Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

200115 Bouwtex Eindevent - Christian Struck

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 37 Publicité

200115 Bouwtex Eindevent - Christian Struck

Télécharger pour lire hors ligne

In 2017 startten de Hogescholen Saxion Enschede en Hanze Groningen Bouwtex, het onderzoek naar de mogelijkheden van textiel voor de bouw in het kader van renovatie en herbestemming van gebouwen.

Op 15 januari 2020 is het onderzoek afgerond met een eindevent. Hier de presentatie over de kansen van het gebruik van textiel in de bouw van Christian Struck, lector Sustainable Building Technology Saxion: Potential of textiles for building renovation.



In 2017 startten de Hogescholen Saxion Enschede en Hanze Groningen Bouwtex, het onderzoek naar de mogelijkheden van textiel voor de bouw in het kader van renovatie en herbestemming van gebouwen.

Op 15 januari 2020 is het onderzoek afgerond met een eindevent. Hier de presentatie over de kansen van het gebruik van textiel in de bouw van Christian Struck, lector Sustainable Building Technology Saxion: Potential of textiles for building renovation.



Publicité
Publicité

Plus De Contenu Connexe

Diaporamas pour vous (18)

Similaire à 200115 Bouwtex Eindevent - Christian Struck (20)

Publicité

Plus par Booosting platform voor koplopers in bouwinnovatie (20)

Plus récents (20)

