SlideShare une entreprise Scribd logo
1  sur  5
Télécharger pour lire hors ligne
Communications
       Natural Products Synthesis

      The Total Synthesis of the Annonaceous
      Acetogenin 10-Hydroxyasimicin**

      Gillian L. Nattrass, Elena Díez,
      Matthew M. McLachlan, Darren J. Dixon, and
                                                                             tether that could temporarily link two BDA-protected
      Steven V. Ley*
                                                                             alkenol building blocks 2 (BDA = 2,3-butanediacetal) of, in
                                                                             principle, any desired stereochemical arrangement.[12] The
      The annonaceous acetogenins comprise a class of almost 400             tether could then induce stereocontrol during the critical ring-
      natural products that exhibit a remarkably broad spectrum of           closing metathesis (RCM) to give compound 3.[13] Subsequent
      biological activity. They function as insecticides, fungicides,        Sharpless asymmetric dihydroxylation and chemoselective
      herbicides, and, perhaps most importantly, in vivo antitumor           cleavage of the tether would afford 4.[14] Intramolecular
      agents and have been shown to overcome resistance in                   displacement by the unmasked hydroxy groups of the
      multidrug-resistant tumors.[1] Structurally, the acetogenins are       desymmetrized bistosylate 4 would yield the bis-THF unit 5.
      characterized by a long lipophilic tail, a central polyoxy-            Late-stage Sonogashira coupling of the terminal alkyne 6 and
      genated core, and a terminal a,b-unsaturated g-lactone. The            the butenolide 7 (constructed through a hetero-Diels–Alder
      structural diversity in this family arises principally from            (HDA) reaction to install the 1,5-stereochemical relationship
      variations in the stereochemistry and connectivity of the              and mask the butenolide double bond simultaneously, as
      polyoxygenated central core, which can consist of one or more          reported in our synthesis of muricatetrocin C)[10] would
      tetrahydrofuranyl (THF) rings or, occasionally, a tetra-
      hydropyranyl (THP) ring with various patterns of
      hydroxylation. These variations and the stereochemical
      consequences give rise to an impressive molecular
      diversity within the family. Owing to their biological
      activity and limited availability from natural sources,
      these compounds have attracted worldwide attention
      and have become the targets for total synthesis for a
      number of research groups,[2–9] including our own.[10]
      The majority of publications to date have focused on
      the synthesis of individual members of the family that
      suit a particular reaction type or stereochemical out-
      come. Motivated by the bioactivity of the annonaceous
      acetogenins, we embarked on a project to develop a
      more general route that utilizes an orthogonal and
      modular templating approach to provide access to many
      members in the series. Herein we describe the first
      successful synthesis of 10-hydroxyasimicin (1),[11] which
      contains a bis-THF motif in the central core.
          The crucial component in the synthesis of any of
      these natural products is the stereoselective preparation
      of the polyoxygenated central fragment. 10-Hydroxya-
      simicin bears adjacent bis-THF rings flanked by two
      hydroxy groups with a threo,trans,threo,trans,threo ster-
      eochemistry. Our synthetic strategy to this oxygenated        Scheme 1. Proposed synthetic route to 10-hydroxyasimicin (1). Ts = p-toluene-
      arrangements (Scheme 1) hinged upon the design of a           sulfonyl, MOM = methoxymethyl.


       [*] G. L. Nattrass, E. Díez, M. M. McLachlan, D. J. Dixon,
           Prof. Dr. S. V. Ley                                               complete the carbon skeleton. Finally, selective hydrogena-
           Department of Chemistry                                           tion and global deprotection would furnish the natural
           University of Cambridge                                           product 1 (Scheme 1).
           Lensfield Road, Cambridge, CB2 1EW (UK)                               Synthesis of fragment 2 began from (S,S)-dimethyl-d-
           Fax: (+ 44) 1223-336-442
                                                                             tartrate, which was readily converted into the monoprotected
           E-mail: svl1000@cam.ac.uk
                                                                             diol 8 in three steps according to a previously established
      [**] We thank the Commonwealth Scholarship Commission in the
                                                                             procedure (Scheme 2).[12] Subsequent tosylation of 8 and
           United Kingdom for funding (G.L.N.), the EU for a Marie Curie
           Fellowship (E.D.), GlaxoSmithKline (M.M.M.), Novartis for a       treatment of the corresponding tosyl derivative with allyl-
           research fellowship (S.V.L.), and Pfizer Global Research and      magnesium bromide in the presence of CuBr afforded 2 in
           Development for unrestricted funding towards the work.            multigram quantities after deprotection with TBAF.

580    2005 Wiley-VCH Verlag GmbH  Co. KGaA, Weinheim             DOI: 10.1002/anie.200462264                Angew. Chem. Int. Ed. 2005, 44, 580 –584
Angewandte
                                                                                                                                                    Chemie


                                                                                     tion with phosphonate 15, which afforded an
                                                                                     E,E diene exclusively.[20] Exhaustive reduction of the
                                                                                     E,E diene with the Pearlman catalyst then afforded
                                                                                     saturated ester 12 in 94 % yield (Scheme 4). To
                                                                                     generate the last stereocenter, further chain extension
Scheme 2. Synthesis of alkenol 2. a) Reference [12]; b) NEt3, TsCl, DMAP,
CH2Cl2, 1.5 h, room temperature, 99 %; c) allylMgBr, CuBr, Et2O, 8 h, 0 8C,          to propargylic ketone 13 was required. To this end
84 %; d) TBAF, THF, 5 h, 0 8C, 100 %. DMAP = 4-(dimethylamino)pyridine,              ketone 13 was obtained by conversion of the saturated
TBAF = tetrabutylammonium fluoride.                                                  ester into the Weinreb amide,[21] which was then


    The next step in the synthesis involved the development
of a suitable template to link the two alkenol molecules
together in order to proceed with an intramolecular meta-
thesis reaction. As mentioned earlier, we required a tether-
ing unit that could adjust the conformation of the macro-
cycle to control the stereoselectivity during the RCM
reaction.[13] The chosen tethering template should behave as
a “molecular workbench” and help orientate the olefin so
that one face is preferentially available for attack during a
syn-stereoselective dihydroxylation reaction.[14] Further-
more, the tether would play the role of a protecting group
upon cleavage of the macrocycle to enable desymmetriza-
tion of the core. Hence the unit had to be dissymmetric to
allow orthogonal cleavage upon completion of the dihy-
droxylation. On top of this, a dissymmetric tethering unit
would enable us to attach different BDA-protected alkenol
units sequentially to produce acetogenins with alternative
stereochemistries at the core.[15] To put these concepts into
effect, a differentiated arene with orthogonal substituents
was chosen, as we could fine-tune the macrocycle ring size
simply by varying the substitution pattern of the aryl
system. 4-Bromomethylbenzoyl chloride was found to give
the best results and was used in all subsequent investiga-
tions.[16]
                                                                          Scheme 3. Synthesis of bis-THF framework 5. a) KHMDS, THF, 5 h, À78!0 8C,
    Coupling of alkenol 2 with 4-bromomethylbenzoyl                       69 %; b) second-generation Grubbs catalyst, CH2Cl2, 1 h, reflux, 99 %; c) AD-mix-a,
chloride in the presence of KHMDS gave the doubly                         MeSO2NH2, NaHCO3, tBuOH/H2O (1/1), 96 h, 0 8C!RT, 96 % (S,S/R,R 16:1);
loaded para-linked diene 9 in 69 % yield. Subsequent                      d) TsCl, pyridine, 20 h, 0 8C!RT, 90 %; e) NaOMe, MeOH, 44 h, room temperature,
treatment of 9 with a second-generation Grubbs catalyst[17]               93 %; f) DMSO, (COCl)2, CH2Cl2, À78 8C; NEt3, À78 8C!RT, 98 %;
in dichloromethane at reflux delivered the intramolecular                 g) CH3(CH2)8PPh3Br, nBuLi, THF, 7 h, À78!0 8C, 69 %; h) TFA/H2O (2:1), 5 min
metathesis product in excellent yield, exclusively as the                 (repeat twice), room temperature; i) K2CO3, MeOH, 3.5 h, reflux, 80 % over two
                                                                          steps; j) MOMCl, Hünig base, DMAP, CH2Cl2, 18 h, 0 8C!RT, 78 %; k) Pd/C,
E adduct. Sharpless asymmetric dihydroxylation of the
                                                                          HCO2ÀNH4+, MeOH, 2 h, reflux, 79 %. HMDS = hexamethyldisilazide,
olefin with AD-mix-a afforded the diol in a diastereomeric                DMSO = dimethyl sulfoxide, TFA = trifluoroacetic acid.
ratio of 16:1 favoring the desired S,S product (Scheme 3).[18]
Treatment of the diol with TsCl in pyridine afforded the
ditosylated compound 10 in 90 % yield.                                        treated with the lithium derivative of trimethylsilylacetylene
    The macrocycle was opened by treatment of 10 with                         followed by desilylation with TBAF to give 13 in 60 % yield
sodium methoxide in methanol at room temperature to afford                    over the two steps.[22] Diastereoselective oxazaborolidine-
the primary alcohol.[19] Swern oxidation and a subsequent                     catalyzed (CBS)[23] reduction gave 6 in 78 % yield, with an
Wittig reaction installed the nine-membered carbon side-                      excellent ratio favoring the desired isomer (44:1).
chain terminus as the Z olefin 4. Removal of the BDA groups                       With the synthesis of fragment 6 completed, we now
followed by an intramolecular Williamson cyclization with                     turned our attention to the synthesis of butenolide 7 in
potassium carbonate as the base led to the formation of the                   preparation for the final coupling reaction. Diene 17 was
bis-THF core 11 in 80 % yield over the two steps. Finally,                    synthesized in seven steps from 1,4-butanediol according to a
protection of the free secondary alcohols with MOMCl,                         previously established procedure (Scheme 5).[10] As in our
followed by parallel reduction of the double bond and                         synthesis of muricatetrocin C, the 1,5-stereochemical rela-
debenzylation under transfer-hydrogenation conditions com-                    tionship in the butenolide moiety was installed through the
pleted the synthesis of fragment 5 (Scheme 3).                                HDA reaction with nitrosobenzene at 0 8C which afforded an
    Fragment 5 was further elaborated by Dess–Martin                          inseparable 7:3 mixture of regioisomers favoring the desired
oxidation, followed by Horner–Wadsworth–Emmons olefina-                       adduct 18.[24] The NÀO bond was cleaved by using freshly

