropileno) La óptima relación entre rigidez y peso específico del PP permite el diseño de piezas adecuadamente resistentes con un mínimo de requerimiento material y la alta resistencia a temperaturas permite el llenado en caliente para el caso de envases. Ambas características hacen del PP un producto cien por ciento reciclable y que puede ser usado para la fabricación de nuevos productos con cualquiera de los métodos existentes (inyección y soplado). Suele usarse en la fabricación de envases, empaques y en baldes de pintura, accesorios y más en la industria de la construcción. • PS (Poliestireno) Esta clase de resina se divide en dos: PS y PS-E (Poliestireno Extendido), conocido como espumaflex. El PS es un polímero de Estireno, de apariencia cristalina y alto brillo, que se asemeja mucho al vidrio. Puede usarse para la fabricación de contrapuertas y anaqueles, en envases para cosméticos, máquinas de afeitar descartables, platos, cubiertos, bandejas y también en juguetes, cassettes, blisters, etc. Por otro lado, el PS-E es comúnmente usado en aislantes y planchas espumadas que sirven como amortiguador en embalajes de electrodomésticos y otros productos frágiles. • OTROS En esta clasificación se incluyen muchas otras resinas y materiales que poseen propiedades que se derivan de la combinación de varios tipos de resinas, generalmente usadas para la fabricación de autopartes, hieleras, electrónicos y piezas para empaques. Algunos de los nombres de resinas que podemos encontrar en este conjunto son PETG (Polietileno Teraftalato Glicol), ABS (Acrilonitrilo Butadieno Estireno), PC (Policarbonato) y Nylon. Del mismo modo, Carrillo (2007) describe los métodos de reciclaje de materiales más conocidos y mundialmente usados, resumidos a continuación:
  • 13. 13 • El reciclaje químico: proceso que tiene por objetivo la descomposición de los plásticos usados en sus componentes más sencillos, los monómeros. De esta forma pueden ser usados nuevamente como materia prima en la industria productora. Existe diferentes procesos para realizar el reciclaje químico: pirólisis, hidrogenación, gasificación y tratamiento con disolventes. Los procesos de reciclaje químico son laboriosos, nuevos y necesitan costos de inversión mucho más altos que el reciclaje mecánico. • La recuperación de energía: debido a que los plásticos se producen a base de petróleo, tienen un valor calorífico elevado, a veces incluso más elevado que el del carbón. Su incineración genera una gran cantidad de energía que puede ser usada de diversas formas para otras actividades de producción. • Reciclaje mecánico: se basa en procesos físicos que funden el material plástico con transmisión de calor para ser procesado en pequeños pedazos semejantes al utilizado como material plástico virgen. Este proceso se describirá con mayor detalle en el siguiente punto. Por último, según García (2007), se conocen cuatro niveles de reciclado de plástico diferenciados por la pureza de la resina resultante. Son los siguientes: • El reciclaje primario consiste en conseguir la conversión de los RSP en materia prima con propiedades físicas y químicas casi idénticas al material original. • El reciclaje secundario obtiene materia prima convirtiendo el plástico en artículos con propiedades inferiores a las del polímero original. • El reciclaje terciario degrada el polímero en compuestos químicos básicos y combustibles. Se diferencia de los niveles anteriores porque involucra un cambio químico además del físico.
  • 14. 14 • El reciclaje cuaternario consiste en el calentamiento del plástico con el objetivo de usar la energía térmica liberada de este proceso. El plástico es usado como un combustible para reciclar energía. Está claro que el plástico es unos de los materiales pioneros del reciclaje en el mundo y seguirá siendo uno de los más usados por la industria a nivel mundial. 2.1.5 RECICLAJE MECÁNICO DE PLÁSTICOS Es uno de los métodos más sencillos y baratos de realizar, siendo el más usado en el mercado local del reciclaje. Por este motivo muchas organizaciones internacionales lo impulsan como método para la reducción mundial de RSP acumulados en las calles. La OPS (Organización Panamericana de la Salud, 2006) describe las fases más importantes del proceso, que se explican a continuación: • Se inicia con la selección y clasificación del material por tipo de resinas plásticas y colores para evitar mezclas indebidas en la fase final llamada pelletizado. Se necesita que la nueva materia prima generada esté dividida en colores y por tipo de resina para ser reutilizada. • Sigue la limpieza del material plástico, donde se le libra de etiquetas, papeles y residuos de material biodegradable, si fuera el caso, para pasar a la siguiente fase sin contaminantes. Este proceso se puede realizar en diferentes órdenes de sucesión, dependiendo del grado de contaminación de los plásticos y de la calidad requerida del producto reciclado. • Después todo material clasificado y limpio pasa a un equipo de molino o una trituradora para ser destruido, hasta obtener pequeños trozos del material inicial. • Luego el material pasa por una centrifugadora y secadora para almacenarse en un silo intermedio que sirve también para homogeneizar el material y obtener una calidad constante.
  • 15. 15 • El producto triturado, limpio, seco y homogéneo se alimenta a una extrusora donde se realiza el proceso de granceado, en el que la resina se calienta hasta alcanzar punto de fusión y adopta la figura de un hilo continuo que luego se enfría. • Finalmente, el pelletizado consiste en cortar los hilos del tamaño aproximado de una lenteja, de modo que puedan ser procesados con diferentes técnicas para la fabricación de nuevos productos plásticos. Según Laguna (2003), el pellet de plásticos reciclados se puede utilizar de distintas formas según los requerimientos solicitados para el producto final, estos se resumen a continuación: • Uso exclusivo de materia prima reciclada. En este caso, las piezas obtenidas tienen propiedades menores o similares a las fabricadas con polímero virgen, suficiente para la utilidad deseada. • Mezcla de pellet reciclado con polímero virgen para alcanzar las prestaciones requeridas, este es usado cuando se requiere obtener un producto plástico de mayor calidad. • La coextrusión del producto reciclado, consiste en combinarlo con otros materiales. Por ejemplo, en la fabricación de recipientes en forma de cajas, la capa intermedia puede ser de polímero reciclado mientras que el interior, que tiene contacto con el producto, y el exterior son de polímero virgen.
  • 16. 16 2.1.6 PRINCIPALES PROBLEMAS DEL RECICLAJE DE MATERIALES PLÁSTICOS Como se ha referido, de la variedad de productos plásticos en el mercado sólo es posible recuperar los más comunes, bajo la condición de que puedan separarse completamente en materiales con potencial para formar un nuevo producto. Según Matthes (1991), el reciclaje ilimitado del plástico no es posible, ya que siempre se obtiene un producto de menor calidad comparado con el original. El autor llama a esta restricción downcycling: cada vez que se recicla un mismo producto reduce su potencial de reciclamiento, disminuye su calidad. Otro inconveniente en el reciclaje son los químicos aditivos (suavizantes, colores, estabilizadores, ablandadores) con los que los plásticos usados han estado en contacto. Éstos cambian sus propiedades: dos productos hechos del mismo tipo de plástico pueden tener características diferentes y afectar la calidad de un nuevo producto hecho de plástico reciclado. La manera más conveniente de pronosticar la calidad del plástico que se obtendrá luego del reciclaje es conocer el uso anterior y procedencia del original. 2.1 LA ECOEFICIENCIA A NIVEL EMPRESARIAL La ecoeficiencia se apoya en dos pilares: reducir la sobreexplotación de recursos naturales (lograr un uso más sostenible) y disminuir la contaminación asociada a los procesos productivos. Busca un incremento de la productividad de los recursos naturales así como a reducir los impactos ambientales a lo largo de todo el ciclo de vida de los productos. El lema “producir más con menos” es común a todas las aproximaciones al tema. Tal enfoque no es novedoso; según Leal (2005), es usado desde 1972, en la Conferencia de Estocolmo, que lanzó al mundo la preocupación por el deterioro ambiental. Desde entonces ha habido un importante desarrollo en casi todos los países del mundo que han establecido arreglos jurídicos, institucionales y empresariales para la implementación de estrategias y políticas para impulsar el tema ambiental; lo que se ha traducido a su vez en planes, programas y regulaciones para lidiar con los múltiples y complejos aspectos que conlleva la problemática del medio ambiente y los recursos naturales.
