Publicité
Publicité

Contenu connexe

Publicité

CONCEPTOS FUNDAMENTALES MECANICA MATERIALES.ppt

  1. www.ppt5u.com A V A N Z A D A
  2. www.ppt5u.com Iván de Jesús López Sánchez José Antonio Morales García Jaime Emilio Espíndola Tirado
  3. www.ppt5u.com Entendamos un poco sobre
  4. www.ppt5u.com Deformaciones Unitarias El objetivo principal de la mecánica de materiales radica en determinar los esfuerzos, deformaciones unitarias y desplazamientos en las estructuras y sus componentes, causadas a las cargas que actúan sobre ellas. Tipos de Esfuerzos Tipos de desplazamiento OBJETIVO
  5. www.ppt5u.com La mecánica es una ciencia física puesto que estudia fenómenos físicos, sin embargo algunos lo relacionan con las matemáticas mientras que otros lo consideran como un tema de ingeniería, ambos puntos de vista se justifican parcialmente.
  6. www.ppt5u.com La mecánica se divide en tres partes La Mecánica de Cuerpos Rígidos La Mecánica de Cuerpos Deformables La Mecánica de Fluidos
  7. www.ppt5u.com La mecánica de un cuerpo rígido es aquella que estudia el movimiento y equilibrio de sólidos materiales ignorando sus deformaciones. Se trata, por tanto, de un modelo matemático útil para estudiar una parte de la mecánica de sólidos, ya que todos los sólidos reales son deformables En esta parte del estudio de la mecánica los cuerpos son perfectamente rígidos por lo que se divide en:
  8. www.ppt5u.com Las estructuras y maquinas reales no son absolutamente rígidas, estas se deforman por la acción de las cargas a las que son sometidas, las deformaciones suelen ser pequeñas y normalmente no afectan las condiciones de equilibrio o movimiento de las estructura.
  9. www.ppt5u.com La mecánica de fluidos es la rama de la física comprendida dentro de la mecánica de medios continuos que estudia el movimiento de los fluidos, así como las fuerzas que lo provocan. Se subdivide dos tipos de fluidos: * Compresibles * Incompresibles
  10. www.ppt5u.com Estos conceptos no puede ser definidos en forma exacta deben aceptarse sobre las bases de nuestra intuición y experiencia, para poder emplearse como un marco de referencia mental en el estudio de la mecánica.
  11. www.ppt5u.com Representa la acción de un cuerpo sobre otro y puede ejercerse por contacto real o a distancia como en el caso de las fuerzas gravitacionales y magnética El espacio físico es el lugar donde se encuentran los objetos y en el que los eventos que ocurren tienen una posición y dirección relativas. Conceptos básicos Espacio Tiempo Fuerza Masa Es una magnitud que sirve para medir la duración y separación de uno o más acontecimientos. Tiene la función de caracterizar y comparara los cuerpos con base en ciertos experimentos mecánicos fundamentales.
  12. www.ppt5u.com La mecánica de materiales es una rama de la mecánica aplicada que trata del comportamiento de los cuerpos sólidos sometidos a diversas cargas. Para entender bien estos conceptos fundamentales de la mecánica de materiales, podemos hacer un recorrido a los principios que le dieron lugar, iniciando con el “Principio de la relatividad de Galileo”. El cual establece que: “Dos sistemas de referencia en movimiento relativo de traslación rectilínea uniforme son equivalentes desde el punto de vista mecánico; es decir, los experimentos mecánicos se desarrollan de igual manera en ambos, y las leyes de la mecánica son las mismas”.
  13. www.ppt5u.com .
  14. www.ppt5u.com Las leyes de Newton constituyen el primer intento de formular una base axiomática para una teoría científica de la mecánica. Primera Ley de Newton (Esta ley constituye el llamado principio de la inercia). Segunda Ley de Newton (Se denomina en ocasiones ley fundamental de la dinámica). Tercera Ley de Newton (Se trata del llamado principio de acción y reacción).” El principio de estas 3 leyes ayudaron a surgir las teorías principales de la Mecánica.
