SlideShare una empresa de Scribd logo
1 de 8
UNIVERSIDAD DEL MAGDALENA
DIVISIÓN DE EDUCACIÓN
LICENCIATURA:
ASIGNATURA: ESTUDIO METABOLICO DE LAS BIOMOLECULAS
SEMESTRE: VII
TUTOR: HERNEY ARMANDO RODRIGUEZ HOYOS Biólogo.
GUIA TUTORIAL
1. PRESENTACION
La biología moderna no puede comprenderse sin cierto conocimiento de química. En este
texto se introducen algunos conceptos básicos, como elemento, moléculas, formación de
moléculas, los elementos químicos que forman la materia viva (bioelementos), los principios
inmediatos o biomoléculas, las propiedades de las proteínas y ácidos nucleicos para la
formación de la vida.
2. PROPÓSITOS GENERALES
 Ampliar los conceptos fundamentales sobre el estudio metabólico de las
biomoléculas, como herramienta fundamental para entender procesos vitales de los
organismos vivos y su aporte en diferentes campos de la ciencia.
2.2 ESPECIFICOS
 Reconocer las diferentes biomoléculas esenciales para la formación de la vida.
 Identificar las diferentes reacciones que realiza el cuerpo humano para su
funcionamiento, crecimiento y desarrollo.
3. CONTENIDO
3.1 Elemento químico.
3.2 Compuesto químico
3.3 Biomoléculas
3.4 Proteínas
3.5 Hormonas
3.6 ADN
3.7 Metabolismo.
Elemento químico
Es toda aquella sustancia que no se puede descomponer en otras más simples mediante
procesos químicos. Ejemplos de elementos son: cobre, oro, sodio, hidrógeno, oxígeno,
nitrógeno.
Para representar a los elementos se emplea un conjunto de símbolos químicos que son
combinaciones de letras. La primera letra del símbolo químico es siempre mayúscula
acompañada por una segunda y hasta una tercera, que son siempre minúsculas.
Los símbolos de algunos elementos provienen de su nombre en latín, por ejemplo, el elemento
sodio se simboliza Na (natrium), el hierro, Fe (ferrum), otros están relacionados con una zona
geográfica, el galio (Ga) y el germanio (Ge). Uno sólo, el del tungsteno, W, proviene de la
palabra en alemán wolfram.
Compuestos químicos: son sustancias puras que pueden descomponerse por procesos
químicos en dos o más sustancias simples. Esta descomposición no se puede lograr por
medios físicos por más drásticos que sean. Ejemplos de compuestos comunes son: la sal, el
alcohol, el azúcar y la vitamina C. a diferencia de las mezclas los compuestos tienen una
composición invariable o definida. Es decir, un compuesto dado presenta siempre sus
componentes en la misma proporción. Por ejemplo, el agua, cualquiera sea su origen o estado
físico, esta formado por 88.8% de Oxigeno y 11.2% de Hidrogeno, por peso.
BIOELEMENTOS
El protoplasma está constituido por iones, moléculas y partículas de variedad que al combinarse
integran los organelos que definitivamente constituyen a la célula. Estos elementos también se
conocen como elementos biogenésicos.
Cuando los elementos biogenésicos se combinan entre sí, forman compuestos que pueden ser
inorgánicos u orgánicos.
Los compuestos inorgánicos se forman por enlace iónico; tenemos tres tipos: agua, gases y
sales minerales.
El agua (H2O) es el principal compuesto inorgánico de todos los seres vivos, algunos de los
cuales como la medusa la contienen en grandes cantidades. Para comprender la importancia
del agua, basta recordar que los líquidos celulares son sustancias suspendidas o disueltas en
agua. Asimismo, el agua actúa en el transporte de alimentos y sustancias de desecho. También
participa en la hidrólisis de proteínas y carbohidratos. Desde el punto de vista físico, garantiza la
turgencia celular y actúa como termorregulador.
Los gases más importantes del protoplasma son el oxígeno molecular (O2) y el dióxido de
carbono, que participan básicamente en los procesos de fotosíntesis y respiración.
Las sales minerales se producen a partir de la reacción de un ácido con una base. Los iones de
sales minerales se presentan disueltos en soluciones que los contienen y desempeñan