Angew. Chem. Int. Ed. 2005, 44, 580 –584              www.angewandte.org                         2005 Wiley-VCH Verlag GmbH  Co. KGaA, Weinheim        581
Communications
                                                                                                man catalyst afforded the free alcohol. Oxidation of
                                                                                                the released primary alcohol with TPAP,[26] fol-
                                                                                                lowed by one-carbon homologation, according to
                                                                                                the Takai procedure,[27] provided the vinyl iodide 20
                                                                                                as a mixture of isomers (3.7:1 ratio favoring the
                                                                                                E geometry) in 59 % yield over two steps. Subse-
                                                                                                quent elimination of the trifluoroacetamide group
                                                                                                in the presence of DBU in acetonitrile at 0 8C
                                                                                                afforded fragment 7 without epimerization of the
                                                                                                butenolide methyl substituent (Scheme 5).
                                                                                                     Sonogashira cross-coupling of vinyl iodide 7
                                                                                                with the propargylic alcohol 6 proceeded smoothly
                                                                                                to produce the skeleton 14 in 86 % yield
                                                                                                (Scheme 4).[28] The enyne functional group was
                                                                                                reduced selectively over the butenolide double
                                                                                                bond by using the Wilkinson catalyst to afford the
                                                                                                protected acetogenin in 74 % yield. Final global
                                                                                                deprotection with BF3·Et2O in methyl sulfide
                                                                                                afforded 1 as a colorless wax in 68 % yield. The
                                                                                                spectroscopic data for synthetic 1 (1H NMR,
                                                                                                13
                                                                                                   C NMR, IR, MS, and specific rotation)[29] were
Scheme 4. Synthesis of 10-hydroxyasimicin (1). a) DMP, NaHCO3, CH2Cl2, 1 h, 0 8C!RT,            in excellent agreement with those reported for
95 %; b) 15, NaHMDS, THF, 18 h, À78 8C!RT, 81 %; c) Pd(OH)2/C, H2, THF, 1 h, room               naturally occurring 10-hydroxyasimicin (1).[11]
temperature, 94 %; d) Me(MeO)NH·HCl, iPrMgCl, THF, 1.5 h, À10 8C, 82 %; e) trimethylsilyl-           In conclusion, the successful synthesis of 10-
acetylene, nBuLi, THF, 1 h, À78!0 8C; f) TBAF, THF, 20 min, À20 8C, 60 % over two steps;
                                                                                                hydroxyasimicin (1) demonstrates the potential of
g) (S)-16, BH3·Me2S, THF, 1 h, À35 8C, 78 % (S/R 44:1); h) [Pd(PPh3)2Cl2], CuI, NEt3, 45 min,
room temperature, 86 %; i) [Rh(PPh3)3Cl], H2, benzene/EtOH (1:1), 23 h, room temperature,
                                                                                                the template approach to the oxygenated core of
74 %; j) BF3·OEt2, Me2S, 20 min, room temperature, 68 %. DMP = Dess–Martin periodinane.         the acetogenins in an efficient and easily adapted
                                                                                                manner. This route provides an efficient method for
                                                                                                the construction of the bis-THF moiety incorporat-
           prepared [Mo(CO)3(MeCN)3] in the presence of water at                      ing a tether that enhances the stereochemical outcome of the
           room temperature.[25] Protection of the resultant secondary                RCM step and enables desymmetrization of the central
           hydroxy group as a MOM ether enabled the separation of the                 fragment for further chain extension. The TBS-protected diol
           regio- and stereoisomers through flash-column chromatog-                   building block 8, arising from (R,R,S,S)-2,3-BDA-protected
           raphy, thus avoiding the need for the laborious preparative                (S,S)-dimethyl-d-tartrate, and the highly diastereoselective
           HPLC separation required in the previous synthesis of                      HDA approach to the butenolide unit are usefully employed
           muricatetrocin C. Subsequent hydrogenation over catalytic                  in this new synthesis of an acetogenin natural product.
           palladium and protection of the amine as the trifluoroaceta-               Further applications of these general approaches will be
           mide afforded compound 19. Debenzylation with the Pearl-                   employed in the preparation of other members of the
                                                                                      acetogenin series in due course.

                                                                                   Received: October 11, 2004
                                                                                   Published online: December 13, 2004


                                                                                   .
                                                                                   Keywords: metathesis · natural products · templating effect ·
                                                                                   total synthesis


                                                                                    [1] a) F. Q. Alali, X.-X. Liu, J. L. McLaughlin, J. Nat. Prod. 1999, 62,
                                                                                        504; b) N. H. Oberlies, V. L. Croy, M. L. Harrison, J. L.
                                                                                        McLaughlin, Cancer Lett. 1997, 15, 73; c) L. Zeng, Q. Ye, N. H.
                                                                                        Oberlies, G. Shi, Z. Gu, K. He, J. L. McLaughlin, Nat. Prod. Rep.
                                                                                        1996, 13, 275, and references therein.
Scheme 5. Synthesis of butenolide 7. a) Reference [10]; b) [Mo(CO)6], MeCN, 4 h,    [2] For recent reviews, see: a) G. Cassiraghi, F. Zanardi, L.
reflux; then 18, H2O, 15 min, room temperature; c) MOMCl, Hünig base, DMAP,             Battistini, G. Rassu, G. Appendino, Chemtracts: Org. Chem.
CH2Cl2, 16 h, 0 8C!RT, 20 % over three steps, including HDA; d) Pd/C, H2, THF,          1998, 11, 803; b) J. A. Marshall, K. W. Hinkle, C. E. Hagedorn,
2 h, room temperature, 100 %; e) TFAA, Hünig base, CH2Cl2, 30 min, 0 8C, 74 %;          Isr. J. Chem. 1997, 37, 97; c) R. Hoppe, H. D. Scharf, Synthesis
f) Pd(OH)2/C, H2, MeOH, 30 min, room temperature, 99 %; g) TPAP, NMO, NEt3,             1995, 1447; d) B. Figad›re, Acc. Chem. Res. 1995, 28, 359, and
CH2Cl2, 2 h, room temperature, 84 %; h) CrCl2, CHI3, THF, 17 h, 0 8C!RT, 70 %           references therein.
(E/Z 3.7:1); i) DBU, CH3CN, 6 h, À15!À5 8C (60 %). TFAA = trifluoroacetic           [3] For syntheses from 1998, see: a) P. Neogi, T. Doundoulakis, A.
anhydride, TPAP = tetrapropylammonium perruthenate, DBU = 1,8-diazo-                    Yazbak, S. C. Sinha, E. Keinan, J. Am. Chem. Soc. 1998, 120,
bicyclo[5.4.0]undec-7-ene.                                                              11 279; b) S. C. Sinha, A. Sinha, E. Keinan, J. Am. Chem. Soc.

582       2005 Wiley-VCH Verlag GmbH  Co. KGaA, Weinheim                  www.angewandte.org                        Angew. Chem. Int. Ed. 2005, 44, 580 –584
Angewandte
                                                                                                                                                              Chemie