  15. www.ppt5u.com Teorías principales de la mecánica existentes en la actualidad
  16. www.ppt5u.com Si las predicciones teóricas se corresponden adecuadamente con las observaciones experimentales, la teoría será adecuada, independientemente de su «elegancia» matemática. Por el contrario, si los resultados no se corresponden con las observaciones, llegaremos a la conclusión de que se precisa otra teoría distinta para el fenómeno en cuestión. Así, las tres teorías principales de la mecánica existentes en la actualidad son: Mecánica Clásica Mecánica de los Medios Continuos Mecánica Relativista Mecánica Cuántica
  17. www.ppt5u.com TEORIAS DE LA MECANICA DE MATERIALES Mecánica Clásica Mecánica Relativista Cuyo desarrollo moderno se considera generalmente iniciado por Isaac Newton, y a continuado con su desarrollo durante el siglo XX y hasta nuestros días por diversos matemáticos y científicos como: Juan, Daniel y Jacobo Bernouilli, L. Euler, J. D’Alembert, J.L. Lagrange, W. Hamilton, etc. Que suple la inexactitud de la mecánica clásica para velocidades próximas a la de la luz (teoría de la relatividad restringida) o para campos gravitatorios muy intensos (teoría de la relatividad generalizada). Ha sido propuesta por Albert Einstein, e involucra una complejidad matemática notablemente mayor, actualmente nos sirve para explicar todo el universo, la distribución de estrellas y planetas. Es un punto fundamental en la física nuclear, con la famosa ecuación E=mc2,
  18. www.ppt5u.com TEORIAS DE LA MECANICA DE MATERIALES Surge de las observaciones de las partículas elementales, en las que intervienen acciones — productos de energía por tiempoEn la actualidad ha habido un resurgimiento de la mecánica cuántica debido a avances experimentales que han permitido controlar y medir sistemas únicos. Experimentos, que fueron concebidos como experimentos mentales, se han podido realizar y han confirmado, sin excepción, todas las extrañas predicciones de la mecánica cuántica. Los modelos más simples de la MMC son la teoría de la elasticidad lineal y la de los fluidos newtonianos, permitiendo estudiar respectivamente la deformación de los sólidos elásticos y las estructuras en régimen lineal y el flujo de los fluidos. Recientemente, se han propuesto modelos más generales para comportamientos no lineales, así como métodos y algoritmos muy potentes para su resolución numérica mediante programas computacionales (método de los elementos finitos). Mecánica de los Medios Continuos Mecánica Cuántica
  19. www.ppt5u.com Es necesario también una investigación experimental constante para conocer las propiedades mecánicas de los nuevos materiales o incluso de los tradicionales, ya que algunos como el hormigón o los suelos son todavía insuficientemente conocidos. Seguiremos recordando que la mecánica de los materiales realiza el estudio de los cuerpos deformables y es la rama que trata la selección de los mismos con las propiedades adecuadas para soportar las cargas y/o fuerzas que le son proyectadas sin que ocurra pérdida de su integridad.
  20. www.ppt5u.com FUERZAS EN LA MECANICA DE MATERIALES Estas cargas generan en el cuerpo deformable fuerzas en el interior de un elemento como un reordenamiento de sus partículas para contrarrestar las fuerzas externas que actúan sobre la misma manteniendo su integridad. las fuerzas pueden ser:
  21. www.ppt5u.com FUERZAS EN LA MECANICA DE MATERIALES INTERNAS Se generan en las partes componentes de un cuerpo y tienen su origen en la atracción molecular no presentando manifestación exterior. EXTERNAS Son las que actúan sobre el cuerpo y producen alteraciones en su estado de reposo.
  22. www.ppt5u.com FUERZAS EN LA MECANICA DE MATERIALES EXTERNAS ACTIVAS REACTIVAS RAZONAMIENTO Pueden actuar en forma permanente o en intervalos de tiempo con dirección e intensidad constante o variable. También llamadas fuerzas de vínculo o reacciones, se presentan sólo cuando el cuerpo accionado por fuerzas activas tiende a desplazarse según direcciones determinadas a las que los vínculos se oponen. Se llama vínculo a toda sujeción que limita los desplazamientos posibles de un cuerpo. Son las que se oponen al movimiento de un cuerpo.