  • 17. 17 Es así como nacen y se desarrollan en la década de los 90 conceptos como la “producción más limpia” y la ecoeficiencia, que intentan traducir este aporte de los sectores productivos a la práctica de la gestión ambiental en la empresa. La ecoeficiencia es una estrategia corporativa, una iniciativa empresarial, fundamentalmente privada, pero que cuenta con cada vez mayor apoyo de la instancia pública (Leal, 2005). Por ello, operar de manera ecoeficiente significa aunar los conceptos de desarrollo económico sostenible y protección ambiental en un marco de aplicación a los procesos concretos del sector productivo. La ecoeficiencia ha sido calificada como una nueva “revolución tecnológica”, siendo la manera en que se mide la vinculación entre economía y medio ambiente en una perspectiva práctica de la sostenibilidad. En muchos casos cuando el empresario decide formar parte de una estrategia de ecoeficiencia, apoyándola e impulsándola, provoca que sus promotores se transformen en aliados importantes de la acción pública de protección del medio ambiente y uso de los recursos naturales. Por último, la ecoeficiencia es uno de los movimientos más expandidos en la actualidad para colocar la necesaria y fundamental colaboración público-privada dentro de las estrategias de sostenibilidad, en un contexto global de crecimiento económico y desarrollo de los mercados. Esto es argumento suficientemente importante como para hacer de la estrategia un punto central en el enfoque que el sector empresarial debe poseer respecto al tema ambiental. 2.3 ECOEFICIENCIA EN LOS CONCEPTOS DE ECOLOGÍA INDUSTRIAL Y SIMBIOSIS INDUSTRIAL Los conceptos de Ecología Industrial y Simbiosis Industrial nacen de los mismos antecedentes mundiales que trajo consigo el término ecoeficiencia. Según Ayres y Ayres (2001), los precedentes más importantes de la Ecología Industrial se encuentran
  • 18. 18 cimentados bajo los conceptos de Simbiosis Industrial y Sinergia7 de Subproductos, nacidos en los años 70. El principio que siguen estos conceptos es que el flujo de residuos de una industria se incorpore a otra convirtiéndose en materia prima para la segunda, con lo que se busca cerrar el ciclo de materia. De la década de los 90 hasta nuestros días, el concepto de Ecología Industrial se ha consolidado incluyendo los tres sectores del desarrollo sostenible: ambiente, economía y sociedad. La Ecología Industrial puede describirse también, como el estudio de las interacciones e interrelaciones físicas, químicas y biológicas dentro de los sistemas industriales, naturales, sociales y las interacciones entre ellos, como se ilustra en la Figura 2. Figura 2: Interacción de actores en una sociedad como un ecosistema natural. FUENTE: Elaboración Propia La Simbiosis Industrial es un concepto del que se sirve la Ecología Industrial, según Cervantes et al. (2009), para el intercambio de materiales entre varios sistemas productivos de manera que el residuo de uno sea materia prima para otros y su implantación promueva una red de empresas. El objetivo inicial de la Simbiosis Industrial es económico, pero tiene consecuencias ambientales y sociales positivas; la Simbiosis Industrial se encuentra contenida en la Ecología Industrial, de manera que no 7 En referencia a la integración de elementos que da como resultado algo más grande que la simple suma de éstos; es decir, cuando dos o más elementos se unen sinérgicamente crean un resultado que aprovecha y maximiza las cualidades de cada uno de los elementos. Ciudades Industria Entidades públicas Industria II
  • 19. 19 se puede aplicar ésta última sin utilizar el método de la primera. Sin embargo, la ecología industrial es más amplia, contempla aspectos económicos, ambientales y sociales para entender la sostenibilidad. Esto contribuye a buscar la ecoeficiencia empresarial ya que la aplicación de la Ecología Industrial asume que una empresa opera ecoeficientemente. 2.4 DISPOSICIÓN FINAL DE RESIDUOS SÓLIDOS El continuo aumento de población y el cambio de costumbres alimenticias y de consumo en las últimas décadas ha producido un considerable aumento de residuos sólidos urbanos, lo que genera que en todo el mundo la disposición de residuos esté en situación de emergencia. Los diversos métodos de disposición final se pueden resumir a dos, por ser los más conocidos y usados a nivel mundial. 2.4.1 RELLENO SANITARIO Y DE SEGURIDAD En este contexto, el uso de relleno sanitario (residuos no peligrosos) o de seguridad (residuos peligrosos) es en la actualidad, sin duda, el método más usado y económico del mercado. Se deriva de sus antecesores directos, los botaderos y botaderos controlados, que con el tiempo fueron tomando medidas más específicas para el control de la contaminación y el uso efectivo de la superficie. Jairo (2002) reconoce que el relleno sanitario es entendido hoy en día como una instalación destinada a la disposición final de residuos municipales no reciclables ni aprovechables, y que está diseñado para minimizar los impactos ambientales y reducir riesgos sanitarios generados por mala disposición en botaderos no controlados. En el contexto internacional, Gago (2009) menciona que en 1930 empezó a utilizarse por primera vez la expresión “relleno sanitario” (sanitary landfill) en la ciudad estadounidense de Fresno, California. También afirma que el término surgió para designar “la cubierta diaria de los residuos y la supresión de su quema”. En las siguientes décadas, el método de relleno sanitario se desarrolló de manera notable en los
  • 20. 20 EE.UU. por lo que impulsó la construcción de centros de disposición final hasta cubrir prácticamente todas las áreas urbanas. El uso de un relleno sanitario consiste en enterrar residuos sólidos junto a una adecuada cantidad de tierra que permita su total confinamiento. Un relleno de seguridad difiere del anterior en que antes del entierro de residuos peligrosos se recubre la base del terreno con una geomembrana o capa impermeable de protección para el subsuelo. Según las cifras de la Environmental Protection Agency (EPA), en 1988 había 7 924 rellenos operando en territorio estadounidense, aunque a partir de ese año la cantidad de rellenos disminuyó de manera considerable. En el 2006 sólo el 55 % de los residuos sólidos generados en EE.UU. fueron dispuestos en rellenos sanitarios. De acuerdo a Gago (2009) la causa de tal tendencia decreciente son los procesos de regionalización estadounidense y la aplicación de nuevas tecnologías de disposición final de residuos sólidos como la incineración controlada. También atribuye la disminución al aumento del uso del reciclaje y compostaje, que se ocupan actualmente del 32,6% de los residuos generados en territorio estadounidense. De esta forma se evita incinerar o disponer en relleno sanitario más de 81,8 millones de toneladas de residuos. Si bien el número total de rellenos en Estados Unidos ha declinado, la capacidad total de los existentes se ha incrementado. Los tres rellenos regionales más grandes pasaron a tener una capacidad de hasta de 1.3 billones de toneladas. Siguiendo a Gago (2009), en Europa se muestra que en el año 2004 alrededor del 45% del total de residuos municipales e industriales era dispuesto en rellenos mientras que el 18% era incinerado. Actualmente esta tendencia está variando y se hace notar en países como Holanda, Dinamarca, Suecia y Bélgica, que poseen un bajo y casi nulo nivel de disposición en rellenos debido al empleo de la incineración y a los altos porcentajes de recuperación de materiales. El sistema de rellenos a nivel mundial está en decadencia debido a las nuevas e innovadoras tecnologías que buscan realizar la misma función pero con mayor eficiencia y cuidado del medio ambiente. A pesar de que la incineración controlada es el método más usado en países desarrollados, en Latinoamérica no es tomado en cuenta lo suficiente por municipalidades y empresas industriales.
  • 21. 21 Las principales características ambientales encontradas en el proceso de Relleno Sanitario están relacionas con la generación de gases y lixiviados. Al disponer los residuos en el relleno se forman espacios vacíos entre ellos ocupados con oxigeno (O2), que inicia la descomposición aeróbica de la materia orgánica biodegradable. En esta fase se forman dióxido de carbono, agua y otros subproductos. Cuando el O2 en el Relleno se agota, se inicia la fase anaeróbica de la descomposición que es la fase más importante desde la perspectiva de formación de gases. La generación de gas en un sistema anaerobio depende de diversas variables que incluyen las características de los residuos, humedad, temperatura, pH, disponibilidad de nutrientes y microbios y presencia de inhibidores. Durante el proceso de estabilización de los residuos sólidos dispuestos en un Relleno se generan desechos líquidos que se filtran a través de ellos extrayendo material disuelto o en suspensión, estos se denominan lixiviados. La composición química de los lixiviados varía según la antigüedad del relleno. La producción de lixiviados tiene su origen en la humedad que traen consigo los residuos y en el agua que ingresa al relleno a través de las lluvias y entra en contacto con los residuos sólidos , estos compuestos posteriormente pueden dispersarse en el medio ambiente circundante (aguas superficiales, subterráneas y aire). Los mecanismos de dispersión de los lixiviados son la escorrentía dentro de la zona de disposición, la infiltración y la penetración de aguas subterráneas hacia las capas inferiores del relleno. Cuando los residuos quedan saturados, el agua resbala entre ellos por acción de la gravedad y se contamina por contacto con el material dispuesto. (Méndez et al., 2006). Los gases emitidos a la atmósfera desde un Relleno Sanitario se dividen en gases principales, producidos en mayor cantidad y que proceden de la descomposición orgánica. También se producen gases como el metano, el cual tiene características de combustión y explosividad en concentraciones que fluctúan entre 5 -15 %, especialmente cuando migra del lugar y se mezcla con el aire.