       1998, 120, 4017; c) S. Sasaki, K. Maruta, H. Naito, R. Maemura,                 W. R. Lin, H. F. Chiu, Y. C. Wu, K. S. Wang, M. J. Wu,
       E. Kawahara, M. Maeda, Chem. Pharm. Bull. 1998, 46, 154;                        Tetrahedron Lett. 2003, 44, 7833; l) S. R. V. Kandula, P. Kumar,
       d) J. A. Marshall, H. J. Jiang, J. Org. Chem. 1998, 63, 7066; e) A.             Tetrahedron Lett. 2003, 44, 6149.
       Yazbak, S. C. Sinha, E. Keinan, J. Org. Chem. 1998, 63, 5863;             [9]   For syntheses from 2004, see: a) N. Maezaki, H. Tominaga, N.
       f) S. E. Schaus, J. Branalt, E. N. Jacobsen, J. Org. Chem. 1998, 63,            Kojima, M. Yanai, D. Urabe, T. Tanaka, Chem. Commun. 2004,
       4876; g) S. Hanessian, T. A. Grillo, J. Org. Chem. 1998, 63, 1049;              406; b) H. N. Han, M. K. Sinha, L. J. DSouza, E. Keinan, S. C.
       h) H. Makabe, A. Tanaka, T. Oritani, Tetrahedron 1998, 54, 6329;                Sinha, Chem. Eur. J. 2004, 10, 2149; c) Q. S. Zhang, H. J. Lu, C.
       i) J. A. Marshall, H. J. Jiang, Tetrahedron Lett. 1998, 39, 1493;               Richard, D. P. Curran, J. Am. Chem. Soc. 2004, 126, 36; d) A. R.
       j) J. A. Marshall, K. W. Hinkle, Tetrahedron Lett. 1998, 39, 1303.              Cecil, Y. L. Hu, M. J. Vicent, R. Duncan, R. C. D. Brown, J. Org.
 [4]   For syntheses from 1999, see: a) S. Bäurle, S. Hoppen, U. Koert,                Chem. 2004, 69, 3368; e) L. Zhu, D. R. Mootoo, J. Org. Chem.
       Angew. Chem. 1999, 111, 1341; Angew. Chem. Int. Ed. 1999, 38,                   2004, 69, 3154; f) T. Yoshimitsu, T. Makino, H. Nagaoka, J. Org.
       1263; b) W. Kuruyama, K. Ishigami, T. Kitahara, Heterocycles                    Chem. 2004, 69, 1993; g) H. Makabe, A. Miyawaki, R. Takaha-
       1999, 50, 981; c) J. A. Marshall, H. J. Jiang, J. Nat. Prod. 1999, 62,          shi, Y. Hattori, M. Abe, H. Miyoshi, Tetrahedron Lett. 2004, 45,
       1123; d) S. C. Sinha, E. Keinan, J. Org. Chem. 1999, 64, 7067;                  973.
       e) Q. Yu, Z. J. Yao, X. G. Chen, Y. L. Wu, J. Org. Chem. 1999, 64,       [10]   a) D. J. Dixon, S. V. Ley, D. J. Reynolds, Angew. Chem. 2000,
       2440; f) A. Sinha, S. C. Sinha, E. Keinan, J. Org. Chem. 1999, 64,              112, 3768; Angew. Chem. Int. Ed. 2000, 39, 3622; b) D. J. Dixon,
       2381; g) J. A. Marshall, H. J. Jiang, J. Org. Chem. 1999, 64, 971;              S. V. Ley, D. J. Reynolds, Chem. Eur. J. 2002, 8, 1621.
       h) S. Takahashi, K. Maeda, S. Hirota, T. Nakata, Org. Lett. 1999,        [11]   K. He, G. Shi, G.-X. Zhao, L. Zeng, Q. Ye, J. T. Schwedler, K. V.
       1, 2025; i) T. S. Hu, Q. Lin, Y. L. Wu, Y. K. Wu, Org. Lett. 1999, 1,           Wood, J. L. McLaughlin, J. Nat. Prod. 1996, 59, 1029.
       399; j) Q. Yu, Y. K. Wu, H. Ding, Y. L. Wu, J. Chem. Soc. Perkin         [12]   S. V. Ley, D. K. Baeschlin, D. J. Dixon, A. C. Foster, S. J. Ince,
       Trans. 1 1999, 1183; k) Z. M. Wang, S. K. Tian, M. Shi,                         H. W. M. Priepke, D. J. Reynolds, Chem. Rev. 2001, 101, 53; and
       Tetrahedron: Asymmetry 1999, 10, 667; l) W. Q. Yang, T.                         references therein.
       Kitahara, Tetrahedron Lett. 1999, 40, 7827; m) U. Emde, U.               [13]   a) Y. Sakamoto, M. Okazaki, K. Miyamoto, T. Nakata, Tetrahe-
       Koert, Tetrahedron Lett. 1999, 40, 5979; n) Z. M. Wang, S. K.                   dron Lett. 2001, 42, 7633; b) E. C. Hansen, D. Lee, J. Am. Chem.
       Tian, M. Shi, Tetrahedron Lett. 1999, 40, 977; o) S. Takahashi, T.              Soc. 2003, 125, 9582; c) P. A. Evans, J. Cui, G. P. Buffone, Angew.
       Nakata, Tetrahedron Lett. 1999, 40, 727; p) Z. M. Ruan, D. R.                   Chem. 2003, 115, 1776 – 1779; Angew. Chem. Int. Ed. 2003, 42,
       Mootoo, Tetrahedron Lett. 1999, 40, 49.                                         1734, and references therein.
 [5]   For syntheses from 2000, see: a) S. Hoppen, S. Bäurle, U. Koert,         [14]   a) J. Mulzer, K. Schein, J. W. Bats, J. Buschmann, P. Luger,
       Chem. Eur. J. 2000, 6, 2382; b) S. Bäurle, U. Peters, T. Friedrich,             Angew. Chem. 1998, 110, 1625; Angew. Chem. Int. Ed. 1998, 37,
       U. Koert, Eur. J. Org. Chem. 2000, 2207; c) U. Emde, U. Koert,                  1566; b) J. Mulzer, I. Böhm, J. W. Bats, Tetrahedron Lett. 1998,
       Eur. J. Org. Chem. 2000, 1889; d) Z. M. Wang, S. K. Tian, M. Shi,               39, 9643.
       Eur. J. Org. Chem. 2000, 349; e) Z. M. Wang, S. K. Tian, M. Shi,         [15]   In this particular synthesis, the two alkenol units are the same,
       Chirality 2000, 12, 581; f) M. Szlosek, J. F. Peyrat, C. Chaboche,              but any absolute configurational arrangement can, in principle,
       X. Franck, R. Hocquemiller, B. Figad›re, New J. Chem. 2000, 24,                 be loaded onto the orthogonal 4-bromomethylbenzyl chloride
       337; g) W. Q. Yang, T. Kitahara, Tetrahedron 2000, 56, 1451;                    template by making use of the greater reactivity of the acyl
       h) T.-S. Hu, Y.-L. Wu, Y. Wu, Org. Lett. 2000, 2, 887.                          chloride relative to the alkyl bromide substituent.
 [6]   For syntheses from 2001, see: a) C. Harken, R. Bruckner, New J.          [16]   A noticeable improvement in stereocontrol was observed in
       Chem. 2001, 25, 40; b) T.-S. Hu, Q. Yu, Y.-L. Wu, Y. Wu, J. Org.                going from ortho to meta and finally to para substitution. The
       Chem. 2001, 66, 853; c) N. Maezaki, N. Kojima, A. Sakamoto, C.                  results of these investigations will be published in a full paper at
       Iwata, T. Tanaka, Org. Lett. 2001, 3, 429; d) S. D. Burke, L. Jiang,            a later date.
       Org. Lett. 2001, 3, 1953.                                                [17]   M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1,
 [7]   For syntheses from 2002, see: a) S. Takahashi, A. Kubota, T.                    953.
       Nakata, Angew. Chem. 2002, 114, 4945; Angew. Chem. Int. Ed.              [18]   Comparable diastereoselectivity was obtained in the Sharpless
       2002, 41, 4751; b) S. Takahashi, T. Nakata, J. Org. Chem. 2002,                 asymmetric dihydroxylation reaction when performed on the
       67, 5739; c) S. Jiang, Z.-H. Liu, G. Sheng, B.-B. Zeng, X.-G.                   open chain hydroxy ester, obtained from the transesterfiction
       Cheng, Y.-L. Wu, Z.-J. Yao, J. Org. Chem. 2002, 67, 3404;                       reaction on the alkene formed immediately after the RCM
       d) A. R. L. Cecil, R. C. D. Brown, Org. Lett. 2002, 4, 3715; e) H.              reaction.
       Makabe, Y. Hattori, A. Tanoka, T. Oritani, Org. Lett. 2002, 4,           [19]   Orthogonal macrocycle opening was achieved under transfer-
       1083; f) E. Keinan, S. C. Sinha, Pure Appl. Chem. 2002, 74, 93;                 hydrogenation conditions and will be communicated in a full
       g) S. Takahashi, A. Kubota, T. Nakata, Tetrahedron Lett. 2002,                  paper at a later date.
       43, 8661.                                                                [20]   a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155; b) D. B.
 [8]   For syntheses from 2003, see: a) N. Maezaki, N. Kojima, A.                      Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277.
       Sakamoto, H. Tominaga, C. Iwata, T. Tanaka, M. Monden, B.                [21]   J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesini, U.-H.
       Damdinswen, S. Nakamori, Chem. Eur. J. 2003, 9, 390; b) B.-B.                   Dolling, E. J. J. Grabowski, Tetrahedron Lett. 1995, 36, 5461.
       Zeng, Y. Wu, S. Jiang, Q. Yu, Z.-J. Yao, Z.-H. Liu, H.-Y. Li, Y. Li,     [22]   M. Muller, A. Mann, M. Taddei, Tetrahedron Lett. 1993, 34, 3289.
       X.-G. Chen, Y.-L. Wu, Chem. Eur. J. 2003, 9, 282; c) P. A. Evans,        [23]   E. J. Corey, R. K. Bakshi, S. J. Shibata, J. Am. Chem. Soc. 1987,
       J. Cui, S. J. Gharpure, A. Polosukhi, H. R. Zhang, J. Am. Chem.                 109, 5551.
       Soc. 2003, 125, 14 072; d) J. A. Marshall, A. Piettre, M. A. Paige,      [24]   Investigations into using alternative nitrosodienophiles to
       F. Valeriate, J. Org. Chem. 2003, 68, 8290; e) J. A. Marshall, A.               improve the regioselectivity of the desired HDA reaction
       Piettre, M. A. Paige, F. Valeriate, J. Org. Chem. 2003, 68, 1780;               indicated that nitrosobenzene gives the most favorable results
       f) J. A. Marshall, A. Piettre, M. A. Paige, F. Valeriate, J. Org.               and could not be improved on. These results will be communi-
       Chem. 2003, 68, 1771; g) L. Zhu, D. R. Mootoo, Org. Lett. 2003,                 cated in a full paper at a later date.
       5, 3475; h) S. Takahashi, A. Kubota, T. Nakata, Org. Lett. 2003, 5,      [25]   a) M. Nitta, T. Kobayashi, J. Chem. Soc. Perkin Trans. 1 1985,
       1353; i) R. V. A. Orru, B. Groenendaal, J. van Heyst, M. Hunt-                  1401; b) S. Cicchi, A. Goti, A. Brondi, A. Guarna, F. De Sarlo,
       ing, C. Wesseling, R. F. Schmitz, S. F. Mayer, K. Faber, Pure                   Tetrahedron Lett. 1990, 31, 3351.
       Appl. Chem. 2003, 75, 259; j) S. Takahashi, A. Kubota, T. Nakata,        [26]   S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden, Synthesis
       Tetrahedron 2003, 59, 1627; k) J. L. Lee, C. F. Lin, L. Y. Hsieh,               1994, 639.