importantes funciones como por ejemplo:
a) El sodio (Na). Participa al igual que el potasio en el transporte por las membranas.
b) El fósforo (P). Juega importante papel en el metabolismo celular.
c) El calcio (Ca). Forma parte del esqueleto y los dientes.
d) El nitrógeno (N). Participa en la síntesis de proteínas.
Existen una gran variedad de compuestos orgánicos tales como: carbohidratos, proteínas,
lípidos, ácidos nucleídos y las moléculas energéticas. Algunos forman parte estructural de las
células, otros son fuentes de energía y otros regulan el metabolismo. La mayoría de los
compuestos orgánicos presentan o están formados por cadenas carbonadas, a las que se les
asocian átomos de hidrógeno y nitrógeno.
CARBOHIDRATOS
Los carbohidratos, conocidos también como glúcidos o azúcares se consideran derivados
aldehídicos y cetónicos de alcoholes polivalentes; están formados por carbono, oxígeno e
hidrógeno. Se obtienen a partir de la fotosíntesis y en sus ligaduras (C-H) almacenan energía
que se utiliza en la actividad respiratoria intracelular de los seres vivos.
C6H12O6 + 6O2 6H2O + 6CO2 + energía
Los azúcares se clasifican en monosacáridos, disacáridos, oligosacáridos y polisacáridos.
MONOSACÁRIDOS
Son los azúcares más simples (fig.2.4). Atendiendo al número de carbono en su estructura
pueden ser: triosas, tetrosas, pentosas o hexosas y responden a la fórmula general Cn H2n On,
donde (n) es el número de carbonos que tiene la molécula.
Las hexosas. Son azúcares sencillos de gran importancia biológica pues son la principal fuente
de energía de los seres vivos. Entre ellos tenemos la glucosa, la galactosa y la fructosa.
Glucosa. Sustancia soluble en agua, cristalina, de sabor dulce, que se puede encontrar en
todos los tejidos animales y vegetales. El déficit de esta hexosa en la sangre produce la
diabetes mellitus.
Galactosa. Es un isómero de la glucosa, sintetizada por las glándulas mamarias de las hembras
de los mamíferos para la producción de leche.
Fructosa. Se encuentra en los frutos maduros y en la miel de las abejas. Posee un alto nivel
edulcorante.
POLISACÁRIDOS
Son sólidos insolubles en agua, se forman a partir de la unión de numerosos monosacáridos.
Podemos citar entre ellos el almidón, el glucógeno y la celulosa.
Almidón. Polisacárido abundante en la papa, el trigo, el arroz, la cebada, etc. Constituye la
mayor reserva energética de los organismos.
Glucógeno. Almidón animal que se localiza en el corazón, el hígado y en los tejidos musculares.
Celulosa. Abundante en las fibras de algodón, cáñamo y madera. Es de color blanco y poco
soluble en agua. Forma parte estructural de las plantas, siendo el componente principal de la
pared celular de las células vegetales.
Al llegar al organismo los polisacáridos son hidrolizados hasta transformarse en monosacáridos
y de esta manera poder ser utilizados en las diferentes funciones estructurales y metabólicas. Al
combinarse con proteínas (glucoproteínas) o con lípidos
(Glucolípidos), muchos carbohidratos sirven como componentes estructurales de las células;
otros forman el tejido conectivo, y los cartílagos. No menos importantes son las ribosas y
desoxirribosas que forman parte de los ácidos nucleícos.
LÍPIDOS
Son compuestos orgánicos insolubles en agua, se encuentran ampliamente difundidos
formando parte de organismos vegetales y animales (sebo de res, tocino, aceite de oliva e
hígado de bacalao). Están formados por carbono, hidrógeno y oxígeno. Se disuelven en
benceno, cloroformo y acetona entre otros.
Como lípidos más frecuentes en los organismos tenemos las grasas neutras (triglicéridos), los
fosfolípidos, los esteroides y las ceras.
Triglicéridos. Son compuestos simples, formados por una molécula de glicerol y tres moléculas
de ácidos grasos. Los triglicéridos son importantes en nuestra dieta alimentaria por la presencia