  • 22. 22 En general, el porcentaje de gases principales que se emiten depende de la antigüedad del Relleno Sanitario, estos son (Theisen et al. ,1994): • Metano (CH4) 45 – 60% • Dióxido de Carbono (CO2) 40 – 60% • Nitrógeno (N2) 2 – 5% • Oxigeno (O2) 0,1 -1,0% Con base en estudios realizados por la EPA, se encontró que los rellenos sanitarios se ubican como la veintiseisava fuente de emisión de compuestos peligrosos al aire, siendo los principales los Compuestos Orgánicos Volátiles (COV), el Metano (CH4) y el Dióxido de Carbono (CO2), generados en el Relleno Sanitario durante la descomposición anaeróbica de la materia orgánica. Otro de los gases emitidos por el Relleno Sanitario es el ácido sulfhídrico (H2S) cuyo principal efecto es la generación de olores desagradables. Como se mencionó, del total de gases emitidos a la atmósfera por un Relleno Sanitario el Metano (CH4) representa entre el 45 al 50% y hace parte de los hidrocarburos cuya presencia además son uno de los principales causantes del efecto invernadero. (Méndez et al., 2006). En el control de gases generados por procesos químico-biológicos de residuos confinados, como el biogás8 , se dispone de chimeneas que salen de la superficie terrestre y por donde son expulsados. En la evolución del uso de este método las empresas de rellenos sanitarios más grandes del mundo han generado diversas tecnologías de mejoramiento para sus procesos, en las que han incluido, por ejemplo, un sistema de canalización de gases, como los CO2 y CH4, en una chimenea principal donde se queman antes de ser liberados al medio ambiente, de esta manera disminuir su capacidad de generación de calentamiento global. (Noguera y Olivero, 2010) 2.4.2 INCINERACIÓN CONTROLADA La incineración es para muchos la opción más rápida y sencilla para eliminar grandes cantidades de residuos municipales, industriales, etc. Países altamente 8 Biogás con alta concentración de metano CH4
  • 23. 23 industrializados como los de la Comunidad Europea y EE.UU. han incursionado en una nueva alternativa técnica, el proceso de incineración mejorado, con visibles y buenos resultados en el orden ambiental además de capitalizar el aprovechamiento de varios sub-productos que se obtienen del tratamiento por incineración de residuos. De acuerdo a Kaynak y Topal (2005), en la incineración se utiliza la descomposición térmica mediante el proceso de oxidación a altas temperatura (1800 - 2500º F). Se consume la fracción orgánica del residuo hasta reducir su volumen. Corresponden a sus criterios de funcionamiento y operación: la alta eficiencia de combustión, destrucción y remoción de gases tóxicos, el límite permisible en la emisión de partículas y un monitoreo continuo en el proceso, con temperatura mínima específica y niveles aceptables de tiempo de residencia de los gases generados en el combustor. La labor de estos potentes combustores contrasta con la antigua y ya conocida técnica simple de incineración, altamente dañina para el ambiente. Estos componentes representan una de las tecnologías más prometedoras para reducir las emisiones a la atmósfera por medio de su combustión controlada (Terán, et. al 2008). Ayres y Ayres (2001) ya reconocía que esta tecnología proporciona un significativo valor agregado al proceso de reciclaje. La trituración de residuos inicia una cadena de reciclaje técnico que culmina con incineración, cabe decir, no contaminante debido a la disposición de filtros especiales que retienen las partículas volátiles evitando que estos lleguen a la atmósfera. Como agregado se pueden tratar los restos de la incineración para obtener abono orgánico, alimento para la industria ganadera y materia prima para bloques de tipo cementoso. Esta exitosa y probada tecnología de producción energética constituye lo más novedoso, rentable y adecuado para proveer soluciones con beneficios adicionales. Convierte un gasto en una operación lucrativa de alto contenido social que previene la contaminación y cuida la salud humana. El proceso de incineración técnica de residuos sólidos, comienza con la preparación de los materiales a través de clasificación y reciclaje, el cual pasa a utilizar un molino especial de martillos de alta resistencia. Luego pasa al incinerador de acuerdo al
  • 24. 24 material del desecho, si es hospitalario o toxico, industrial, doméstico o agrícola. Los gases provenientes de esta incineración calientan el agua de la caldera que producirá vapor para mover la turbina que se utiliza para la generación de energía eléctrica de 1a 20 megavatios por hora por línea de proceso. Después la ceniza es clasificada para prepararla y utilizarla como material cementoso en la creación de prefabricado de concreto. En cuanto al resumen analítico del proceso de incineración, esta se basa en un sistema de reciclaje técnico y de trituración para realizar una incineración con una mínima contaminación atmosférica con filtros especiales siendo un sistema de alta tecnología. Este proceso tiene las siguientes etapas: (Mind West International Group Inc, 2004). 1. Barrido y aseo de calles, recolección domiciliaria con equipos compactadores ambientales: El diseño del plan de barrido será realizado y ejecutado por las municipalidades y/o una empresa local con gran experiencia en la región. Los camiones de la empresa transportaran la basura de los puntos de acopio a la planta procesadora donde son recibidos y pesados para entrar a clasificación. 2. La recepción de la basura: Entra a un área donde se lleva a cabo el proceso de clasificación para reciclaje de una manera aséptica e higiénica, por recicladores expertos de acuerdo a los requerimientos de la “Environmental Protection Agency” (EPA). El producto de esta tarea se almacena en una bodega para su elaboración y comercialización de acuerdo al uso que se les vaya a dar. Si los desperdicios son altamente orgánicos tales como los de las galerías y mercados locales, podrían deshidratarse y molerse para utilizarlos como base y agregado abono. El reciclaje debe iniciarse en los hogares, procedimientos que se lleva a cabo a través de campañas de educación ambiental. 3. Molinos: El desperdicio que no tiene valor reciclable pasa por el molino reduciendo la basura en partículas uniformes, preparándola así para una incineración más efectiva y dejando una ceniza utilizable.
  • 25. 25 4. Cámara Incineradora: Al entrar al incinerador la basura en pequeñas partículas se recibe a temperaturas que oscilan entre 1,800 a 2,500 grados Fahrenheit dependiendo de su humedad y queda así reducida en el 5% del volumen inicial en cenizas. Las basuras industriales y hospitalarias pueden ser tratadas directamente a 1,800 grados Fahrenheit en este mismo incinerador y para eliminar cualquier tipo de contaminación patológica, el equipo lleva una casa de filtros de alta tecnología limpiando el 95% en su chimenea. Entre las principales características del sistema de incineración, se hace uso de una torre acondicionadora de paneles refractarios HAC (“High Aluminuous Content”) sólidos, la cual no se ve afectada por calor excesivo y ambiente con alto contenido de productos químicos húmedos. También se utiliza un fogón en V totalmente refractario el cual ha demostrado ser superior en el manejo de las cenizas y especialmente su facilidad de mantenimiento, si se compara con las rejillas móviles de los demás sistemas combustión. Esto también es un aspecto importante para lograr una incineración, donde la mayor parte de los derivados nocivos de la combustión tienden a desaparecer debido a la sobre exposición a altas temperaturas y a una combinación de altas presiones y aire de combustión secundario. Las pruebas también indican que este diseño permite una mínima producción de “NOX” y una acumulación de cenizas reciclables de buena calidad con una reducción en el volumen de más del 90%. (Mind West International Group Inc, 2004). La cámara de combustión principal posee las siguientes características: • Una cámara de combustión de 21 pies de diámetro y 30 pies de altura. • Colector de distribución de aire principal con apertura sanitaria y características de manejo de distribución de aire manual. • Colector de distribución de aire secundario de alta presión a cuatro bocas. • Calderas principales y secundarias con motores y compuertas de mariposa. • Fogón en V refractario. • Combustión computarizada, combustible, manejo de la carga y de las cenizas.
  • 26. 26 • Quemador auxiliar para el encendido y mantenimiento de la temperatura. • Paneles refractarios de repuestos. La planta de Incineración Controlada posee mecanismos de recuperación de energía, debido a que genera aproximadamente 1 a 20 MW de electricidad. Para ello se utiliza una turbina que activa el Generador Eléctrico, este generador es suministrado por empresas como Murray Turbomachinery o algún proveedor similar. Mind West International Group Inc. (2004) indica que para el control ambiental una planta de Incineración controlada aplica los siguientes mecanismos: • Torre de acondicionamiento con control automático de protección de temperatura. • Sistema de inyección de carbón activado seco en polvo. • Sistema de control de gases ácidos por inyección de absorbente cáustico seco. • Deposito de filtrado, bolsas de fibra de vidrio, selladas, sacado continuo de cenizas mediante válvula rotativa, compresor de aire. • Supervisión continua, grabación y control de gases a diversas temperaturas. • Supervisión de las operaciones de la planta por computadora. Con la utilización de la tecnología expuesta una planta de Incineración Controlada, es una de las alternativas de disposición final de residuos que es cada vez más usada a nivel mundial, demostrando ser eficiente en la reducción del volumen de residuos y con medidas necesarias para el control de la contaminación ambiental. 2.5 REUTILIZACIÓN DE RESIDUOS SÓLIDOS: CASO TETRA PAK La empresa TETRA PAK no sólo es famosa en el mercado por la diversa gama de productos usados como envases de diversas marcas de venta de alimentos y bebidas, sino también por su planeamiento verde: aplicación de técnicas de segregación y reciclaje para crear nuevos productos en base a desechos de fabricación y recolección de envases usados.