Angew. Chem. Int. Ed. 2005, 44, 580 –584                  www.angewandte.org                           2005 Wiley-VCH Verlag GmbH  Co. KGaA, Weinheim          583
Communications
      [27] K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108,
           7408.
      [28] a) T. R. Hoye, P. R. Hanson, A. C. Kovelesky, T. D. Ocain, Z. P.
           Zhuang, J. Am. Chem. Soc. 1991, 113, 9369; b) K. Sonogashira,
           Y. Thoda, N. Magihara, Tetrahedron Lett. 1975, 4467.
      [29] Spectroscopic data for synthetic 1, a colorless wax: [a]25 = + 16
                                                                      D
           (c = 0.25 in CHCl3, lit. [11] [a]22 = + 17.3 in CHCl3); 1H NMR
                                             D
           (400 MHz; CDCl3): d = 7.18 (d, J = 1.3 Hz, 1 H; 35-H), 5.05 (qd,
           J = 6.8, 1.4 Hz, 1 H; 36-H), 3.86 (m, 5 H; 16-H, 19-H, 20-H, 23-
           H), 3.60 (m, 1 H; 10-H), 3.41–3.38 (m, 2 H; 15-H, 24-H), 2.53
           (dddd, J = 15.2, 3.2, 1.5, 1.5 Hz, 1 H; 3a-H), 2.40 (dddd, J = 15.1,
           8.3, 1.2, 1.2 Hz, 1 H; H-3b), 1.97 (m, 8 H; 17-H, 18-H, 21-H, 22-
           H), 1.70–1.26 (m, 36 H; 5–9-H, 1–14-H, 25–33-H), 1.43 (d, J =
           6.7 Hz, 3 H; 37-H), 0.88 ppm (t, J = 6.7 Hz, 3 H; 34-H); 13C NMR
           (125 MHz; CDCl3): d = 174.6 (C1), 151.8 (C35), 131.2 (C2), 83.2,
           83.1 (C16, C23), 81.81, 81.75 (C19, C20), 78.0 (C36), 74.1, 74.0
           (C15, C24), 71.7 (C10), 69.9 (C4), 37.34 (C5), 37.3 (C11), 37.2
           (C9), 33.41, 33.36, 33.32 (C3, C14, C25), 31.9 (C32), 29.71, 29.61,
           29.60, 29.59, 29.47, 29.32 (C6–C8, C12, C13, C26–C31), 29.0
           (C21, C18), 28.3 (C17, C22), 25.64, 25.62, 25.5 (C6–C8, C12, C13,
           C26–C31), 22.7 (C33), 19.1 (C37), 14.1 ppm (C34); IR (thin
           film): nmax = 3404 br (OH), 2924, 2853 (CH), 1753 (C=O) cmÀ1;
                  ˜
           HRMS: calcd for C37H66O8Na [M+Na]+: 661.4650; found:
           661.4651.




584    2005 Wiley-VCH Verlag GmbH  Co. KGaA, Weinheim                     www.angewandte.org   Angew. Chem. Int. Ed. 2005, 44, 580 –584

Contenu connexe

Tendances

Thesis_Yves_Revi
Thesis_Yves_ReviThesis_Yves_Revi
Thesis_Yves_ReviYves Revi
 
Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...
Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...
Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...Pradeep Kamidi
 
SOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESISSOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESISShikha Popali
 
synthesis and spectral studies on cardanol based polyurethanes
synthesis and spectral studies on cardanol based polyurethanessynthesis and spectral studies on cardanol based polyurethanes
synthesis and spectral studies on cardanol based polyurethanesINFOGAIN PUBLICATION
 
Spps and side reactions in peptide synthesis
Spps and side reactions in peptide synthesisSpps and side reactions in peptide synthesis
Spps and side reactions in peptide synthesiskavyakaparthi1
 
MChem Paper
MChem PaperMChem Paper
MChem Paperpaxmd2
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistryandy diep
 
Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237Dinesh Barawkar
 
International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)inventionjournals
 
Demonstration of protein and nucleic acids
Demonstration of protein and nucleic acidsDemonstration of protein and nucleic acids
Demonstration of protein and nucleic acidsMAHMOUD IBRAHIM
 

Tendances (20)

Thesis_Yves_Revi
Thesis_Yves_ReviThesis_Yves_Revi
Thesis_Yves_Revi
 
GPR40 TL Paper
GPR40 TL PaperGPR40 TL Paper
GPR40 TL Paper
 
Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...
Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...
Sch 504 protecting_groups_in_organic_synthesis by pradeep kumar .M.SC,APSET,(...
 
SOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESISSOLID PHASE PEPTIDE SYNTHESIS
SOLID PHASE PEPTIDE SYNTHESIS
 
synthesis and spectral studies on cardanol based polyurethanes
synthesis and spectral studies on cardanol based polyurethanessynthesis and spectral studies on cardanol based polyurethanes
synthesis and spectral studies on cardanol based polyurethanes
 
Spps and side reactions in peptide synthesis
Spps and side reactions in peptide synthesisSpps and side reactions in peptide synthesis
Spps and side reactions in peptide synthesis
 
21781 23877-1-pb
21781 23877-1-pb21781 23877-1-pb
21781 23877-1-pb
 
HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19HCAM Org Lett 2000 2 19
HCAM Org Lett 2000 2 19
 
Cephalins
CephalinsCephalins
Cephalins
 
MChem Paper
MChem PaperMChem Paper
MChem Paper
 
Hypervalent organo iodines reagents in organic synthesis
Hypervalent  organo iodines reagents in organic synthesisHypervalent  organo iodines reagents in organic synthesis
Hypervalent organo iodines reagents in organic synthesis
 
paper 6 published
paper 6 publishedpaper 6 published
paper 6 published
 
Paul Grieco Chemistry
Paul Grieco ChemistryPaul Grieco Chemistry
Paul Grieco Chemistry
 
Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237Nucleic Acids Reserach (1996) 24, 1229-1237
Nucleic Acids Reserach (1996) 24, 1229-1237
 
International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)International Journal of Pharmaceutical Science Invention (IJPSI)
International Journal of Pharmaceutical Science Invention (IJPSI)
 
Mn-porphyrins SMP_FRBM 2006
Mn-porphyrins SMP_FRBM 2006Mn-porphyrins SMP_FRBM 2006
Mn-porphyrins SMP_FRBM 2006
 
Howarth2000
Howarth2000Howarth2000
Howarth2000
 
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
A Review: 3, 4-Dihydropyrimidines Thione Their Chemistry and Pharmacological ...
 
Demonstration of protein and nucleic acids
Demonstration of protein and nucleic acidsDemonstration of protein and nucleic acids
Demonstration of protein and nucleic acids
 
MCR
MCRMCR
MCR
 

En vedette

SDOA 3.1 Design & Strategy
SDOA 3.1 Design & StrategySDOA 3.1 Design & Strategy
SDOA 3.1 Design & StrategyFlorian Vollmer
 
Elliot felix creating value with design strategy
Elliot felix   creating value with design strategyElliot felix   creating value with design strategy
Elliot felix creating value with design strategyElliot Felix
 
Strategy Design Pattern
Strategy Design PatternStrategy Design Pattern
Strategy Design PatternGanesh Kolhe
 
SDOA 3.2 The Language of Design and Corporate Stakeholders
SDOA 3.2 The Language of Design and Corporate StakeholdersSDOA 3.2 The Language of Design and Corporate Stakeholders
SDOA 3.2 The Language of Design and Corporate StakeholdersFlorian Vollmer
 
How to create Design Strategy for a brand
How to create Design Strategy for a brandHow to create Design Strategy for a brand
How to create Design Strategy for a brandbala murugan
 
How to Lie with Design Strategy
How to Lie with Design StrategyHow to Lie with Design Strategy
How to Lie with Design StrategyDan Saffer
 
Organizational Design Strategy in Changin Globe
Organizational Design Strategy in Changin GlobeOrganizational Design Strategy in Changin Globe
Organizational Design Strategy in Changin Globeebakaa
 
Design Strategy Template - Sivaprasath Selvaraj
Design Strategy Template - Sivaprasath SelvarajDesign Strategy Template - Sivaprasath Selvaraj
Design Strategy Template - Sivaprasath SelvarajSivaprasath Selvaraj
 
Best Practices in Social Media for NGO's [Report]
Best Practices in Social Media for NGO's [Report]Best Practices in Social Media for NGO's [Report]
Best Practices in Social Media for NGO's [Report]Social Samosa
 
Design Strategy: How information Can Drive Your Designs Decisions To Success
Design Strategy: How information Can Drive Your Designs Decisions To SuccessDesign Strategy: How information Can Drive Your Designs Decisions To Success
Design Strategy: How information Can Drive Your Designs Decisions To SuccessSara Cannon
 

En vedette (11)

SDOA 3.1 Design & Strategy
SDOA 3.1 Design & StrategySDOA 3.1 Design & Strategy
SDOA 3.1 Design & Strategy
 
Elliot felix creating value with design strategy
Elliot felix   creating value with design strategyElliot felix   creating value with design strategy
Elliot felix creating value with design strategy
 
Strategy Design Pattern
Strategy Design PatternStrategy Design Pattern
Strategy Design Pattern
 
SDOA 3.2 The Language of Design and Corporate Stakeholders
SDOA 3.2 The Language of Design and Corporate StakeholdersSDOA 3.2 The Language of Design and Corporate Stakeholders
SDOA 3.2 The Language of Design and Corporate Stakeholders
 
How to create Design Strategy for a brand
How to create Design Strategy for a brandHow to create Design Strategy for a brand
How to create Design Strategy for a brand
 
How to Lie with Design Strategy
How to Lie with Design StrategyHow to Lie with Design Strategy
How to Lie with Design Strategy
 
Organizational Design Strategy in Changin Globe
Organizational Design Strategy in Changin GlobeOrganizational Design Strategy in Changin Globe
Organizational Design Strategy in Changin Globe
 
Design Strategy Template - Sivaprasath Selvaraj
Design Strategy Template - Sivaprasath SelvarajDesign Strategy Template - Sivaprasath Selvaraj
Design Strategy Template - Sivaprasath Selvaraj
 
Best Practices in Social Media for NGO's [Report]
Best Practices in Social Media for NGO's [Report]Best Practices in Social Media for NGO's [Report]
Best Practices in Social Media for NGO's [Report]
 
Design Strategy
Design StrategyDesign Strategy
Design Strategy
 
Design Strategy: How information Can Drive Your Designs Decisions To Success
Design Strategy: How information Can Drive Your Designs Decisions To SuccessDesign Strategy: How information Can Drive Your Designs Decisions To Success
Design Strategy: How information Can Drive Your Designs Decisions To Success
 

Similaire à ACG-221-Synthesis-Asimicin-GSK-Novartis-Pfizer-Ley-cambridge university-uk-2005