  23. www.ppt5u.com FUERZAS EN LA MECANICA DE MATERIALES EXTERNAS ACTIVAS REACTIVAS RAZONAMIENTO Pueden actuar en forma permanente o en intervalos de tiempo con dirección e intensidad constante o variable. También llamadas fuerzas de vínculo o reacciones, se presentan sólo cuando el cuerpo accionado por fuerzas activas tiende a desplazarse según direcciones determinadas a las que los vínculos se oponen. Se llama vínculo a toda sujeción que limita los desplazamientos posibles de un cuerpo. Son las que se oponen al movimiento de un cuerpo.
  24. www.ppt5u.com Hipótesis de cálculo (EJERCICIO)
  25. www.ppt5u.com Esfuerzos Internos en una Viga de Eje Recto: • Pretendemos analizar cuáles son los esfuerzos que se presenta en una viga de eje recto sometida a un estado general de cargas coplanarias, contenidas en un plano ɑ que contiene al eje de la misma. De la misma forma en que lo hicimos para un cuerpo cualquiera imaginemos cortar a la viga en una sección transversal por un plano β perpendicular a su eje. Queda la viga dividida en dos porciones, aislamos uno de los tramos por ejemplo el de la derecha. Para que se alcance el equilibrio la resultante de las fuerzas externas del tramo debe ser equilibrada por la resultante de fuerzas internas que los átomos pertenecientes al otro tramo y vecinos al plano seccionante generan sobre los átomos próximos que se encuentran en la sección de la porción aislada, o sea que la resultante de fuerzas internas debe tener la misma recta de acción, la misma magnitud y sentido contrario a la resultante de fuerzas externas de la derecha como se ve en la figura:
  26. www.ppt5u.com Como en el caso general aplicamos algunos principios de la estática: descomponemos la Rfint en sus dos componentes rectangulares N y Q, en las direcciones normal y tangencial al plano β, en el punto de intersección de dicha resultante con el plano. Debemos destacar que, debido a que las fuerzas externas actúan en un plano que contiene al eje de la viga, la fuerza Q tiene su recta de acción pasante por el baricentro de la sección transversal considerada. Agregamos en el baricentro de la sección dos fuerzas iguales y contrarias que tienen la misma intensidad y dirección que la fuerza N. nos quedan definidos entonces, los siguientes esfuerzos: Es de destacar la ausencia de momento torsor debido a la actuación de las cargas externas en el plano α, generando una distancia d2 = 0 entre la dirección de Q y el centro de gravedad. Podemos observar que la resultante de fuerzas externas será distinta según sea la sección considerada, por lo que podemos concluir que los esfuerzos internos también serán distintos a lo largo del eje de la viga y nos interesara conocer esta variación para poder llegar a determinar los valores máximos que puedan alcanzar para luego proceder al dimensionamiento o verificación de la sección. Nos interesa ahora ver como relacionamos los esfuerzos internos con las cargas externas aplicadas, que serán el único dato con el que contaremos para realizar un problema particular. Dado que una viga, es un cuerpo, cuya dimensión longitudinal es mucho más importante con relación a sus otras dos dimensiones fundamentales, puede considerarse que las fuerzas externas están aplicadas en puntos de su eje y en adelante la representaremos sólo por el mismo. Esfuerzos Internos en una Viga de Eje Recto:
  27. www.ppt5u.com • Esfuerzo Normal: Generado por la fuerza N’ aplicada en el baricentro de la sección. • Esfuerzo de Corte: Generado por la fuerza Q. • Esfuerzo de Flexión: Generado por la cúpla de fuerzas N y N’’ y separadas una distancia d1. Esfuerzos Internos en una Viga de Eje Recto:
  28. www.ppt5u.com Dijimos que al actuar las cargas externas los vínculos reaccionaban quedando todo el sistema en equilibrio, por lo cual podemos asegurar que la resultante de fuerzas externas (activas y reactivas) de la izquierda se equilibra con; la resultante de las fuerzas externas (activas y reactivas) de la derecha de la sección (Rfder). Pero también habíamos dicho que la Rfder, se equilibraba con la Rfint de lo que resulta que la Rfint es igual a la resultante de fuerzas externas aplicadas a la izquierda de la sección. Podemos decir entonces que: La intensidad del esfuerzo normal N coincide con la proyección de la resultante de fuerzas externas de la izquierda de la sección, sobre un eje de igual dirección que el viaje de la viga. La intensidad del esfuerzo de corte Q coincide con la proyección de la resultante de fuerzas externas de la izquierda de la sección, sobre el eje tangencial a la sección transversal de la viga. La intensidad del momento flector será el momento estático de la resultante de fuerzas de la izquierda de la sección, respecto al baricentro de la misma.