  • 27. 27 Un claro ejemplo de ello es la creación de la empresa ECOPLAK y su producto estrella, el Tectán, que Chung (2003) describe como un material aglomerado que utiliza como materia prima los envases de TETRA PAK. Este producto está siendo usado en muchos países de Europa y algunos otros sudamericanos (por ejemplo, Chile) en reemplazo de la madera en la fabricación de diversos artículos como muebles, escritorios, etc. La técnica de fabricación de este producto no es muy complicada y sigue lineamientos básicos que se explican a continuación (Chung, 2003): • Los cartones triturados se lavan, secan y extienden en una capa del espesor deseado. • Después se ponen en una prensa y se calientan a unos 170º C. • El calor funde el contenido de polietileno (PE) que une la fibra densamente comprimida y los fragmentos de aluminio en una matriz elástica. • La matriz resultante se enfría rápidamente formando un duro aglomerado con una superficie brillante e impermeable. Este tipo de reciclaje es una de las técnicas más adecuadas para enfrentar la problemática de los residuos sólidos no peligrosos en países en vías de desarrollo, según Aguilar (1999). Se considera la opción del reciclaje comunitario como una modalidad específica que responde mejor a la realidad socioeconómica de un país como el nuestro. La empresa TETRA PAK incentiva a diversas comunidades, pueblos y barrios a la colección de estos envases a cambio de diversos incentivos que favorecen a toda la comunidad. Así recolecta más del noventa por ciento de los residuos sólidos que serán transformados en un nuevo producto. Del mismo modo, la aplicación de esta técnica suele ir acompañada de una fuerte sensibilización, ya que en otros países la fabricación del producto Tectán es el tramo final de una campaña de segregación y reciclaje que lleva la empresa durante todo el año con los mismos consumidores de cada país.
  • 28. 28 III. MATERIALES Y MÉTODOS 3.1 ÁREA DE ESTUDIO La casa matriz de BELCORP se ubica en la Avenida Canaval y Moreyra 480, San Isidro, y la planta de producción en la Avenida San Andrés 150, Los Olivos (zona industrial), ambas en la Provincia y Departamento de Lima. BELCORP es una corporación internacional fundada en el Perú hace más de 40 años, es dueña de las firmas de cosméticos, productos de cuidado personal, moda, hogar y accesorios L’bel, Ésika y CyZone. Actualmente comercializa sus productos en más de quince países en Latinoamérica y posee dos plantas principales de producción, una ubicada en Lima – Perú y la otra en Bogotá – Colombia, siendo la de Perú subcontratada por la empresa YOBEL. 3.2 MATERIALES Los diversos materiales y equipos que se usaron en esta tesis fueron proporcionados en su totalidad por la empresa BELCORP, y se detallan a continuación: 3.2.1 MATERIALES PARA LA CARACTERIZACIÓN Los equipos de protección personal: • 2 pares de guantes • 2 mascarillas • Mandil Materiales para la experimentación: • Muestras de los productos plásticos a trabajar • 1 encendedor • 1 máquina trituradora
  • 29. 29 • 1 envase hondo con agua • 1 cámara fotográfica 3.2.2 MATERIALES DE ESCRITORIO • 1 computadora • Libreta de anotaciones • Útiles de escritorio • 1 calculadora 3.3 MÉTODOS El estudio se realizó en cinco fases secuenciales articuladas entre sí, de tal forma que la información recabada en la fase anterior sirviera de instrumento para comprender la siguiente. 3.3.1 DIAGNÓSTICO INICIAL DE LA EMPRESA BELCORP Esta primera fase consistió en conocer el proceso actual de generación y organización de residuos sólidos en la empresa Belcorp. Para ello se describió cada actividad involucrada con los residuos sólidos dentro de la empresa y también a los actores principales que intervinieron en la generación de los mismos. Esta información se obtuvo por medio de visitas a la casa matriz de Belcorp y la planta de producción donde la empresa Yobel se encarga de la fabricación de los productos comercializados por Belcorp. Durante estas visitas se recopiló información por medio de reuniones con los responsables de la suministración de materiales, producción y eliminación de residuos, lográndose conocer a detalle el funcionamiento de estas actividades principales. El principal objetivo de esta fase fue obtener datos específicos útiles para comparar el desenvolvimiento normal de la empresa y su posible funcionamiento de aplicarse el sistema de reutilización de RSP planteado.
  • 30. 30 Por otro lado, las empresas Belcorp y Yobel colaboraron en esta fase poniendo a total disposición la data que se requería para describir la ejecución de cada uno de los procesos evaluados. Finalmente para lograr una comprensión total de la data brindada por estas empresas se tuvo que aprender a utilizar el software Solutions Applications and Services (SAP), el cual sirve para el almacenamiento y manejo de data en ambas empresas. Las actividades que se desarrollaron para ello fueron las siguientes: • Visualización del uso de este programa en los trabajadores administrativos, con el fin de memorizar los comandos y forma de uso. • Simulación de utilización del programa supervisado por un trabajador administrativo para familiarizarse con el programa. • Elaboración de un glosario de terminologías usadas por el programa que permitió conocer y utilizar la data almacenada en códigos, que sirven para inventariar cada material fabricado o adquirido por la empresa. El SAP es un programa de computación usado para ordenar y mantener un correcto sistema de información de inventarios. Este complejo programa informático es utilizado y consultado diariamente para obtener información requerida, actualizar la data, ingresar nuevos materiales adquiridos o fabricados, etc. El principal objetivo de esta fase fue conocer el significado de los términos usados en el control y almacenamiento del inventario de suministros plásticos inactivos y/o obsoletos para la empresa, debido a que representan los RSP que fueron utilizados en la evaluación del sistema de reutilización planteado. Otra ventaja del programa es que brinda datos específicos de cada uno de los materiales presentes en los almacenes de la empresa, permitiendo conocer el material de fabricación (vidrio, papel y plástico), su estado de producción (producto terminado, envases o materia prima), estado en el ciclo de vida (apto para la venta, inactivo, bloqueado, para destrucción) y sus características físicas como peso, color, volumen, densidad, etc.
  • 31. 31 Sólo hacía falta conocer el tipo de resina de los RSP, hecho que motiva la siguiente fase. 3.3.2 CARACTERIZACIÓN DEL TIPO DE RESINA PLÁSTICA Esta fase consistió en conocer los diversos tipos de resinas con que fueron elaborados los RSP de la empresa, hecho determinante para la viabilidad técnica del sistema de reutilización propuesto, pues permite conocer si dichos materiales plásticos son útiles para ser reciclados. Las actividades realizadas en el desarrollo de la caracterización fueron las siguientes: • Selección de muestras de RSP • Aplicación de pruebas físicas a las muestras seleccionadas. Para la selección de muestras se tomó en cuenta los siguientes pasos: Paso 1: a través del SAP se obtuvo la data del total de materiales acumulados hasta la fecha en los almacenes de inventarios inactivos (materiales considerados como residuos sólidos para la empresa). Esta data fue exportada en el mismo programa a un cuadro de Excel para poder trabajar en él. Paso 2: con el uso de la herramienta filtro automático de Excel se seleccionó la data que representara productos con las siguientes características: elaborados en base a plástico, que fueran envases (frasco y tapa), y que no fueran aptas para el comercio, es decir RSP que podían ser usados en el sistema de reutilización planteado. Paso 3: una vez filtrada la data se eligió un producto de cada línea de venta (como perfumes, champú, desodorantes, probadores, labiales, cremas, etc.), debido a que existe una uniformidad en las características técnicas exigidas a los proveedores de envases dentro de cada línea de venta, lo que asegura que todos los envases de en una de ellas estén elaborados con el mismo tipo de material plástico, variando únicamente en el modelo y color por cada producto.
  • 32. 32 Paso 4: Por último, se envió los datos de las muestras representativas seleccionadas a la empresa Yobel, para que substrajeran lo solicitado de los almacenes y fueran entregadas físicamente. En el caso de las pruebas físicas, estas se describen a continuación: • Visual: consiste en verificar visualmente las muestras seleccionadas y anotar el código del tipo de resina, colocado generalmente en la base del material plástico al momento de su fabricación. • Quemado: se cortó un pedazo de la muestra estudiada y se llevó al fuego por diez segundos. Si la muestra se mantenía intacta, sin caer en pedazos flameantes al suelo, se trataba de un pedazo de muestra plástica con resina tipo PP (Polipropileno). • Trituración: se hizo uso de una trituradora generalmente usada para destruir productos dañados en el proceso de fabricación. Se introdujo parte o todo el envase de plástico, y tras ser triturado se inspecciona el resultado: si presentaba escamas era plástico con resina PET (Polietileno Teraftalato); de caso contrario, era del tipo PEAD (Polietileno de Alta Densidad). • Inmersión en agua: se cortó la muestra en pequeños pedazos homogéneos de aproximadamente 2 cm. y se esparcieron uniformemente en un envase con agua. Si permanecían flotando en la superficie era plástico con resina tipo PEBD (Polietileno de Baja Densidad).