Tetracycline-Medicinal-Chemistry.7 semester
Tetracycline-Medicinal-Chemistry.7 semesterTetracycline-Medicinal-Chemistry.7 semester
Tetracycline-Medicinal-Chemistry.7 semesterdipika51
 
Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...
Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...
Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...JamesSahn
 
Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357elshimaa eid
 
APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...
APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...
APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...JamesSahn
 
Raft polymeristion of sma
Raft polymeristion of smaRaft polymeristion of sma
Raft polymeristion of smaFaiqueS
 
Tetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434XylTetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434XylSubrata Ghosh
 
Rumer_et_al-2015-Advanced_Energy_Materials
Rumer_et_al-2015-Advanced_Energy_MaterialsRumer_et_al-2015-Advanced_Energy_Materials
Rumer_et_al-2015-Advanced_Energy_MaterialsJoe Rumer
 
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...Ratnakaram Venkata Nadh
 
A convenient new and efficient commercial synthetic route for dasatinib (Spry...
A convenient new and efficient commercial synthetic route for dasatinib (Spry...A convenient new and efficient commercial synthetic route for dasatinib (Spry...
A convenient new and efficient commercial synthetic route for dasatinib (Spry...Ratnakaram Venkata Nadh
 

Similaire à ACG-221-Synthesis-Asimicin-GSK-Novartis-Pfizer-Ley-cambridge university-uk-2005 (20)

Tet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TSTet. Lett. Eurystatin TS
Tet. Lett. Eurystatin TS
 
Fernando jmcs
Fernando jmcsFernando jmcs
Fernando jmcs
 
Tetracycline-Medicinal-Chemistry.7 semester
Tetracycline-Medicinal-Chemistry.7 semesterTetracycline-Medicinal-Chemistry.7 semester
Tetracycline-Medicinal-Chemistry.7 semester
 
Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...
Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...
Facile Syntheses of Substituted, Conformationally-Constrained Benzoxazocines ...
 
Pictet
PictetPictet
Pictet
 
Molecules 22-00357
Molecules 22-00357Molecules 22-00357
Molecules 22-00357
 
Metathesis
MetathesisMetathesis
Metathesis
 
APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...
APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...
APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF ...
 
Cheng 2015
Cheng 2015Cheng 2015
Cheng 2015
 
Nanoputians
NanoputiansNanoputians
Nanoputians
 
Molecules 17-01074
Molecules 17-01074Molecules 17-01074
Molecules 17-01074
 
Bech2007
Bech2007Bech2007
Bech2007
 
Raft polymeristion of sma
Raft polymeristion of smaRaft polymeristion of sma
Raft polymeristion of sma
 
Tetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434XylTetrahedron Lett 2009_50_1431-1434Xyl
Tetrahedron Lett 2009_50_1431-1434Xyl
 
BMCL Angibaud_ten Holte
BMCL Angibaud_ten HolteBMCL Angibaud_ten Holte
BMCL Angibaud_ten Holte
 
Synthesis of (-)-Deoxypukalide
Synthesis of (-)-DeoxypukalideSynthesis of (-)-Deoxypukalide
Synthesis of (-)-Deoxypukalide
 
Rumer_et_al-2015-Advanced_Energy_Materials
Rumer_et_al-2015-Advanced_Energy_MaterialsRumer_et_al-2015-Advanced_Energy_Materials
Rumer_et_al-2015-Advanced_Energy_Materials
 
Paper
PaperPaper
Paper
 
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
Novel coumarin isoxazoline derivatives: Synthesis and study of antibacterial ...
 
A convenient new and efficient commercial synthetic route for dasatinib (Spry...
A convenient new and efficient commercial synthetic route for dasatinib (Spry...A convenient new and efficient commercial synthetic route for dasatinib (Spry...
A convenient new and efficient commercial synthetic route for dasatinib (Spry...
 

Plus de Ben Rockefeller

ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990
ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990
ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990Ben Rockefeller
 
ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996
ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996
ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996Ben Rockefeller
 
ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994
ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994
ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994Ben Rockefeller
 
ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008
ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008
ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008Ben Rockefeller
 
ACG-186-MOA-Cortes-ES-2005
ACG-186-MOA-Cortes-ES-2005ACG-186-MOA-Cortes-ES-2005
ACG-186-MOA-Cortes-ES-2005Ben Rockefeller
 
ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010
ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010
ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010Ben Rockefeller
 
ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994
ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994
ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994Ben Rockefeller
 
ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993
ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993
ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993Ben Rockefeller
 
ACG-008-Risk-Seeds of annona squamosa-FR-2011
ACG-008-Risk-Seeds of annona squamosa-FR-2011ACG-008-Risk-Seeds of annona squamosa-FR-2011
ACG-008-Risk-Seeds of annona squamosa-FR-2011Ben Rockefeller
 
Acetogenins In Vivo re: Wu - (p 22-36)
Acetogenins In Vivo re: Wu - (p 22-36)Acetogenins In Vivo re: Wu - (p 22-36)
Acetogenins In Vivo re: Wu - (p 22-36)Ben Rockefeller
 
Acetogenins In Vivo re: McLaughlin
Acetogenins In Vivo re: McLaughlinAcetogenins In Vivo re: McLaughlin
Acetogenins In Vivo re: McLaughlinBen Rockefeller
 

Plus de Ben Rockefeller (13)

ACG MIR
ACG MIRACG MIR
ACG MIR
 
ACG-Brief-ES
ACG-Brief-ESACG-Brief-ES
ACG-Brief-ES
 
ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990
ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990
ACG-149-Squamocin = Annonin I - LC-MS-IR-NMR-Bayer-DE-1990
 
ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996
ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996
ACG-117-Analysis-LC-MS Method - McLaughlin-us-1996
 
ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994
ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994
ACG-128-MOA-Acetogenins-Bullatacin-Cortes-ES-1994
 
ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008
ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008
ACG-123-Pawpaw vs. cancer-in vivo-in vitro-MOA McLaughlin-US-2008
 
ACG-186-MOA-Cortes-ES-2005
ACG-186-MOA-Cortes-ES-2005ACG-186-MOA-Cortes-ES-2005
ACG-186-MOA-Cortes-ES-2005
 
ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010
ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010
ACG-185-Historic Perspective on Acetogenins-Wu-TW-2010
 
ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994
ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994
ACG-151-In vitro-MOA-Bullatacin-McLaughlin-Rabao-US-1994
 
ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993
ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993
ACG-150-In Vivo-Bullatacin-MOA-Ahammadsahib-US-1993
 
ACG-008-Risk-Seeds of annona squamosa-FR-2011
ACG-008-Risk-Seeds of annona squamosa-FR-2011ACG-008-Risk-Seeds of annona squamosa-FR-2011
ACG-008-Risk-Seeds of annona squamosa-FR-2011
 
Acetogenins In Vivo re: Wu - (p 22-36)
Acetogenins In Vivo re: Wu - (p 22-36)Acetogenins In Vivo re: Wu - (p 22-36)
Acetogenins In Vivo re: Wu - (p 22-36)
 
Acetogenins In Vivo re: McLaughlin
Acetogenins In Vivo re: McLaughlinAcetogenins In Vivo re: McLaughlin
Acetogenins In Vivo re: McLaughlin
 

Dernier

call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...saminamagar
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiNehru place Escorts
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowNehru place Escorts
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingNehru place Escorts
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Timevijaych2041
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...narwatsonia7
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptxDr.Nusrat Tariq
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...narwatsonia7
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girlsnehamumbai
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...narwatsonia7
 
Pharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, PricingPharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, PricingArunagarwal328757
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Availablenarwatsonia7
 
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...rajnisinghkjn
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...narwatsonia7
 
Call Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service NoidaCall Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service NoidaPooja Gupta
 

Dernier (20)

call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...call girls in Connaught Place  DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
call girls in Connaught Place DELHI 🔝 >༒9540349809 🔝 genuine Escort Service ...
 
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service ChennaiCall Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
Call Girls Service Chennai Jiya 7001305949 Independent Escort Service Chennai
 
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call NowKolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
Kolkata Call Girls Services 9907093804 @24x7 High Class Babes Here Call Now
 
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Hsr Layout Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment BookingCall Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
Call Girls Service Nandiambakkam | 7001305949 At Low Cost Cash Payment Booking
 
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any TimeCall Girls Viman Nagar 7001305949 All Area Service COD available Any Time
Call Girls Viman Nagar 7001305949 All Area Service COD available Any Time
 
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Kanakapura Road Just Call 7001305949 Top Class Call Girl Service A...
 
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
Housewife Call Girls Bangalore - Call 7001305949 Rs-3500 with A/C Room Cash o...
 
Glomerular Filtration and determinants of glomerular filtration .pptx
Glomerular Filtration and  determinants of glomerular filtration .pptxGlomerular Filtration and  determinants of glomerular filtration .pptx
Glomerular Filtration and determinants of glomerular filtration .pptx
 
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
Call Girls Service in Bommanahalli - 7001305949 with real photos and phone nu...
 
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Whitefield Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jayanagar Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
Call Girls ITPL Just Call 7001305949 Top Class Call Girl Service Available
 
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy GirlsCall Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
Call Girls In Andheri East Call 9920874524 Book Hot And Sexy Girls
 
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
Russian Call Girl Brookfield - 7001305949 Escorts Service 50% Off with Cash O...
 
Pharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, PricingPharmaceutical Marketting: Unit-5, Pricing
Pharmaceutical Marketting: Unit-5, Pricing
 
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service AvailableCall Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
Call Girls Jp Nagar Just Call 7001305949 Top Class Call Girl Service Available
 
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
Dwarka Sector 6 Call Girls ( 9873940964 ) Book Hot And Sexy Girls In A Few Cl...
 
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
Call Girls Electronic City Just Call 7001305949 Top Class Call Girl Service A...
 