en su composición de ácidos grasos, cuya deficiencia en el organismo puede provocar
dermatitis y defectos en la reproducción.
Fosfolípidos. Son esteres derivados del glicerol. Estructuralmente están constituidos por dos
grupos acilo (ácido grasos) y un grupo fosfato. Están formando parte de las membranas de las
células y son componentes estructurales de los seres vivos.
Esfingolípidos. Son considerados esteres de ácidos grasos; contienen ácido fosfórico y en
algunos casos carbohidratos.
Esteroides. Son moléculas complejas, se destacan como moléculas biológicas la vitamina D, las
hormonas sexuales, las sales biliares y el colesterol.
Ceras. Son esteres propios de ácidos grasos con alcoholes de cadena larga. Son utilizados
para confeccionar betunes y cosméticos entre otros.
Los lípidos constituyen la principal fuente energética de los seres vivos. Son importantes como
aislante térmico y como soporte protector de órganos vitales. Por otra parte, son componentes
fundamentales de la membrana celular y participan en la actividad reguladora como hormonas.
PROTEÍNAS
Son macromoléculas presentes en la célula. Se componen de carbono, hidrógeno, oxígeno,
nitrógeno, azufre y fósforo. Las enzimas, algunas hormonas y la mayoría de los componentes
estructurales de la célula son proteínas. Las proteínas están constituidas por numerosos
compuestos más sencillos llamados aminoácidos, unidos entre sí por enlace peptídico. Estos
aminoácidos poseen un grupo amino (-NH2) y un grupo carboxilo (- COOH) unidos a un carbón
central; al carbono también se le unen un átomo de hidrógeno y un radical. Existen veinte tipos
de aminoácidos lo cual está determinado por la posición del radical.
Las proteínas difieren entre sí por el número, secuencia y ordenamiento de sus aminoácidos.
ESTRUCTURA DE LA PROTEÍNA
Las proteínas están estructuradas en cuatro niveles diferentes.
Estructura Primaria. Representa la secuencia exacta de aminoácidos que forman a la proteína
así como la forma de unión de los átomos. Adopta forma de lámina plana.
Estructura Secundaria. Estas cadenas están adoptando forma de espiral, láminas plegadas o
enrollamiento al azar; tal es el caso del colágeno y la queratina.
Estructura Terciaria. Las cadenas polipeptídicas se curvan o pliegan adoptando aspectos
globulares como ocurre en la hemoglobina de la sangre.
Estructura Cuaternaria. Cuando las proteínas están formadas por varias cadenas de
aminoácidos y su disposición espacial es más compleja.
CLASIFICACIÓN DE LAS PROTEÍNAS A PARTIR DE SU COMPOSICIÓN QUÍMICA.
Proteínas Simples. Al hidrolizarse sólo producen aminoácidos, pues están constituidas por C, H,
O y N; tal es el caso de las albúminas, globulinas, glutaminas y protaminas.
Proteínas Complejas. Son las que por hidrólisis liberan otros componentes orgánicos o
inorgánicos además de aminoácidos; en este grupo encontramos las nucleoproteínas, las
lipoproteínas y las glucoproteínas entre otras.
DESNATURALIZACIÓN DE LAS PROTEÍNAS
La desnaturalización es un proceso que sufren las proteínas, donde se desintegran poco a poco
en aminoácidos bajo la acción del calor o determinadas sustancias químicas. De esta manera
pierde sus propiedades y queda fisiológicamente inactiva.
FUNCIONES DE LAS PROTEÍNAS
Las proteínas son de gran importancia como componentes estructurales de la célula, al
descomponerse en aminoácidos, estos últimos son utilizados por las células para formar nueva
“materia viva”. Asimismo son constituyentes funcionales de las enzimas y de algunas
hormonas. También pueden servir de combustible al transformarse en glucosa por el proceso
de desaminación. Es importante destacar que la mayoría de los anticuerpos del organismo son
proteínas.
ÁCIDOS NUCLEICOS
Los ácidos nucléicos son biomoléculas de gran tamaño. Están presentes en todas las células
de los organismos vivos donde desarrollan funciones importantes; son los encargados de