Publicité

200115 Bouwtex Eindevent - Christian Struck

  1. 1. Sustainable Building Technology Dr. Ir. Christian Struck 1 BouwTex: Potential of textiles for building renovation
  2. 2. Context o GHG reduction initiatives (-49% CO2 emissions, by 2030) lead to more stringent building energy regulations. o Localized renewable energy supply strategies (potentially) lead to enhanced stress on energy distribution networks. Energy mix, 2010 (Source: Eurostat) 3
  3. 3. Klimaatakkoord Afspraken / informaties
  4. 4. Afspraken / informatiesDwelling stock in the Netherlands 1,10 0,93 3,23 0,55 0,00 2,00 4,00 6,00 8,00 10,00 12,00 Only 0,4-1,2 % of the dwelling stock is renovated each in the European Union. Amount of dwellings (millions) per building type in the Netherlands. Det. Semi-det. Ter. Apart.
  5. 5. … we do not have 100 years! 4
  6. 6. Assembly line, process steps Infographic + Lead Generation Model 1. Wood framing 2. Installation of studs 3. Installation of insulation 4. Placing windows 5. Addition of stone strips
  7. 7. On-site data collection Infographic + Lead Generation Model • Two days on-site • Six façade elements • Three activity categories: • assembly, • waiting, • searching
  8. 8. Challenges, parametrizing models Infographic + Lead Generation Model • Very diverse facade elements • Workstations with one and two workers • Limited measurements per activity and process step • Unexpected process interruptions
  9. 9. Process steps (h:min:sec) Model Framing Studs Insulation Windows Stone strips Total 1 02:42:00 01:58:00 02:13:00 01:55:30 05:30:00 14:18:30 2 02:42:00 01:58:00 02:13:00 01:55:30 8:48:30 3 02:33:50 01:52:00 02:06:30 01:54:15 8:26:35 4 02:37:00 01:51:00 02:07:30 01:46:30 8:22:00 5 02:13:50 01:45:00 02:01:00 01:45:15 7:45:05 6 02:13:50 01:45:00 02:01:00 01:45:15 05:30:00 13:15:05 7 02:13:50 01:45:00 02:01:00 01:45:15 01:00:00 8:45:05 Model parameters, average Infographic + Lead Generation Model
  10. 10. BM search & waiting time x 0.5, plus stone strips (manually) / 16 h Infographic + Lead Generation Model Placing stone strips manually, 5:30 h per façade element, blocks continuous production.
  11. 11. BM search & waiting time x 0.5, plus stone strips (robot) / 1880 h Infographic + Lead Generation Model Estimated production capacity employing a robot for placing stone strips is 839 façade elements compared to 340 without robot, annually. (Source: www.grootsneek.nl)
  12. 12. National intitiatives Afspraken / informaties • Energieakkoord / 6 sept. 2013 • Akkoord van Parijs / 12 dec. 2015 • De Bouwagenda / 28 maart 2017 • Introductie MPG 1.0 / 1 jan 2018 • Bouw Techniek & Innovatiecentrum / 4de kwartaal 2018 • Klimaatakkoord / 10 juli 2018 (1ste kwartaal 2019) • Operationeel start BTIC / 1 mei 2019 • Energieprestatie van gebouwen (NTA 8800) / 1 juli 2020 • Oververhitting nieuwbouwwoningen / 1 juli 2020 • Wet Kwaliteitsborging / 1 jan 2021 • …
  13. 13. Sustainable Building Technology Dr. Ir. Christian Struck Occupants Building Services 13
  14. 14. Field of tension Building use Energy generation*, storage*, distribution and delivery (HVAC systems) Building structure Reducing energy consumption and increasing resource efficiency requires an integrated systems approach! 4
  15. 15. Design approaches change. (Lysen, 1996) [1996] [2014] 1. Cutting the energy demand including the use of designs, materials and equipment that are more efficient; 2. Produce energy locally from renewable and otherwise wasted resources; 3. Using smart grids generating a surplus in some buildings and feeding it into the grid. 15(WBCSD, 2014)
  16. 16. System definitions for energy-positive buildings evolve. Type 1: Annually generated energy (QR) equals or exceeds the buildings demand (QD). The demand includes energy used for providing domestic hot water (QDHW), space heating (QH), ventilation QV, as well as small power and electrical equipment (QSP). QR = QD = QDHW+ QH+QV+QSP (1) Type 2: As type 1 but the demand additionally includes the embodied energy for the building over its life cycle (QEM). QR = QD = QDHW+ QH+QV+QSP+QEM (2) Type 3: As type 2 but the demand also includes the energy required for user induced mobility. QR = QD = QDHW+ QH+QV+QSP+QEM+QMob (3)
  17. 17. … there are new building performance indicators in development! 4
  18. 18. Smart Readiness Indicator 18 Facilitate a greater uptake of smart technologies is expected to result in significant energy savings in a cost- effective way, while helping to improve comfort and occupant satisfaction and enabling buildings to play a key role in smart energy systems.
  19. 19. Smart Readiness 19 The flexibility of a building's overall electricity demand, including its ability to enable participation in active and passive as well as implicit and explicit demand-response, in relation to the grid, for example through flexibility and load shifting capacities. Aspect 1: Building – Grid interaction
  20. 20. Smart Readiness 20 The ability to maintain energy efficiency, performance and operation of the building through the adaptation of energy consumption for example through use of energy from renewable sources Aspect 2: Energy management
  21. 21. Smart Readiness 21 The buildings ability to adapt its operation mode in response to the needs of the occupant paying due attention to the availability of user- friendliness, maintaining healthy indoor climate conditions and ability to report on energy use Aspect 3: Building - User Interaction
  22. 22. 22 How do we communicate with the user? ?
  23. 23. 23 …from data to knowledge (Judelmann [2004])
  24. 24. Performance pattern recognition Rel. productivity C5: 1. Jan – 31 Dec. 2011 Temperature differential C5: Room temp. to opt. 21.75oC 00:00 08:00 12:00 16:00 20:00 24:00 04:00 00:00 08:00 12:00 16:00 20:00 24:00 04:00 4 (Struck et al. [2012] )
  25. 25. 25 …MOA model, adapted … (Ölander and Folke [1995], Artho et al. [2012] )
  26. 26. 26 Dynamische toestandsvisualisatie (1/2) Biomimicry: Communicatie van verbruiksgegevens en ruimtoestandsgrootheden.
  27. 27. 27 Interactive data-communication network, prototype Finale prototype actieve en passieve communicatie van ruimtoestandsgrootheden. Ruimtes 1-3
  28. 28. We are able to set-up and operate prototypical systems, but…
  29. 29. 29 (Hulin et al. Eur Respir J 2012; 40: 1033–1045) Indoor air pollution
  30. 30. 30 (Hulin et al. Eur Respir J 2012; 40: 1033–1045) Indoor air pollution
  31. 31. Response to health risks 31 (Salthammer, Assessing Human Exposure to Organic Pollutants in the Indoor Environment, Angew. Chem. Int. Ed. 2018, 57, 12228 – 12263)
  32. 32. Indoor air chemistry 32
  33. 33. 33 1. Lightweight 2. Easy to transport and install 3. Great potential for system integration (sensors, actuators, means of communication …) 4. Can be engineered to many different requirements 5. Use of recycled material 6. Use as filter material (gases / fluids) 7. Carrier for reactive substances 8. Industrial production 9. Low-cost Advantages of using textiles in construction
  34. 34. 34 - Installation with / for optimized heat transfer - Weather resistivity - Application of glues and impact on indoor environmental quality - Resistance to thermal and mechanical forces (high and low temperature's [fire], wind, vandalism) - Resistance to unwanted chemical reactions Challenges for the application of textiles
  35. 35. SBT applied research Building as a product. 35 Customized Energy management system Enhanced well-being Semi-autonomous
  36. 36. Data as starting point. 36 Design Manufacturing proces Performance assessment Smart-home services SBT applied research
  37. 37. Sustainable Building Technology Dr. Ir. Christian Struck 37 BouwTex: Potential of textiles for building renovation

×