Call Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service NoidaCall Girls Service Noida Maya 9711199012 Independent Escort Service Noida
Call Girls Service Noida Maya 9711199012 Independent Escort Service Noida
 

ACG-221-Synthesis-Asimicin-GSK-Novartis-Pfizer-Ley-cambridge university-uk-2005

  • 1. Communications Natural Products Synthesis The Total Synthesis of the Annonaceous Acetogenin 10-Hydroxyasimicin** Gillian L. Nattrass, Elena Díez, Matthew M. McLachlan, Darren J. Dixon, and tether that could temporarily link two BDA-protected Steven V. Ley* alkenol building blocks 2 (BDA = 2,3-butanediacetal) of, in principle, any desired stereochemical arrangement.[12] The The annonaceous acetogenins comprise a class of almost 400 tether could then induce stereocontrol during the critical ring- natural products that exhibit a remarkably broad spectrum of closing metathesis (RCM) to give compound 3.[13] Subsequent biological activity. They function as insecticides, fungicides, Sharpless asymmetric dihydroxylation and chemoselective herbicides, and, perhaps most importantly, in vivo antitumor cleavage of the tether would afford 4.[14] Intramolecular agents and have been shown to overcome resistance in displacement by the unmasked hydroxy groups of the multidrug-resistant tumors.[1] Structurally, the acetogenins are desymmetrized bistosylate 4 would yield the bis-THF unit 5. characterized by a long lipophilic tail, a central polyoxy- Late-stage Sonogashira coupling of the terminal alkyne 6 and genated core, and a terminal a,b-unsaturated g-lactone. The the butenolide 7 (constructed through a hetero-Diels–Alder structural diversity in this family arises principally from (HDA) reaction to install the 1,5-stereochemical relationship variations in the stereochemistry and connectivity of the and mask the butenolide double bond simultaneously, as polyoxygenated central core, which can consist of one or more reported in our synthesis of muricatetrocin C)[10] would tetrahydrofuranyl (THF) rings or, occasionally, a tetra- hydropyranyl (THP) ring with various patterns of hydroxylation. These variations and the stereochemical consequences give rise to an impressive molecular diversity within the family. Owing to their biological activity and limited availability from natural sources, these compounds have attracted worldwide attention and have become the targets for total synthesis for a number of research groups,[2–9] including our own.[10] The majority of publications to date have focused on the synthesis of individual members of the family that suit a particular reaction type or stereochemical out- come. Motivated by the bioactivity of the annonaceous acetogenins, we embarked on a project to develop a more general route that utilizes an orthogonal and modular templating approach to provide access to many members in the series. Herein we describe the first successful synthesis of 10-hydroxyasimicin (1),[11] which contains a bis-THF motif in the central core. The crucial component in the synthesis of any of these natural products is the stereoselective preparation of the polyoxygenated central fragment. 10-Hydroxya- simicin bears adjacent bis-THF rings flanked by two hydroxy groups with a threo,trans,threo,trans,threo ster- eochemistry. Our synthetic strategy to this oxygenated Scheme 1. Proposed synthetic route to 10-hydroxyasimicin (1). Ts = p-toluene- arrangements (Scheme 1) hinged upon the design of a sulfonyl, MOM = methoxymethyl. [*] G. L. Nattrass, E. Díez, M. M. McLachlan, D. J. Dixon, Prof. Dr. S. V. Ley complete the carbon skeleton. Finally, selective hydrogena- Department of Chemistry tion and global deprotection would furnish the natural University of Cambridge product 1 (Scheme 1). Lensfield Road, Cambridge, CB2 1EW (UK) Synthesis of fragment 2 began from (S,S)-dimethyl-d- Fax: (+ 44) 1223-336-442 tartrate, which was readily converted into the monoprotected E-mail: svl1000@cam.ac.uk diol 8 in three steps according to a previously established [**] We thank the Commonwealth Scholarship Commission in the procedure (Scheme 2).[12] Subsequent tosylation of 8 and United Kingdom for funding (G.L.N.), the EU for a Marie Curie Fellowship (E.D.), GlaxoSmithKline (M.M.M.), Novartis for a treatment of the corresponding tosyl derivative with allyl- research fellowship (S.V.L.), and Pfizer Global Research and magnesium bromide in the presence of CuBr afforded 2 in Development for unrestricted funding towards the work. multigram quantities after deprotection with TBAF. 580 2005 Wiley-VCH Verlag GmbH Co. KGaA, Weinheim DOI: 10.1002/anie.200462264 Angew. Chem. Int. Ed. 2005, 44, 580 –584
  • 2. Angewandte Chemie tion with phosphonate 15, which afforded an E,E diene exclusively.[20] Exhaustive reduction of the E,E diene with the Pearlman catalyst then afforded saturated ester 12 in 94 % yield (Scheme 4). To generate the last stereocenter, further chain extension Scheme 2. Synthesis of alkenol 2. a) Reference [12]; b) NEt3, TsCl, DMAP, CH2Cl2, 1.5 h, room temperature, 99 %; c) allylMgBr, CuBr, Et2O, 8 h, 0 8C, to propargylic ketone 13 was required. To this end 84 %; d) TBAF, THF, 5 h, 0 8C, 100 %. DMAP = 4-(dimethylamino)pyridine, ketone 13 was obtained by conversion of the saturated TBAF = tetrabutylammonium fluoride. ester into the Weinreb amide,[21] which was then The next step in the synthesis involved the development of a suitable template to link the two alkenol molecules together in order to proceed with an intramolecular meta- thesis reaction. As mentioned earlier, we required a tether- ing unit that could adjust the conformation of the macro- cycle to control the stereoselectivity during the RCM reaction.[13] The chosen tethering template should behave as a “molecular workbench” and help orientate the olefin so that one face is preferentially available for attack during a syn-stereoselective dihydroxylation reaction.[14] Further- more, the tether would play the role of a protecting group upon cleavage of the macrocycle to enable desymmetriza- tion of the core. Hence the unit had to be dissymmetric to allow orthogonal cleavage upon completion of the dihy- droxylation. On top of this, a dissymmetric tethering unit would enable us to attach different BDA-protected alkenol units sequentially to produce acetogenins with alternative stereochemistries at the core.[15] To put these concepts into effect, a differentiated arene with orthogonal substituents was chosen, as we could fine-tune the macrocycle ring size simply by varying the substitution pattern of the aryl system. 4-Bromomethylbenzoyl chloride was found to give the best results and was used in all subsequent investiga- tions.[16] Scheme 3. Synthesis of bis-THF framework 5. a) KHMDS, THF, 5 h, À78!0 8C, Coupling of alkenol 2 with 4-bromomethylbenzoyl 69 %; b) second-generation Grubbs catalyst, CH2Cl2, 1 h, reflux, 99 %; c) AD-mix-a, chloride in the presence of KHMDS gave the doubly MeSO2NH2, NaHCO3, tBuOH/H2O (1/1), 96 h, 0 8C!RT, 96 % (S,S/R,R 16:1); loaded para-linked diene 9 in 69 % yield. Subsequent d) TsCl, pyridine, 20 h, 0 8C!RT, 90 %; e) NaOMe, MeOH, 44 h, room temperature, treatment of 9 with a second-generation Grubbs catalyst[17] 93 %; f) DMSO, (COCl)2, CH2Cl2, À78 8C; NEt3, À78 8C!RT, 98 %; in dichloromethane at reflux delivered the intramolecular g) CH3(CH2)8PPh3Br, nBuLi, THF, 7 h, À78!0 8C, 69 %; h) TFA/H2O (2:1), 5 min metathesis product in excellent yield, exclusively as the (repeat twice), room temperature; i) K2CO3, MeOH, 3.5 h, reflux, 80 % over two steps; j) MOMCl, Hünig base, DMAP, CH2Cl2, 18 h, 0 8C!RT, 78 %; k) Pd/C, E adduct. Sharpless asymmetric dihydroxylation of the HCO2ÀNH4+, MeOH, 2 h, reflux, 79 %. HMDS = hexamethyldisilazide, olefin with AD-mix-a afforded the diol in a diastereomeric DMSO = dimethyl sulfoxide, TFA = trifluoroacetic acid. ratio of 16:1 favoring the desired S,S product (Scheme 3).