guardar toda la información, por lo cual son capaces de dirigir las actividades de las células.
Desde el punto de vista químico, los ácidos nucleídos están conformados por unidades
llamadas nucleótidos que presentan cada uno tres tipos de componentes: azúcar, un grupo
fosfato y una base nitrogenada. Las bases nitrogenadas son: adenina, timina, citosina, guanina
y uracilo. La unión de una molécula de azúcar con una que contiene fósforo y con una de las
bases nitrogenadas, forma un nucleótido.
CLASIFICACIÓN DE LOS ÁCIDOS NUCLEICOS
Los ácidos nucléicos se clasifican de acuerdo al tipo de azúcar que los constituye. El ácido
ribonucleico (ARN) contiene el azúcar ribosa y el ácido desoxirribonucleico (ADN), tiene el
azúcar llamado desoxirribosas. Los dos tipos de ácidos nucléicos también difieren en que las
moléculas en el ARN consisten en líneas sencillas de nucleótidos, conteniendo las bases
nitrogenadas, citosina, guanina, adenina y uracilo; mientras que las moléculas en el ADN están
formadas por líneas dobles de nucleótidos y contienen las bases citosina, guanina, adenina y
timina.
Ácido desoxirribonucleico. Según James Watson y Francis Criek, la molécula de ADN está
formada por dos cadenas antiparalelas de nucleótidos. Estas cadenas se unen por puentes de
hidrógeno que se establecen entre las bases; así la timina se une con la adenina por dos
enlaces y la citosina se une a la guanina por tres enlaces.
La secuencia de ordenamiento de las bases en la molécula de ADN, le da la especificidad
biológica.
Ácido ribonucleico. Están constituidos por una ribosa, y las bases nitrogenadas adenina,
guanina, citosina y uracilo. Existen tres tipos: los ARN mensajeros ARNm), los ARN de
transferencia (ARNt) y los ARN ribosomal (ARNr).
• El ARNm (mensajero): Es el encargado de llevar el mensaje genético al citoplasma.
• El ARNt (transporte): Transporta los aminoácidos en el orden que se necesitan hacia los
ribosomas, donde se realiza la síntesis.
El ARNr (ribosomal): Unido a otras proteínas forma el organelo encargado de la síntesis de
proteínas.
EL METABOLISMO
En diversas y numerosas células que componen los sistemas vivos se están realizando
constantemente una gran cantidad de reacciones químicas, las cuales en su conjunto,
constituyen lo que conocemos como metabolismo. Estas reacciones son de dos tipos.
Reacciones catabólicas, en las cuales se degradan moléculas complejas (muchas de ellas
provenientes de los alimentos) para formar otras mas pequeñas, a la par que se libera energía.
Reacciones anabólicas, en las que se emplea energía para sintetizar los compuestos que
requiere el organismo para su funcionamiento y para el crecimiento y desarrollo del cuerpo.
Anabolismo y Catabolismo.
El metabolismo está constituido por dos tipos de reacciones básicas: las anabólicas y las
catabólicas.
Anabolismo: Es el conjunto de reacciones con las que los organismos vivos sintetizan
(fabrican) las biomoléculas que los componen, hidratos de carbono, proteínas, lípidos y ácidos
nucleicos, a partir de compuestos presentes en la célula. La energía necesaria para reacciones
anabólicas es provista por moléculas de ATP (Adenosina Tri-Fosfato). La fotosíntesis,
biosíntesis de ácidos grasos y aminoácidos son ejemplos de rutas anabólicas.
Catabolismo: Es el conjunto de reacciones de degradación a través de las cuales los seres
vivos obtienen energía. Los polímeros o biomoléculas presentes en las células son
transformadas en moléculas más simples (orgánicas o inorgánicas), como el piruvato, ácido
láctico, amoniaco y CO2. La energía contenida en los enlaces de las moléculas degradadas es
liberada y luego almacenada en los enlaces fosfato de alta energía del ATP. La β-oxidación de
ácidos grasos, la glucólisis, la fermentación y la respiración celular son ejemplos de rutas
catabólicas.
Relación entre energía y metabolismo
La energía se define como la capacidad para realizar un trabajo. En particular los seres vivos