  • 33. 33 3.3.3 ANÁLISIS DEL MERCADO DE RECICLAJE Y FABRICACIÓN DE PRODUCTOS PLÁSTICOS Paso seguido se inició la búsqueda de empresas especialistas en reciclaje de plástico en el mercado local que trabajen con los tipos de resinas hallados. Esta fase se ejecutó con el fin de encontrar empresas en el mercado local que puedan ser partícipes del sistema de reutilización evaluado y que deseen ser parte de la cartera de proveedores y subcontratistas de Belcorp. Una vez contactadas y seleccionadas se organizaron visitas para comprobar su capacidad de trabajo con grandes volúmenes de RSP. Las visitas consistieron en reuniones con los jefes de comercio y producción de cada empresa para evaluar las cotizaciones por los servicios a prestar: reciclaje y fabricación de materiales plásticos. La información recopilada se usó en el análisis preliminar de variables económicas, como consta más adelante en el presente estudio. 3.3.4 ANÁLISIS PRELIMINAR DE VARIABLES ECONÓMICAS DE LA REUTILIZACIÓN DE RESIDUOS SÓLIDOS PLÁSTICOS. Última fase compila las anteriores plasmadas en números y cantidades monetarias. Se trata de la parte económica del análisis de prefactibilidad de la tesis y estuvo basado en una relación simple de costo y beneficio. Consistió en la creación de supuestos que ayudaran a entender de manera más lógica el desarrollo del análisis preliminar de variables económicas. Los supuestos involucrados se dieron tomando como base a un producto terminado de la empresa, que en este caso fue el envase del desodorante llamado “Mercy” de la marca Ésika, se eligió este producto debido a que el envase del mismo puede ser hecho con el tipo de resina encontrada en mayor proporción en los RSP acumulados de la empresa, además de ser uno de los productos más vendidos anualmente en el mercado. Estos supuestos se basaron en la fabricación de dicho envase, pero desarrollados en dos escenarios diferentes:
  • 34. 34 Escenario A: fabricación del producto elegido haciendo uso de la materia prima no virgen obtenida del proceso de reciclaje de RSP, evaluándose los gastos en los que incurriría al aplicar el sistema de reutilización planteado. Escenario B: fabricación normal del producto elegido con los mismos suministros y materia prima virgen que otorga el proveedor de la empresa. Planteando estos escenarios se obtuvo una diferencia en gastos brutos finales de fabricación, que muestra qué opción es económicamente más rentable para la empresa, sin olvidar que el sistema de reutilización sí es ambientalmente viable para la empresa y que permite ahorrar recursos evitando la adquisición de materia prima virgen y reduciendo el volumen de RSP que van a disposición final. La fórmula usada en esta fase fue la siguiente: BT = IT – CT Donde: BT= Beneficio Total IT= Ingreso Total (ventas) CT= Costo Total (gastos fabricación) Esta fórmula fue aplicada de la misma forma en ambos escenarios. La variable a calcular era CT y la variable IT representaba a una misma cantidad debido a que se usó un mismo precio de venta para ambos casos, mientras que la variable BT fue la que se comparó al final para poder constatar cual de los dos escenarios favorecía económicamente a la empresa.
  • 35. 35 3.3.5 ANALISIS DE LA TECNOLOGÍA DE DISPOSICION FINAL DE RESIDUOS SÓLIDOS PROPUESTO. Esta fase consistió en evaluar la nueva tecnología propuesta a Belcorp para ser usada en el proceso de disposición final de residuos sólidos de la empresa, con la finalidad de evaluar si es conveniente para a la empresa en términos económicos y ambientales. Esta tecnología fue la de Incineración Controlada. Para conocer más sobre ésta tecnología, se realizaron reuniones con el representante de ventas en Perú del MID WEST INTERNATIONAL GROUP (MWIG), empresa estadounidense que llegó al Perú pocos años atrás y que actualmente posee cuatro plantas de Incineración controlada para la disposición final de residuos municipales e industriales. Se analizó la tecnología de Incineración Controlada, porque garantiza la rápida destrucción de grandes volúmenes de residuos en menos tiempo, y brinda un servicio que favorece el cuidado del medio ambiente, características que permitirían a Belcorp una mejor disposición final mensual del inventario bloqueado. Por otro lado, se decidió trabajar con la empresa MWIG, por ser de las únicas en el Perú que brindan el servicio de la Incineración Controlada, además de contar con varias plantas en funcionamiento, estando una de ellas ubicada en la provincia de Huacho, siendo la más cercana a la ciudad de Lima. Con la información brindada por la empresa MWIG, se realizó un análisis de gastos en materia de disposición final en la empresa y se comparó con la cotización brindada por la empresa MWIG. Los principales puntos considerados en este análisis fueron los siguientes: • Variables económicas, como costos de servicio, transporte y otros gastos. • Peso total de residuos sólidos a disponer en un año por cada tecnología. Mientras que para la evaluación del cuidado ambiental se elaboró un cuadro resumen en el que se describen cada uno de los criterios tomados por la empresa MWIG en el control y protección del ambiente.
  • 36. 36 IV. RESULTADOS Y DISCUSIONES 4.1 RESULTADOS DEL DIAGNÓSTICO INICIAL A LA EMPRESA BELCORP La empresa BELCORP usa un sistema de venta promotor-cliente a través de catálogos para sus tres marcas: Ésika, CyZone y L’bel. Cada promotor interacciona directamente con los clientes, que realizan los pagos una vez entregados los productos. Las consultoras pueden colocar cerca de 150 millones de órdenes de compra para la empresa, con una participación del 27% para L’bel, 41% para Ésika y 32% para CyZone. Una campaña consiste en el lanzamiento de un nuevo catálogo para las tres marcas, señala el inicio y el final de un periodo de trabajo así como el ritmo con que se mueve la empresa de mes a mes. Con dieciocho campañas en todo el año, cada una se prepara hasta dos meses antes de la fecha de lanzamiento al mercado. La cantidad y clase de producto que se lanzan en cada catálogo son determinadas por los análisis de mercado que se realizan en base a estadísticas de ventas pasadas; de este modo se aproxima a la cantidad de productos que deben tener fabricados para la venta. Según registros de la empresa, cada mes se mueven aproximadamente 1, 800 toneladas de mercadería, lo cual es casi 1.8 millones de kilos de productos por mes que salen de Lima y Bogotá, las dos principales orígenes. Factores como el corto periodo entre campañas, la aproximación de datos para la fabricación de productos y el mismo mercado variante entre nuevas tendencias y gustos, causan que el tiempo de vida de un producto lanzado al mercado sea muy corto. Las ventas pueden reducirse hasta en menos de la mitad de lo inicialmente programado. Éste fenómeno se refleja en la cantidad de productos que Belcorp lanza al mercado, que suelen llegar hasta doscientos setenta nuevos productos por año, y en la cantidad de productos vendidos por catálogo en cada campaña, que supera los cuatrocientos noventa.
  • 37. 37 Estos importantes motivos provocan un incremento en la acumulación de inventario de productos terminados, insumos, y suministros inutilizables en los almacenes de Belcorp, lo que incrementa a su vez la cantidad de residuos sólidos que la empresa finalmente tiene que disponer al medio ambiente. Bajo términos de Ecología Industrial, la empresa Belcorp estaría interactuando con los diversos actores que se muestran en la Figura 3, si aplicase un sistema de reutilización de RSP. FUENTE: Elaboración propia Figura 3: Ciclo de Ecología Industrial de la empresa Belcorp La interrelación entre la empresa (comercializadores), Yobel (fabricantes), proveedores y la empresa recicladora, tiene como objetivo lograr satisfacer sus necesidades y a la par hacer uso del RSP generado, de manera que maximiza sus posibles usos y recupera su valor, logrando así cerrar el ciclo que la aplicación de la ecología industrial busca. Para conocer más a fondo el sistema de trabajo que lleva Belcorp al completar todas las campañas programadas, se describirán los procesos principales que involucran la generación de residuos sólidos. BELCORP YOBEL RECICLADORA (Paletiza) PROVEEDORES / NUEVAS EMPRESAS FABRICADORAS Envases de plástico sobrantes Envases de plástico sobrantes Pellets de plástico reciclado Nuevos envases de plástico útiles Productos terminados
  • 38. 38 La Figura 4 muestra un diagrama de flujo de la interacción entre actores y procesos, así como los pasos para la eliminación de residuos sólidos generados en el proceso de interacción. FUENTE: Elaboración propia Figura 4: Actores y Procesos en la generación de residuos sólidos La numeración mostrada indica el orden correlativo de participación de cada uno de los actores y de los principales procesos que se describirán líneas abajo. En la Figura 4, se inicia con la subcontratación que realiza Belcorp a la empresa Yobel, encargada de la fabricación del contenido (bulk9 ), envasado y almacenamiento de los productos a lanzar en las campañas. En este paso Belcorp tiene establecido la cantidad de productos que debe fabricar Yobel según sus estadísticas de venta. En algunos casos, la propia Yobel brinda los suministros usados para el envasado de los productos terminados10 , los cuales están bajo el control directo de Belcorp. Esta situación no se da con frecuencia, puesto que Belcorp cuenta con una cartera de proveedores con quienes se encarga de suplir la mayoría de los materiales para la fabricación. Los proveedores, se encargan de brindar insumos (materias primas) y suministros (envases, tapas, etiquetas, etc.) a Yobel en cuento ésta lo solicite. 9 Nombre que da la empresa BELCORP a todo lo que se consume en el producto terminado, ya sea este líquido, gel o sólido; como por ejemplo, la fragancia líquida de un perfume y el gel crema de un shampoo. 10 Producto terminado es el que está listo para la venta y tuvo la participación directa de BELCORP para su elaboración. BELCORP YOBEL PROVEEDORES Fabricación de contenido Almacenaje RESIDUOS SÓLIDOS Disposición Final 1 2 3 4 5 6 7RELIMA
  • 39. 39 Se puede encontrar productos terminados y residuos sólidos como resultado de los procesos de fabricación y almacenamiento. Los residuos sólidos le pertenecen a la empresa Belcorp, por lo que tiene responsabilidad directa en su disposición final. Ellos son confinados en un espacio especial que se alquila a la empresa Yobel, como inventario obsoleto y luego, dependiendo del tipo de residuo, son transportados en partes y periodos definidos para su disposición final en un relleno sanitario o de seguridad de Relima. Este proceso se lleva a cabo después de una venta previa de los residuos sólidos reciclables a pequeños comercializadores; venta que se limita a suministros, ya que no se permite comercializar residuos que son productos terminados y etiquetados con los logos de las marcas de la empresa: se corre el riesgo de adulteramiento y venta de dichos productos a terceros para comercio ilícito. Seguidamente se describen de manera más detallada cada uno de los actores y procesos anteriormente mencionados: a) PROVEEDORES La empresa Belcorp divide a sus proveedores de acuerdo al tipo de material que les proporcionan, como plásticos, vidrios, cartones, materias primas, y, entre estos, químicos y esencias. Los proveedores son nacionales y extranjeros, siendo los últimos de países como Estados Unidos, China, Italia, Francia (para productos de la marca L’Bel), Colombia, Argentina, entre otros de Latinoamérica. Las principales características que posee Belcorp en cuanto a la relación con sus proveedores se describen a continuación: • Todo proveedor que intervienen en la fase de fabricación está bajo control directo de Belcorp, por lo que todo tipo de contratación se realiza directamente entre Belcorp y el proveedor. Siendo Yobel únicamente un nexo entre la relación proveedor-cliente.