[18] Treatment of the diol with TsCl in pyridine afforded the ditosylated compound 10 in 90 % yield. treated with the lithium derivative of trimethylsilylacetylene The macrocycle was opened by treatment of 10 with followed by desilylation with TBAF to give 13 in 60 % yield sodium methoxide in methanol at room temperature to afford over the two steps.[22] Diastereoselective oxazaborolidine- the primary alcohol.[19] Swern oxidation and a subsequent catalyzed (CBS)[23] reduction gave 6 in 78 % yield, with an Wittig reaction installed the nine-membered carbon side- excellent ratio favoring the desired isomer (44:1). chain terminus as the Z olefin 4. Removal of the BDA groups With the synthesis of fragment 6 completed, we now followed by an intramolecular Williamson cyclization with turned our attention to the synthesis of butenolide 7 in potassium carbonate as the base led to the formation of the preparation for the final coupling reaction. Diene 17 was bis-THF core 11 in 80 % yield over the two steps. Finally, synthesized in seven steps from 1,4-butanediol according to a protection of the free secondary alcohols with MOMCl, previously established procedure (Scheme 5).[10] As in our followed by parallel reduction of the double bond and synthesis of muricatetrocin C, the 1,5-stereochemical rela- debenzylation under transfer-hydrogenation conditions com- tionship in the butenolide moiety was installed through the pleted the synthesis of fragment 5 (Scheme 3). HDA reaction with nitrosobenzene at 0 8C which afforded an Fragment 5 was further elaborated by Dess–Martin inseparable 7:3 mixture of regioisomers favoring the desired oxidation, followed by Horner–Wadsworth–Emmons olefina- adduct 18.[24] The NÀO bond was cleaved by using freshly Angew. Chem. Int. Ed. 2005, 44, 580 –584 www.angewandte.org 2005 Wiley-VCH Verlag GmbH Co. KGaA, Weinheim 581
  • 3. Communications man catalyst afforded the free alcohol. Oxidation of the released primary alcohol with TPAP,[26] fol- lowed by one-carbon homologation, according to the Takai procedure,[27] provided the vinyl iodide 20 as a mixture of isomers (3.7:1 ratio favoring the E geometry) in 59 % yield over two steps. Subse- quent elimination of the trifluoroacetamide group in the presence of DBU in acetonitrile at 0 8C afforded fragment 7 without epimerization of the butenolide methyl substituent (Scheme 5). Sonogashira cross-coupling of vinyl iodide 7 with the propargylic alcohol 6 proceeded smoothly to produce the skeleton 14 in 86 % yield (Scheme 4).[28] The enyne functional group was reduced selectively over the butenolide double bond by using the Wilkinson catalyst to afford the protected acetogenin in 74 % yield. Final global deprotection with BF3·Et2O in methyl sulfide afforded 1 as a colorless wax in 68 % yield. The spectroscopic data for synthetic 1 (1H NMR, 13 C NMR, IR, MS, and specific rotation)[29] were Scheme 4. Synthesis of 10-hydroxyasimicin (1). a) DMP, NaHCO3, CH2Cl2, 1 h, 0 8C!RT, in excellent agreement with those reported for 95 %; b) 15, NaHMDS, THF, 18 h, À78 8C!RT, 81 %; c) Pd(OH)2/C, H2, THF, 1 h, room naturally occurring 10-hydroxyasimicin (1).[11] temperature, 94 %; d) Me(MeO)NH·HCl, iPrMgCl, THF, 1.5 h, À10 8C, 82 %; e) trimethylsilyl- In conclusion, the successful synthesis of 10- acetylene, nBuLi, THF, 1 h, À78!0 8C; f) TBAF, THF, 20 min, À20 8C, 60 % over two steps; hydroxyasimicin (1) demonstrates the potential of g) (S)-16, BH3·Me2S, THF, 1 h, À35 8C, 78 % (S/R 44:1); h) [Pd(PPh3)2Cl2], CuI, NEt3, 45 min, room temperature, 86 %; i) [Rh(PPh3)3Cl], H2, benzene/EtOH (1:1), 23 h, room temperature, the template approach to the oxygenated core of 74 %; j) BF3·OEt2, Me2S, 20 min, room temperature, 68 %. DMP = Dess–Martin periodinane. the acetogenins in an efficient and easily adapted manner. This route provides an efficient method for the construction of the bis-THF moiety incorporat- prepared [Mo(CO)3(MeCN)3] in the presence of water at ing a tether that enhances the stereochemical outcome of the room temperature.[25] Protection of the resultant secondary RCM step and enables desymmetrization of the central hydroxy group as a MOM ether enabled the separation of the fragment for further chain extension. The TBS-protected diol regio- and stereoisomers through flash-column chromatog- building block 8, arising from (R,R,S,S)-2,3-BDA-protected raphy, thus avoiding the need for the laborious preparative (S,S)-dimethyl-d-tartrate, and the highly diastereoselective HPLC separation required in the previous synthesis of HDA approach to the butenolide unit are usefully employed muricatetrocin C. Subsequent hydrogenation over catalytic in this new synthesis of an acetogenin natural product. palladium and protection of the amine as the trifluoroaceta- Further applications of these general approaches will be mide afforded compound 19. Debenzylation with the Pearl- employed in the preparation of other members of the acetogenin series in due course. Received: October 11, 2004 Published online: December 13, 2004 . Keywords: metathesis · natural products · templating effect · total synthesis [1] a) F. Q. Alali, X.-X. Liu, J. L. McLaughlin, J. Nat. Prod. 1999, 62, 504; b) N. H. Oberlies, V. L. Croy, M. L. Harrison, J. L. McLaughlin, Cancer Lett. 1997, 15, 73; c) L. Zeng, Q. Ye, N. H. Oberlies, G. Shi, Z. Gu, K. He, J. L. McLaughlin, Nat. Prod. Rep. 1996, 13, 275, and references therein. Scheme 5. Synthesis of butenolide 7. a) Reference [10]; b) [Mo(CO)6], MeCN, 4 h, [2] For recent reviews, see: a) G. Cassiraghi, F. Zanardi, L. reflux; then 18, H2O, 15 min, room temperature; c) MOMCl, Hünig base, DMAP, Battistini, G. Rassu, G. Appendino, Chemtracts: Org. Chem. CH2Cl2, 16 h, 0 8C!RT, 20 % over three steps, including HDA; d) Pd/C, H2, THF, 1998, 11, 803; b) J. A. Marshall, K. W. Hinkle, C. E. Hagedorn, 2 h, room temperature, 100 %; e) TFAA, Hünig base, CH2Cl2, 30 min, 0 8C, 74 %; Isr. J. Chem. 1997, 37, 97; c) R. Hoppe, H. D. Scharf, Synthesis f) Pd(OH)2/C, H2, MeOH, 30 min, room temperature, 99 %; g) TPAP, NMO, NEt3, 1995, 1447; d) B. Figad›re, Acc. Chem. Res. 1995, 28, 359, and CH2Cl2, 2 h, room temperature, 84 %; h) CrCl2, CHI3, THF, 17 h, 0 8C!RT, 70 % references therein. (E/Z 3.7:1); i) DBU, CH3CN, 6 h, À15!À5 8C (60 %). TFAA = trifluoroacetic [3] For syntheses from 1998, see: a) P. Neogi, T. Doundoulakis, A. anhydride, TPAP = tetrapropylammonium perruthenate, DBU = 1,8-diazo- Yazbak, S. C. Sinha, E. Keinan, J. Am. Chem. Soc. 1998, 120, bicyclo[5.4.0]undec-7-ene. 11 279; b) S. C. Sinha, A. Sinha, E. Keinan, J. Am. Chem. Soc. 582 2005 Wiley-VCH Verlag GmbH Co. KGaA, Weinheim www.angewandte.org Angew. Chem. Int. Ed. 2005, 44, 580 –584
  • 4. Angewandte Chemie 1998, 120, 4017; c) S. Sasaki, K. Maruta, H. Naito, R. Maemura, W. R. Lin, H. F. Chiu, Y. C. Wu, K. S. Wang, M. J. Wu, E. Kawahara, M. Maeda, Chem. Pharm. Bull. 1998, 46, 154; Tetrahedron Lett. 2003, 44, 7833; l) S. R. V. Kandula, P. Kumar, d) J. A. Marshall, H. J. Jiang, J. Org. Chem. 1998, 63, 7066; e) A. Tetrahedron Lett. 2003, 44, 6149. Yazbak, S. C. Sinha, E. Keinan, J. Org. Chem. 1998, 63, 5863; [9] For syntheses from 2004, see: a) N. Maezaki, H. Tominaga, N. f) S. E. Schaus, J. Branalt, E. N. Jacobsen, J. Org. Chem. 1998, 63, Kojima, M. Yanai, D. Urabe, T. Tanaka, Chem. Commun. 2004, 4876; g) S. Hanessian, T. A. Grillo, J. Org. Chem. 1998, 63, 1049; 406; b) H. N. Han, M. K. Sinha, L. J. DSouza, E. Keinan, S. C. h) H. Makabe, A. Tanaka, T. Oritani, Tetrahedron 1998, 54, 6329; Sinha, Chem. Eur. J. 2004, 10, 2149; c) Q. S. Zhang, H. J. Lu, C. i) J. A. Marshall, H. J. Jiang, Tetrahedron Lett. 1998, 39, 1493; Richard, D. P. Curran, J. Am. Chem. Soc. 2004, 126, 36; d) A. R. j) J. A. Marshall, K. W. Hinkle, Tetrahedron Lett. 1998, 39, 1303. Cecil, Y. L. Hu, M. J. Vicent, R. Duncan, R. C. D. Brown, J. Org. [4] For syntheses from 1999, see: a) S. Bäurle, S. Hoppen, U. Koert, Chem. 2004, 69, 3368; e) L. Zhu, D. R. Mootoo, J. Org. Chem. Angew. Chem. 1999, 111, 1341; Angew. Chem. Int. Ed. 1999, 38, 2004, 69, 3154; f) T. Yoshimitsu, T. Makino, H. Nagaoka, J. Org. 1263; b) W. Kuruyama, K. Ishigami, T. Kitahara, Heterocycles Chem. 2004, 69, 1993; g) H. Makabe, A. Miyawaki, R. Takaha- 1999, 50, 981; c) J. A. Marshall, H. J. Jiang, J. Nat. Prod. 1999, 62, shi, Y. Hattori, M. Abe, H. Miyoshi, Tetrahedron Lett. 2004, 45, 1123; d) S. C. Sinha, E. Keinan, J. Org. Chem. 1999, 64, 7067; 973. e) Q. Yu, Z. J. Yao, X. G. Chen, Y. L. Wu, J. Org. Chem. 1999, 64, [10] a) D. J. Dixon, S. V. Ley, D. J. Reynolds, Angew. Chem. 2000, 2440; f) A. Sinha, S. C. Sinha, E. Keinan, J. Org. Chem. 1999, 64, 112, 3768; Angew. Chem. Int. Ed. 2000, 39, 3622; b) D. J. Dixon, 2381; g) J. A. Marshall, H. J. Jiang, J. Org. Chem. 1999, 64, 971; S. V. Ley, D. J. Reynolds, Chem. Eur. J. 2002, 8, 1621. h) S. Takahashi, K. Maeda, S. Hirota, T. Nakata, Org. Lett. 1999, [11] K. He, G. Shi, G.