Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

DiffCalculus August 9, 2012

495 vues

Publié le

Repaso de operaciones con fracciones y racionalización.

  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

DiffCalculus August 9, 2012

  1. 1. 3. Operations with fractions.Examples: 2 2 1 1 a +b a) 2 + − 3 3 a − ab ab a b − ab
  2. 2. 3. Operations with fractions.Examples: 2 2 1 1 a +b a) 2 + − 3 3 a − ab ab a b − ab 2 2 a − 3 a + 9a + 20 a − 16 b) × 2 ÷ 2 4a − 4 a − 6a + 9 2a − 2a
  3. 3. 4. Rationalize the denominator.
  4. 4. 4. Rationalize the denominator. Rationalising the denominator is when you move a root (like a square root or cube root) from the bottom of a fraction to the top.
  5. 5. 4. Rationalize the denominator. Rationalising the denominator is when you move a root (like a square root or cube root) from the bottom of a fraction to the top. 1 2
  6. 6. 4. Rationalize the denominator. Rationalising the denominator is when you move a root (like a square root or cube root) from the bottom of a fraction to the top. 1 2
  7. 7. 4. Rationalize the denominator. Rationalising the denominator is when you move a root (like a square root or cube root) from the bottom of a fraction to the top. 1 2 2 2
  8. 8. 4. Rationalize the denominator.Examples:Rationalize the denominator of 2+ 3 8− 3
  9. 9. 4. Rationalize the denominator.Examples:Rationalize the denominator of 2+ 3 8− 3Rationalize and simplify
  10. 10. 4. Rationalize the denominator.Examples:Rationalize the denominator of 2+ 3 8− 3Rationalize and simplify a +1 1+ a + 1
  11. 11. 5. Exercises.Solve the equations:1. 4y 2 + 4y + 1 = 02. 81x 2 − 1 = 03. y 2 − 9y = 04. 40x 2 − 47x + 12 = 0Solve the following: 1 2x 15. + 2 − x +1 x −1 x −1 9 − 6x + x 2 x 2 − 5x + 66. 2 g 2 9− x 3x − 9x x+2 x2 − 47. 2 ÷ x + 4x + 4 x 3 + 8Rationalize and simplify x−28. 3 − 2x + 5 h9. x+h − x

×