  • 40. 40 • La empresa Yobel interviene en la recepción de mercadería, recayendo en ellos la responsabilidad de realizar la verificación y control de calidad de los productos que los proveedores entregan. • Si la mercadería fue rechazada en proceso de control y verificación de calidad, la empresa Belcorp es quien da la última palabra para tomar las acciones necesarias ante la situación que se encuentre. Del mismo modo, es la que decide si desea dejar de contar con los servicios de algún proveedor, si este incumple numerosas veces las reglas de calidad en el producto pedido. • El procedimiento que se sigue cuando una mercadería es rechazada varía de acuerdo al tipo de proveedor, dado que Belcorp sólo posee 24 horas para la devolución de mercadería, según reglas exigidas por el proveedor. Estos procedimientos son: a. Proveedores Nacionales: se procede a sellar nuevamente la mercadería revisada y se comunica al proveedor, indicando que por fallas técnicas su mercadería será devuelta inmediatamente, luego de ello el proveedor tiene un periodo definido de tiempo para devolver dicha mercadería en las condiciones requeridas. b. Proveedores Extranjeros: se sella la mercadería y se marca para que luego sea enviada a los almacenes de Belcorp, debido a que al tratarse de proveedores extranjeros, la mercadería no puede ser enviada dentro de las 24 horas, por lo que Belcorp debe hacer un nuevo pedido al proveedor indicando lo sucedido, teniendo éste un plazo límite de tiempo para reenviar nueva mercadería en las condiciones requeridas. • La mercadería rechazada que no pudo ser devuelta al proveedor, termina siendo almacenada como inventario bloqueado, lo que significa que no podrá ser usada para la fabricación de ningún producto. Por este motivo, este tipo de mercadería permanece almacenada hasta pasar al proceso de disposición final.
  • 41. 41 En relación a los materiales plásticos, Belcorp posee como proveedores principales a las empresas Pieriplast, Proenfar, y Qualiplast. El trato con estas empresas es constante, debido a que campaña a campaña Belcorp desarrolla nuevos modelos y diseños para los envases que estos proveedores elaboraran. Se conoce que la empresa Belcorp diseña cada molde que los proveedores de envases plásticos usan, estos diseños pueden variar de campaña a campaña siguiendo las tendencias del mercado. Por lo que el proveedor debe adecuarse y realizar cada cambio solicitado por la empresa. Dentro de la evaluación a los proveedores de la empresa, se realizó una visita a la planta de fabricación de proveedor Pieriplast, ubicada en el distrito de San Juan de Lurigancho, Zárate. Esta empresa se especializa en la elaboración de envases plásticos para la industria cosmética y de perfumería; además de brindar sus servicios a Belcorp, también trabaja para Unique y Avon. En la planta de fabricación del proveedor, se pudo observar la tecnología especializada que usaba para el control de los procesos de inyectado y soplado de plástico, puesto que estos eran monitoreados por computadores sin la necesidad de contar con un operario a tiempo completo. b) FABRICACIÓN La empresa Belcorp es la responsable de la fabricación de casi todos los productos de sus catálogos, exceptuándose únicamente los accesorios, como artículos de vestir, joyas y todos los obsequios para incentivos de ventas, que son comprados hechos para luego agregarles una de las marcas de la compañía. De las dos plantas principales de Belcorp, se conoce que sólo la ubicada en Colombia está bajo el control directo de la empresa, mientras que la de Perú está subcontratada por otra empresa. Ambas cubren la demanda de consumo en otros países además de sus respectivos países de ubicación.
  • 42. 42 En el Cuadro 1 se muestra qué producto de los que comercializa Belcorp se fabrican bajo la subcontratada de Yobel. Cuadro 1: Productos que comercializa Belcorp PRODUCTO PROCEDENCIA YOBEL Otros L’BEL Productos de tratamiento facial X Fragancias X Maquillaje X Productos de tratamiento corporal X Productos de cuidado personal X Accesorios X ÉSIKA Maquillaje X Esmaltes para uñas X Fragancias X Accesorios X X Productos para el rostro y cuerpo X CYZONE Ropa de vestir X Accesorios X X Fragancias X Maquillaje X Productos para el rostro y cuerpo X Esmalte para uñas X FUENTE: Elaboración propia La procedencia “otros” que aparece en el cuadro anterior, indica para la marca L’bel, que el producto fue importado, debido a que la tecnología usada en la elaboración de estos productos sólo se encuentra en países como Francia, Italia y otros. Para el caso de
  • 43. 43 las marcas Ésika y CyZone, significa que los productos descritos son accesorios y ropa de vestir. Las principales características que se observaron en el proceso de fabricación utilizado por Belcorp, se describen a continuación: • Los cálculos y el control de cantidad de entrada de materia prima, suministros y productos terminados que deben salir, se llevan acabo en la casa matriz de la empresa. En este proceso el factor clave es la estimación de venta, la cual depende de la innovación y actualización permanente de cada producto. • La estimación de la cantidad total de productos a fabricar se da al inicio de cada periodo de producción. La cantidad propuesta debe prever el agotamiento del producto antes de cerrar la campaña de venta, por lo que se considera un número mayor al inicialmente calculado. • Durante la etapa de producción, la cantidad de productos que se van fabricando depende de las tazas actuales de ventas, puesto que cuando se tiene más stock11 de lo que realmente se está vendiendo se detiene automáticamente su fabricación hasta que este se agote. • Finalmente, la cantidad estimada de producción no es igual a la que realmente se fabrica, en la mayoría de casos la última es menor, hecho que genera la acumulación de los insumos que no fueron usados debido a que los proveedores entregan la misma cantidad que la estimada inicialmente. • La empresa maneja estadísticas de ventas hasta con un año que le permite gestionar la capacidad de fábrica, proveedores, centros de distribución y de transporte. • Los materiales que quedaron al final del proceso de producción pasan a ser almacenados hasta próximo aviso; es decir, hasta que la empresa se asegure de 11 Número de mercadería que en inventario aún se encuentra disponible para la venta.
  • 44. 44 que las ventas de los productos inactivos suban en el mercado, o, en caso contrario, hasta que pasen al proceso de disposición final en un relleno sanitario o de seguridad. Para entender mejor el proceso de fabricación, se tomó uno de los productos que mejor describía dicho proceso. En este caso, la producción de un perfume, que se describe a continuación: i. Control de Calidad: se inicia con la entrada de insumos y suministros que cubren la demanda para la fabricación de una cantidad X de perfumes, de acuerdo a una cantidad inicial estimada. Al tratarse de un perfume, los suministros (envases, empaques y etiquetas) se fabrican con anticipación y los insumos (alcohol y la esencia) se compran en el exterior (por ejemplo, Francia). Una vez llegados a las instalaciones de la planta, pasan a ser evaluados en una verificación de estándares de calidad, siempre altos en el caso de perfumes. Si son rechazados, la mercadería es inmediatamente devuelta al proveedor, si fuera el caso de uno nacional, o es llevada a almacenes de productos listos para su disposición final hasta su traslado, si el proveedor es internacional y no se le puede devolver el producto. Si pasan el control son llevados al proceso de fabricación. ii. Producción del bulk: es el contenido de todo producto fabricado. El alcohol y las esencias que pasaron el control de calidad son mezcladas en cantidades establecidas para formar un buen perfume. La mezcla se realiza en un lugar totalmente sellado y bajo normas de sanidad, ya que ningún olor extraño puede interferir en la determinación de la fragancia. iii. Envasado: luego de su elaboración, el bulk pasa a ser envasado con la ayuda de equipos electrónicos que controlan la cantidad exacta de volumen que debe contener cada envase. Antes de envasar todo el volumen fabricado, Yobel espera la confirmación de la cantidad final de productos terminados que Belcorp desea obtener, de acuerdo a los datos actuales de ventas. Luego del envasado se pasa a sellar cada perfume, procurando que su presión sea la adecuada como para que proteja el producto en el momento del transporte y almacenaje.