  29. www.ppt5u.com Por otro lado, si recordamos de estática que la proyección sobre un eje de la resultante de un sistema de fuerzas, es igual a la suma algebraica de las proyecciones sobre el mismo eje de todas las fuerzas componentes del sistema y que el momento estático de la resultante de un sistema de fuerzas, con respecto a un punto, es igual a la suma algebraica de los momentos estáticos de todas las fuerzas componentes del sistema respecto del mismo centro, podemos calcular los esfuerzos internos como: Normal: Suma algebraica de las proyecciones sobre el eje de la viga de todas las fuerzas externas, activas y reactivas, que se encuentran aplicadas a la izquierda de la sección considerada. Corte: Suma algebraica de las proyecciones sobre el eje tangencial a la sección transversal de la viga, de todas las fuerzas externas activas y reactivas, que se encuentran aplicadas a la izquierda de la sección considerada. Momento flector: Suma algebraica de los momentos estáticos, con respecto al centro de gravedad de la sección de todas las fuerzas externas, activas y reactivas, que se encuentran aplicadas a la izquierda de la sección considerada.
  30. www.ppt5u.com Si hubiéramos considerado el equilibrio del tramo de la viga situado a la izquierda de la sección, la resultante de las fuerzas internas hubiera tenido igual dirección y magnitud, difiriendo únicamente en el sentido por tratarse de fuerzas de interacción entre las partículas del material, entonces el procedimiento indicado para calcular los esfuerzos internos puede aplicárselo indistintamente considerando todas las fuerzas que están a la izquierda de la sección o bien considerando las fuerzas que están a la derecha de la misma teniendo que analizar en cada caso el sentido correspondiente (es decir que analizando por un lado o por el otro la magnitud del esfuerzo es la misma). Para analizar el signo de los esfuerzos internos, consideramos un elemento de viga situado entre dos secciones rectas adyacentes y tomaremos por convención los signos que indican en la figura: El esfuerzo normal será positivo cuando se trate de un esfuerzo de tracción. El esfuerzo de corte será positivo, cuando tenga un sentido horario de rotación respecto de un punto interior del cuerpo libre. El momento flector será positivo cuando produzca la tracción de las fibras inferiores y la compresión de las fibras superiores.
  31. www.ppt5u.com Si consideramos el cuerpo constituido por pequeñas partículas, la fuerza peso será la resultante de todas las fuerzas peso de cada una de las partículas componentes, originadas por la acción gravitatoria que ejerce la tierra. Podemos aceptar que todas estas fuerzas constituyen un sistema de fuerzas paralelas, de dirección vertical y con sentido hacia el centro de la tierra. Luego para determinar la posición del centro de gravedad del cuerpo, será suficiente fijar la recta de acción de la fuerza peso para dos posiciones diferentes del mismo; el punto de intersección de dichas rectas será el Centro de Gravedad buscado. En general para construcciones siempre podemos realizar una descomposición con figuras geométricas simples cuya área y baricentro son conocidos y cuya unión forma exactamente la superficie dada, razón por la cual podemos descartar el cálculo integral y utilizar las expresiones obtenidas a partir de la sumatoria. Debemos recordar también que existen tablas que nos brindan las fórmulas de las áreas y la posición del baricentro de figuras simples.
  32. www.ppt5u.com Muchas veces no encontramos con vigas o ejes que sometidos a determinadas cargas se deforman motivando el giro de sus secciones transversales alrededor de un eje, (tal como es el caso de una viga flexionada) o alrededor de un punto (torsiónada). •Momento de Inercia de una superficie plana: • Vamos entonces a definir como momento de inercia de la sección transversal a la característica técnica de la misma que nos da una idea de la mayor o menor resistencia que opone la sección a girar alrededor de un eje. • Para una superficie cualquiera, seria de la siguiente manera: Ixx = y2 A De esta definición surge que el momento de inercia depende del eje considerado y de la forma y dimensiones de la sección. Podemos observar además que se necesita el cálculo integral, pero al igual que lo que hemos expresado en el caso de baricentro, acá también podemos decir que existen tablas y manuales que nos permiten obtener los momentos de inercia respecto de los ejes baricéntricos para distintas secciones simples.