-X. Zhao, L. Zeng, Q. Ye, J. T. Schwedler, K. V. 1, 2025; i) T. S. Hu, Q. Lin, Y. L. Wu, Y. K. Wu, Org. Lett. 1999, 1, Wood, J. L. McLaughlin, J. Nat. Prod. 1996, 59, 1029. 399; j) Q. Yu, Y. K. Wu, H. Ding, Y. L. Wu, J. Chem. Soc. Perkin [12] S. V. Ley, D. K. Baeschlin, D. J. Dixon, A. C. Foster, S. J. Ince, Trans. 1 1999, 1183; k) Z. M. Wang, S. K. Tian, M. Shi, H. W. M. Priepke, D. J. Reynolds, Chem. Rev. 2001, 101, 53; and Tetrahedron: Asymmetry 1999, 10, 667; l) W. Q. Yang, T. references therein. Kitahara, Tetrahedron Lett. 1999, 40, 7827; m) U. Emde, U. [13] a) Y. Sakamoto, M. Okazaki, K. Miyamoto, T. Nakata, Tetrahe- Koert, Tetrahedron Lett. 1999, 40, 5979; n) Z. M. Wang, S. K. dron Lett. 2001, 42, 7633; b) E. C. Hansen, D. Lee, J. Am. Chem. Tian, M. Shi, Tetrahedron Lett. 1999, 40, 977; o) S. Takahashi, T. Soc. 2003, 125, 9582; c) P. A. Evans, J. Cui, G. P. Buffone, Angew. Nakata, Tetrahedron Lett. 1999, 40, 727; p) Z. M. Ruan, D. R. Chem. 2003, 115, 1776 – 1779; Angew. Chem. Int. Ed. 2003, 42, Mootoo, Tetrahedron Lett. 1999, 40, 49. 1734, and references therein. [5] For syntheses from 2000, see: a) S. Hoppen, S. Bäurle, U. Koert, [14] a) J. Mulzer, K. Schein, J. W. Bats, J. Buschmann, P. Luger, Chem. Eur. J. 2000, 6, 2382; b) S. Bäurle, U. Peters, T. Friedrich, Angew. Chem. 1998, 110, 1625; Angew. Chem. Int. Ed. 1998, 37, U. Koert, Eur. J. Org. Chem. 2000, 2207; c) U. Emde, U. Koert, 1566; b) J. Mulzer, I. Böhm, J. W. Bats, Tetrahedron Lett. 1998, Eur. J. Org. Chem. 2000, 1889; d) Z. M. Wang, S. K. Tian, M. Shi, 39, 9643. Eur. J. Org. Chem. 2000, 349; e) Z. M. Wang, S. K. Tian, M. Shi, [15] In this particular synthesis, the two alkenol units are the same, Chirality 2000, 12, 581; f) M. Szlosek, J. F. Peyrat, C. Chaboche, but any absolute configurational arrangement can, in principle, X. Franck, R. Hocquemiller, B. Figad›re, New J. Chem. 2000, 24, be loaded onto the orthogonal 4-bromomethylbenzyl chloride 337; g) W. Q. Yang, T. Kitahara, Tetrahedron 2000, 56, 1451; template by making use of the greater reactivity of the acyl h) T.-S. Hu, Y.-L. Wu, Y. Wu, Org. Lett. 2000, 2, 887. chloride relative to the alkyl bromide substituent. [6] For syntheses from 2001, see: a) C. Harken, R. Bruckner, New J. [16] A noticeable improvement in stereocontrol was observed in Chem. 2001, 25, 40; b) T.-S. Hu, Q. Yu, Y.-L. Wu, Y. Wu, J. Org. going from ortho to meta and finally to para substitution. The Chem. 2001, 66, 853; c) N. Maezaki, N. Kojima, A. Sakamoto, C. results of these investigations will be published in a full paper at Iwata, T. Tanaka, Org. Lett. 2001, 3, 429; d) S. D. Burke, L. Jiang, a later date. Org. Lett. 2001, 3, 1953. [17] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, [7] For syntheses from 2002, see: a) S. Takahashi, A. Kubota, T. 953. Nakata, Angew. Chem. 2002, 114, 4945; Angew. Chem. Int. Ed. [18] Comparable diastereoselectivity was obtained in the Sharpless 2002, 41, 4751; b) S. Takahashi, T. Nakata, J. Org. Chem. 2002, asymmetric dihydroxylation reaction when performed on the 67, 5739; c) S. Jiang, Z.-H. Liu, G. Sheng, B.-B. Zeng, X.-G. open chain hydroxy ester, obtained from the transesterfiction Cheng, Y.-L. Wu, Z.-J. Yao, J. Org. Chem. 2002, 67, 3404; reaction on the alkene formed immediately after the RCM d) A. R. L. Cecil, R. C. D. Brown, Org. Lett. 2002, 4, 3715; e) H. reaction. Makabe, Y. Hattori, A. Tanoka, T. Oritani, Org. Lett. 2002, 4, [19] Orthogonal macrocycle opening was achieved under transfer- 1083; f) E. Keinan, S. C. Sinha, Pure Appl. Chem. 2002, 74, 93; hydrogenation conditions and will be communicated in a full g) S. Takahashi, A. Kubota, T. Nakata, Tetrahedron Lett. 2002, paper at a later date. 43, 8661. [20] a) D. B. Dess, J. C. Martin, J. Org. Chem. 1983, 48, 4155; b) D. B. [8] For syntheses from 2003, see: a) N. Maezaki, N. Kojima, A. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277. Sakamoto, H. Tominaga, C. Iwata, T. Tanaka, M. Monden, B. [21] J. M. Williams, R. B. Jobson, N. Yasuda, G. Marchesini, U.-H. Damdinswen, S. Nakamori, Chem. Eur. J. 2003, 9, 390; b) B.-B. Dolling, E. J. J. Grabowski, Tetrahedron Lett. 1995, 36, 5461. Zeng, Y. Wu, S. Jiang, Q. Yu, Z.-J. Yao, Z.-H. Liu, H.-Y. Li, Y. Li, [22] M. Muller, A. Mann, M. Taddei, Tetrahedron Lett. 1993, 34, 3289. X.-G. Chen, Y.-L. Wu, Chem. Eur. J. 2003, 9, 282; c) P. A. Evans, [23] E. J. Corey, R. K. Bakshi, S. J. Shibata, J. Am. Chem. Soc. 1987, J. Cui, S. J. Gharpure, A. Polosukhi, H. R. Zhang, J. Am. Chem. 109, 5551. Soc. 2003, 125, 14 072; d) J. A. Marshall, A. Piettre, M. A. Paige, [24] Investigations into using alternative nitrosodienophiles to F. Valeriate, J. Org. Chem. 2003, 68, 8290; e) J. A. Marshall, A. improve the regioselectivity of the desired HDA reaction Piettre, M. A. Paige, F. Valeriate, J. Org. Chem. 2003, 68, 1780; indicated that nitrosobenzene gives the most favorable results f) J. A. Marshall, A. Piettre, M. A. Paige, F. Valeriate, J. Org. and could not be improved on. These results will be communi- Chem. 2003, 68, 1771; g) L. Zhu, D. R. Mootoo, Org. Lett. 2003, cated in a full paper at a later date. 5, 3475; h) S. Takahashi, A. Kubota, T. Nakata, Org. Lett. 2003, 5, [25] a) M. Nitta, T. Kobayashi, J. Chem. Soc. Perkin Trans. 1 1985, 1353; i) R. V. A. Orru, B. Groenendaal, J. van Heyst, M. Hunt- 1401; b) S. Cicchi, A. Goti, A. Brondi, A. Guarna, F. De Sarlo, ing, C. Wesseling, R. F. Schmitz, S. F. Mayer, K. Faber, Pure Tetrahedron Lett. 1990, 31, 3351. Appl. Chem. 2003, 75, 259; j) S. Takahashi, A. Kubota, T. Nakata, [26] S. V. Ley, J. Norman, W. P. Griffith, S. P. Marsden, Synthesis Tetrahedron 2003, 59, 1627; k) J. L. Lee, C. F. Lin, L. Y. Hsieh, 1994, 639. Angew. Chem. Int. Ed. 2005, 44, 580 –584 www.angewandte.org 2005 Wiley-VCH Verlag GmbH Co. KGaA, Weinheim 583
  • 5. Communications [27] K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408. [28] a) T. R. Hoye, P. R. Hanson, A. C. Kovelesky, T. D. Ocain, Z. P. Zhuang, J. Am. Chem. Soc. 1991, 113, 9369; b) K. Sonogashira, Y. Thoda, N. Magihara, Tetrahedron Lett. 1975, 4467. [29] Spectroscopic data for synthetic 1, a colorless wax: [a]25 = + 16 D (c = 0.25 in CHCl3, lit. [11] [a]22 = + 17.3 in CHCl3); 1H NMR D (400 MHz; CDCl3): d = 7.18 (d, J = 1.3 Hz, 1 H; 35-H), 5.05 (qd, J = 6.8, 1.4 Hz, 1 H; 36-H), 3.86 (m, 5 H; 16-H, 19-H, 20-H, 23- H), 3.60 (m, 1 H; 10-H), 3.41–3.38 (m, 2 H; 15-H, 24-H), 2.53 (dddd, J = 15.2, 3.2, 1.5, 1.5 Hz, 1 H; 3a-H), 2.40 (dddd, J = 15.1, 8.3, 1.2, 1.2 Hz, 1 H; H-3b), 1.97 (m, 8 H; 17-H, 18-H, 21-H, 22- H), 1.70–1.26 (m, 36 H; 5–9-H, 1–14-H, 25–33-H), 1.43 (d, J = 6.7 Hz, 3 H; 37-H), 0.88 ppm (t, J = 6.7 Hz, 3 H; 34-H); 13C NMR (125 MHz; CDCl3): d = 174.6 (C1), 151.8 (C35), 131.2 (C2), 83.2, 83.1 (C16, C23), 81.81, 81.75 (C19, C20), 78.0 (C36), 74.1, 74.0 (C15, C24), 71.7 (C10), 69.9 (C4), 37.34 (C5), 37.3 (C11), 37.2 (C9), 33.41, 33.36, 33.32 (C3, C14, C25), 31.9 (C32), 29.71, 29.61, 29.60, 29.59, 29.47, 29.32 (C6–C8, C12, C13, C26–C31), 29.0 (C21, C18), 28.3 (C17, C22), 25.64, 25.62, 25.5 (C6–C8, C12, C13, C26–C31), 22.7 (C33), 19.1 (C37), 14.1 ppm (C34); IR (thin film): nmax = 3404 br (OH), 2924, 2853 (CH), 1753 (C=O) cmÀ1; ˜ HRMS: calcd for C37H66O8Na [M+Na]+: 661.4650; found: 661.4651. 584 2005 Wiley-VCH Verlag GmbH Co. KGaA, Weinheim www.angewandte.org Angew. Chem. Int. Ed. 2005, 44, 580 –584