  • 45. 45 iv. Almacenaje y Transporte: luego de concluir la etapa de envasado, los productos terminados pasan a ser almacenados hasta ser distribuidos en los respectivos puntos de ventas nacionales e internacionales de Belcorp. Finalmente, los insumos y suministros que no llegaron a usarse en el proceso son llevados a los almacenes hasta nuevo aviso de inicio de producción por parte de Belcorp. La empresa Belcorp y Yobel hacen uso de una terminología especial para describir el ciclo de vida del producto, desde el planeamiento hasta la venta final a los consumidores. Esta terminología deriva de la codificación del SAP12 , la cual está debidamente dirigida y organizada por un sistema de información que engloba todas las operaciones de la empresa. En este programa se pueden visualizar cada uno de los productos terminados, insumos y suministros que posee Belcorp. El complejo sistema de codificación utilizado define el estado en el que se encuentra cada producto dentro de un contexto en tiempo real y es actualizado cada vez que se realiza una variación en la cantidad de inventario de un producto. La codificación mencionada se resume a continuación: • Estatus: este conjunto de códigos, muestra en qué etapa del “ciclo de vida del producto” se encuentra un producto específico, estos códigos se mencionan en el Cuadro 2: 12 SAP: Business Management Software Solutions Applications and Services, software usado en grandes compañías, que facilita el manejo de datos e inventaros dentro de la corporación que la use adecuadamente.
  • 46. 46 Cuadro 2: Codificación de inventarios según su Estatus CÓDIGO DESCRIPCIÓN AA (Antes de Aparecer) Producto nuevo, incluye productos terminados, insumos y suministros, antes de lanzarse al mercado. AC (Activos, productos de línea) Productos que están siendo vendidos en el mercado, que son comercialmente activos. DC/DA (Discontinuados para la venta por catálogo) Productos que están siendo comercializados, pero ya poseen una fecha exacta de discontinuación; es decir, que poseen una campaña ya programada para detener su venta. LQ/LP (Liquidación) Productos que se encuentran en “Remate”, es decir son comercializados en un catálogo de ofertas llamado “Expo ofertas”. XX (Destrucción): Aquellos productos que ya no se venden, que están inactivos definitivamente. Pasan a almacenamiento hasta que se realice la etapa de disposición final. FUENTE: Elaboración propia • Estados de Calidad: este conjunto de códigos muestra si el producto califica cualitativamente para ser comercializado sin temor alguno, y son descritos en el Cuadro 3: Cuadro 3: Codificación de inventarios según Estado de Calidad CÓDIGO DESCRIPCIÓN CC (Control de calidad) Significa que el producto se encuentra en inspección, que está pasando por exámenes específicos para comprobar su calidad antes de ser puesto en el mercado. LU (Libre Utilización) Estado en el que los productos fueron aprobados por control de calidad y pasan directamente a ser comercializados. DISC (Discontinua) Mercadería con bajo movimiento en el mercado, que posee un plazo específico de tiempo para detener su venta. BL (Bloqueado) Los productos están fuera de especificación, es decir no pueden ser comercializados por encontrarse con alguna mínima falla en él. FUENTE: Elaboración propia
  • 47. 47 De acuerdo a este software los datos que poseen los códigos XX y BL, son los que la empresa Belcorp considera como residuos sólidos, puesto que engloba los productos que la empresa finalmente debe deshacerse en el proceso de disposición final. Para la evaluación del sistema de reutilización de RSP, esta codificación indica los materiales que se disponen para su elaboración. La Figura 5, indica cómo los códigos explicados anteriormente proporcionan la información necesaria para conocer el ciclo de vida de un producto en Belcorp. Además, resalta qué mercadería puede utilizarse para la evaluación del sistema de reutilización. FUENTE: Belcorp – 2010 Nota: (Fechas negras: ciclo de vida normal, flechas rojas: inventarios que no han pasado CC y pasan directamente a BL y XX) Figura 5: Ciclo de vida de un producto de Belcorp La figura anterior muestra claramente sombreado de color verde claro la codificación del inventario que se usó en el presente estudio. Además de las diferentes rutas que puede tomar un producto en su ciclo de vida, que no siempre termina en una venta final
  • 48. 48 sino que por diferentes factores puede llegar a ser considerado residuo sólido a enviar al relleno de Portillo Grande. En la Figura 5, las flechas de color negro y rojo significan que un producto puede seguir dos tipos de ciclos de vida: • Dependiente del Mercado: las flechas negras describen el ciclo de vida que lleva un producto por influencia del mercado y las ventas. Se inicia con el nacimiento (AA) de un producto que sólo existe en planeamiento; es decir, antes de que salga al mercado. El crecimiento del producto en el mercado (AC) significa que se está vendiendo activamente. Luego de un periodo pasa a decaimiento (DC - DA) cuando disminuyen las ventas y se comercializan en catálogos de ofertas como productos con códigos LP- LQ. Finalmente, los productos que restan pasan a la fase de muerte (XX) del producto, que es cuando está inactivo, no se vende más y está listo para ser dispuesto. • Dependiente de otros factores: las flechas de color rojo demuestran como el mercado no es el único que determina la existencia del ciclo de vida de un producto; diversos factores como proveedores, almacenaje, transporte y distribución también generan un tipo de flujo distinto al explicado con las flechas negras. Existen cortes en puntos iniciales donde un producto puede ir directamente a la fase final del ciclo de vida, donde termina con codificación de inventario bloqueado (BL), y también debe pasar al proceso de disposición final. Al final de cada ciclo el conjunto de inventario con códigos XX y BL llega a formar la aglomeración de residuos sólidos que Belcorp acumula en sus almacenes hasta su disposición final. c) ALMACENAJE La empresa Belcorp posee en total cinco almacenes, cuatro de estos se alquilan a Yobel y se ubican cerca a las instalaciones de la planta de producción. De éstos cuatro, sólo uno se encuentra dentro de la misma planta; mientras que las demás se ubican a
  • 49. 49 pocas cuadras de la planta, específicamente en la urbanización industrial San Andrés, distrito de Los Olivos. El quinto almacén que resta, se ubica Zárate, distrito de San Juan del Lurigancho, siendo el único que pertenece directamente a la empresa Belcorp. Los productos cuya fabricación están bajo el control de la empresa Belcorp, se ubican en los almacenes alquilados a Yobel. Estos almacenes generalmente contienen productos terminados, insumos y suministros que provienen del proceso de fabricación. Por otro lado, los accesorios y ropa de vestir, que son adquiridos ya fabricados, se encuentran en el almacén de Zárate. Para facilitar el traslado y ubicación de productos dentro de cada almacén, la empresa Yobel, junto a Belcorp, maneja términos especiales (usados en SAP) para referirse a cada tipo de mercadería. Tal codificación difiere parcialmente a la descrita en el proceso de fabricación, puesto que se basa en el tipo de material y procedencia de fabricación, antes que en el ciclo de vida del producto. Por ello, en el sistema de almacenaje las codificaciones se dividen en dos: • Por tipo de material: clasificación que normalmente hace referencia a la procedencia de los productos, si fueron fabricados por Yobel o si provienen de terceros, como proveedores o tiendas externas. La codificación se muestra en el Cuadro 4.
  • 50. 50 Cuadro 4: Codificación clasificada por tipo de material CÓDIGO SIGNIFICADO MERC (Mercadería) Productos importados y nacionales que se adquieren ya fabricados, como carteras, mochilas, cuadernos, ropa, etc., brindados como ofertas por compras de productos de belleza y como incentivos para las consultoras de venta. PRTE (Producto Terminado) Son todos los productos que han concluido su proceso de fabricación. MPCL (Materia prima) Insumos que está siendo usado en la fabricación. ENEM (Envases) Incluye suministros como envases y empaques dados directamente por los proveedores. MPSL (Materia prima) Insumos recién adquirido que no está en uso BULK (Bulk) Incluye al contenido que se dispone en los envases, como cremas y las fragancias en líquido. PRSE (Productos semi-terminados) Productos que no han concluido con el proceso de fabricación. FUENTE: Elaboración propia • Por estado del material: Esta clasificación es igual a la mostrada en el proceso de fabricación, puesto que se refiere al Estado de Calidad de dicho producto. Por lo que esta codificación se ubica en el Cuadro 3. Cada almacén posee un nombre y posee características específicas de acuerdo al tipo de mercadería que en ellos se almacena. La Figura 6 muestra los cinco almacenes que posee la empresa Belcorp y el nombre que se le asigna a cada uno, él que suele estar directamente relacionado con el lugar donde se ubica.