  33. www.ppt5u.com Analicemos una viga simplemente apoyada en sus extremos y consideremos que se resuelve con la misma sección rectangular pero colocada en dos posiciones diferentes: La inersia respecto a los ejes barientricos será: •Ixx= (b x h3)/12 •Iyy = (b x h3)/12
  34. www.ppt5u.com Dado que el momento de inercia de una superficie es una medida de la resistencia al giro que es capaz de oponer la sección, podemos decir que, si se trata de una sección compuesta, el momento de inercia está determinado por la suma algebraica de los momentos de inercia de las superficies que la componen, respecto del eje de giro. Como los momentos de inercia de las secciones simples que vienen expresados en los distintos manuales se refieren a los ejes baricéntricos surge la necesidad de calcular el momento de inercia de una superficie respecto a distintos ejes paralelos a los ejes baricéntricos.
  35. www.ppt5u.com Momento estático de una sección: De la misma manera que el momento de Inercia, el momento estático es una característica geométrica de la sección referida a un eje. Si tomamos como referencia el eje baricéntrico, podemos expresarlo como el producto entre el área de uno de los sectores en los queda subdividida la pieza por la distancia entre el baricentro de dicha área y el centro de gravedad de toda la sección. Sxx = A x d
  36. www.ppt5u.com Momento o Módulo resistente de una sección: Siguiendo con las características de las secciones podemos definir el Momento o Módulo Resistente como la razón de la Inercia de una sección respecto al Eje baricéntrico y la distancia de dicho eje a las fibras más alejadas de la sección. Se lo denomina como Wnn, siendo: Wxx = Ixx / Ymax para el eje X-X baricéntrico Wyy = Iyy / xmax para el eje Y-Y baricéntrico Si analizamos una sección rectangular, considerando que su Inercia respecto al eje X-X es: Ixx = (b x h3)/12 y teniendo en cuenta la definición de Módulo Resistente y que el Ymax = h / 2:
  37. www.ppt5u.com Wyy = ((b x h3)/12) / (h / 2) con lo que resulta simplificando la ecuación: Wyy = (b x h2)/6 Con lo anterior, debemos tomar muy en cuenta los conceptos de: • Tensión. • Coeficientes de seguridad (tensión simple). • Esfuerzo normal (tracción, compresión y cortante). Las cuales derivan en las principales Leyes de la mecánica de materiales.
  38. www.ppt5u.com La mecánica se refiere a aquello relativo y vinculado a las maquinas que se acciona a través de un mecanismo o que se realiza a través de una máquina, también sobre la mecánica del movimiento que es el fenómeno físico que se define como todo cambio de posición en el espacio que experimentan los cuerpos de un sistema con respecto a esos mismos o a otro cuerpo que se toma como referencia y al final concluimos con los conceptos fundamentales de la mecánica que son de trayectoria, rapidez, distancia, tiempo, fuerza, masa. Etc. SOBRE LA MECANICA
  39. www.ppt5u.com Algunos profesionales de la ingeniería tales como el ingeniero civil, el ingeniero mecánico, el ingeniero estructural y el ingeniero aeronáutico entre otros, necesitan conocimientos de mecánica básicos que les permitan determinar la resistencia y el desempeño físico de elementos con los cuales puedan llevar a cabo el análisis y diseño adecuado de diferentes sistemas estructurales. Un modelo de resistencia de materiales establece una relación entre las fuerzas aplicadas, también llamadas cargas o acciones, y los esfuerzos y desplazamientos inducidos por ellas. Generalmente las simplificaciones geométricas y las restricciones impuestas sobre el modo de aplicación de las cargas hacen que el campo de deformaciones y tensiones sean sencillos de calcular. Para el diseño mecánico de elementos con geometrías complicadas la resistencia de materiales suele ser abundante y es necesario usar técnicas basadas en la teoría de la elasticidad o la mecánica de sólidos deformables más generales. Esos problemas planteados en términos de tensiones y deformaciones pueden entonces ser resueltos de forma muy aproximada con métodos numéricos como el análisis por elementos finitos. SOBRE MECANICA DE MATERIALES
  40. www.ppt5u.com A V A N Z A D A ¡GRACIAS POR SU ATENCIÓN!
Publicité