  • 51. 51 FUENTE: Elaboración propia Figura 6: Almacenes de Belcorp Las características y tipos de inventarios que se encuentran en los almacenes mostrados en la Figura 6, se describen a continuación: i. San Andrés I: Contienen mercadería que posee codificación XX; es decir que está en espera del proceso de disposición final. No posee movimiento en el mercado desde hace más de dos años y tiene fecha de vencimiento ya caducada, o próxima a cumplirse. Al contener ese tipo de mercadería el almacén se encuentra al aire libre y todo material se ubica en cajas embaladas puestas directamente sobre el suelo. ii. San Andrés III: Contiene mercadería considerada en estado bloqueada (BL – código SAP) que posee hasta un año de almacenamiento. Estos productos son llevados al almacén por fallas en la presentación del producto, lo que imposibilita cualquier intento de venta; aun como producto en oferta la empresa no puede vender un producto con fallas notorias para el consumidor. La infraestructura del almacén tiene piso de concreto y posee techo, debido a que de tener techo abierto, la mercadería aún apta para el uso humano, correría riesgo de ser hurtada. San Andrés I (XX) ALMACENES San Andrés V PlantaSan Andrés III (BL) Zárate
  • 52. 52 iii. Planta: En este almacén se encuentran los insumos y materia prima de mayor prioridad para la fabricación de productos, por ello permanecen dentro de la planta porque la cercanía facilita y favorece la producción diaria. Las condiciones de almacenaje son las mejores que se puede encontrar en la fábrica de Yobel; sin embargo, existen casos, pese a las condiciones, de insumos dañados debido a la poca protección de las cajas donde los proveedores transportan y contienen los productos. También se puede encontrar productos recientemente pasados al estado BL (bloqueado). Estos permanecen en planta hasta que se los transporte al almacén que corresponde. Además se puede encontrar, aunque en poca cantidad, materiales de código DC – DA que deriva de Discontinuados (productos de bajo movimiento) y que al igual que la mercadería con código BL esperan ser trasladados al almacén que corresponda. iv. San Andrés V: Generalmente almacena productos terminados en estado LU (de libre utilización) y que poseen como destino final las grandes tiendas, distribuidoras y consultoras de belleza (donde se realizan venta personalizada por catálogo). Por otro lado, también almacena productos en estado DC- DA (productos de bajo movimiento) y LQ (Liquidación). Al contener productos que aún son comercializados por la empresa, posee una infraestructura con piso y techo que ofrece un buen ambiente para evitar el deterioro de esta mercadería. v. Almacén Zárate: Posee mercadería con código MERC (mercadería), que corresponde a inventarios que se ofrecen en los catálogos como regalo o incentivo de compra de los productos de belleza. También son usados para premiar a aquellas
  • 53. 53 consultoras de belleza que lograron alcanzar el record máximo de ventas campaña a campaña. Para la evaluación llevada a cabo en el presente estudio se tuvo en cuenta los almacenes San Andrés I y III, que contienen los materiales para disposición final (XX) y los de estado BL, es decir, los inventarios que llegan a convertirse en residuos sólidos listos para ser procesados en el sistema de disposición final que utiliza la empresa. Debido a que la cantidad de inventario en los almacenes varía de periodo en periodo, en la evaluación del sistema de reutilización de RSP se tomó la cantidad total de materiales con códigos XX, BL y ENEM al tiempo que se realizó este estudio, siendo este el 22 de Febrero de 2010. Esta misma fecha la empresa Belcorp proporcionó los siguientes diagramas, para ser evaluados en el presente estudio, estos se encuentran en las Figuras 7 y 8. FUENTE: Belcorp – 2010 Figura 7: Inventario disponible para la evaluación al 22/02/10 La figura anterior muestra la cantidad total de envases (ENEM) que se encuentran en los almacenes de San Andrés (I, III) con el código BL y XX, que según la figura, es el inventario con mayor proporción, pues abarca el 48.23 % del total en soles. La empresa posee 3 192 105, 463 soles en material no apto para la venta y que pueden pasar al proceso de disposición final, pero si útiles para la propuesta del sistema de reutilización de RSP.
  • 54. 54 Del dato anterior, se debe conocer qué cantidad de total corresponden a productos plásticos únicamente, por lo que en la Figura 8, se señala el inventario con código ENEM subdividido en tipos de material, esta es mostrada a continuación: FUENTE: Belcorp – 2010 Figura 8: Inventario de envases plásticos obsoletos en soles al 22/02/10 La figura anterior indica, que del total de envases que se disponen para la evaluación del sistema de reutilización, se cuenta con S/. 1 513 727.48 en materiales plásticos, y que representa el 47.42 % del total. Es decir, casi la mitad del inventario ENEM de los almacenes San Andrés I y III es plástico, lo que demuestra que la empresa genera predominantemente RSP en su proceso de comercialización y ciclo de vida de sus productos. d) DISPOSICIÓN FINAL El sistema de disposición final de residuos que realiza la empresa Belcorp, se lleva a cabo mensualmente, este consiste en la aplicación de la tecnología de relleno Sanitario y de Seguridad, para los residuos no peligrosos y peligrosos respectivamente, para ello se subcontrata los servicios de la empresa Relima.
  • 55. 55 El proceso de disposición final utilizado, incluye la destrucción de todos los residuos antes de ser dispuestos en cada relleno, del mismo modo para la realización del mismo se sigue una serie de pasos que son descritos a continuación: i. Reporte En esta fase la empresa Yobel, hace llegar a Belcorp un informe de calidad elaborado por un Ingeniero Industrial responsable de la verificación de productos. En el reporte se indican los productos rechazados en el proceso de Control de Calidad, y que no pudieron ser devueltos a su respectivo proveedor. Dentro del conjunto de productos rechazados se pueden encontrar tanto productos terminados, como insumos y materias primas. ii. Almacenaje Luego de que Belcorp realiza la aprobación y verificación del reporte de calidad, se verifica la veracidad de los datos en la misma planta. Inmediatamente después los productos son llevados al almacén, que por estado y características les corresponde. En este caso resulta competencia del almacén San Andrés III por tratarse de inventario con código BL, correspondiente a productos con fallas que no pueden ser vendidos de ningún modo. iii. Cuantificación Los trabajadores de Belcorp que laboran en la planta de fabricación de Yobel, reciben cada mes un informe procedente del área contable. En dicho informe se indica la cantidad de mercadería en unidades monetarias (dólares) que se va destruir, este puede ascender hasta tres mil por mes. El dato es dado en unidades monetarias puesto que por flujo de caja la empresa no puede eliminar todos los materiales obsoletos acumulados en un solo mes; debido a que cada material, en unidad, posee un valor monetario de producción por el cual Belcorp ya se hizo cargo.
  • 56. 56 Por ello, de acuerdo a las ventas y la solvencia de la empresa en cada mes se establece una cantidad aproximada de dinero en la que se ve reflejada la cantidad de mercadería que puede ser destruida, de tal modo que no exista la posibilidad de desestabilizar el equilibrio del flujo de caja, que equivaldría a destruir activos que aún sostienen la económica de la empresa. Una vez seleccionados los productos de los almacenes San Andrés I y San Andrés III, que en sumatoria llegan a formar la cantidad de dólares a disponer en dicho mes, son separados y agrupados en un sector específico del primer almacén, por medio de un cerco de mayas de metal, de modo que podrán ser reconocidos el día que se realice su transporte al relleno de Relima. iv. Selección Luego de separar la cantidad de residuos sólidos a destruir en cada mes, trabajadores de Belcorp se dirigen al almacén San Andrés I días antes del transporte al relleno. Durante su permanencia en el almacén realizan una selección del conjunto, dividiéndolo en productos terminados más insumos (materias primas) y suministros, de los envases y empaques. La selección se realiza antes del transporte de residuos sólidos al relleno, debido a que los envases y empaques ya separados son vendidos a pequeños micro- recicladores según su interés. De esa forma se logra, aunque en medida minúscula, recuperar parte del dinero que se invirtió en la producción de dicha mercadería. v. Comercialización de los residuos sólidos reciclables Para la venta de los residuos sólidos reciclables, se reúnen en el almacén San Andrés I representantes de la empresa Belcorp y Yobel, un notario público, un representante de la Sunat, y los micro recicladores convocados. El proceso inicia con la completa destrucción de la marca impresa de los envases, cajas y tapas que se van ha comercializar. Para ello, en el caso de los productos plásticos y vidrios, se hace uso de una máquina de moler que reduce el
  • 57. 57 producto a pequeños pedazos; mientras que para los productos de papel se utiliza una máquina cortadora. Luego, cada reciclador se encarga de recolectar la cantidad en kilogramos por la que ha pagado y se retira del establecimiento. Más tarde los aún reunidos firman un acta para constatar el termino de la actividad realizada y volver a sus labores. Los envases y empaques reciclables que no pudieron ser comercializados son mezclados nuevamente con los demás productos para ser llevados al relleno de Relima un día después. vi. Transporte de los residuos sólidos Llegada la fecha de destrucción y disposición final de los residuos sólidos, Belcorp contrata dos tipos de camiones para transportar los residuos. Un camión convencional transporta residuos no peligrosos como productos terminados, envases, etiquetas y empaques. Mientras, que un conteiner especial transporta los residuos peligrosos que son materias primas inflamables como esencias en base a alcohol. Los residuos peligrosos se ubican en grandes envases de PVC fáciles de llevar, mientras los residuos no peligrosos, se extraen de las cajas donde están ubicados, para lograr transportar mayor volumen con menos camiones. Además las cajas que se dejan son compactadas y comercializadas del mismo modo que los envases y empaques. Al finalizar la carga del inventario a destruir, se reúnen representantes de la empresa Yobel y Belcorp, para presentar la ficha de salida de todos los materiales que están siendo transportados, quienes a su vez acompañan a cada conductor de los camiones, por el trayecto hacia Lurín, donde se ubican los rellenos.