recurren a la energía química contenida en las uniones de las moléculas, para sus reacciones
metabólicas. Según el enunciado de la primera ley de la termodinámica, la energía no se crea ni
destruye, se transforma. Es decir que la energía no se “produce” sino que se convierte de una
forma en otra. Por ejemplo, de energía lumínica en química, de energía química en calórica.
La energía liberada durante una reacción representa energía útil para alguna otra. La energía
libre de Gibbs, expresada con la letra”G”, es la energía liberada durante una reacción, que es
utilizable para realizar un trabajo. El cambio de energía libre (ΔG) de una reacción, denota si la
reacción puede ocurrir de forma espontánea o no.
Moléculas transportadoras de energía
Los seres vivos, desde el organismo más simple hasta el más complejo, necesitan un aporte
permanente de energía. Algunas reacciones producen energía, mientras que otras la
consumen. ¿Cómo acurre esa transferencia de energía entre distintos tipos de reacciones
metabólicas? Usualmente, la energía liberada durante reacciones catabólicas se almacena en
enlaces de alta energía de moléculas transportadoras. De esta manera, se producen
compuestos que almacenan la energía en su estructura. El ATP (Adenosín trifosfato) es la
“moneda de energía” más frecuente en los seres vivos. Está compuesta por una base
nitrogenada (Adenina), un azúcar (ribosa) y tres grupos fosfato. Es un tipo de nucleótido que
contiene enlaces fosfato de alta energía, y lábiles (que se rompen con facilidad y ceden su
energía).
El ATP provee de energía para:
Síntesis de polímeros o moléculas complejas.
Trabajo mecánico en la contracción muscular
Transporte activo a través de membranas.
Movimiento celular (cilias, flagelos, movimiento de cromosomas, etc.)
La hidrólisis del ATP en ADP (adenosin difosfato) o AMP (adenosin monofosfato) libera grandes
cantidades de energía, que es aprovechada por reacciones que la absorben para llevarse a
cabo.
Fig 1. Hidrólisis del ATP y producción de energía.
La transformación de ATP en ADP y AMP es un mecanismo sumamente dinámico, que
responde a las necesidades energéticas de la célula.
BIBLIOGRAFIA
CERVANTES. M. Biología General. Primera edición. México, Publicaciones Cultural, 1998.
CERVANTES. R. M. Recursos, Ecología y Sociedad. México, UNAN, 1987.
FRIED. G. H. Biología. Sexta edición. México, Mc Graw Hill, 1990.
Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry: Part A: Structure and
Mechanisms 4th Ed. Springer, 2000.
GUYTON. Arthur. C. Tratado de Fisiología Médica. Novena edición. México, Mc Graw Hill.2000.
LIZCANO. A. El origen de la vida. México, Trillas, 1984.
LIRA. S. Ricardo. H. Fisiología Vegetal. Primera edición. México, Trillas, 1994.
MURRAY. Robert. K. Bioquímica de Harper. Decimoquinta edición. México, Manual Moderno.
2001.
ODUN. E.P. Ecología. Tercera edición. México. Interamericana. 1972.

Más contenido relacionado

La actualidad más candente

Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicasguest5981d0
 
Las moléculas de la vida
Las moléculas de la vidaLas moléculas de la vida
Las moléculas de la vidaquimbioalmazan
 
Biomoléculas: hidratos de carbono
Biomoléculas: hidratos de carbonoBiomoléculas: hidratos de carbono
Biomoléculas: hidratos de carbonoestudiantesaccion
 
moleculas organicas
moleculas organicasmoleculas organicas
moleculas organicasOlga
 
Glucidos (2)
Glucidos (2)Glucidos (2)
Glucidos (2)lubelassi
 
Univeralidad Moleculas Organicas
Univeralidad Moleculas OrganicasUniveralidad Moleculas Organicas
Univeralidad Moleculas Organicasrommis
 
Biomoléculas orgánicas
Biomoléculas orgánicasBiomoléculas orgánicas
Biomoléculas orgánicasOrlando Pérez
 
Biomoleculas enfermería
Biomoleculas enfermeríaBiomoleculas enfermería
Biomoleculas enfermeríacarolina
 
Biomoleculas Carbohidratos
Biomoleculas CarbohidratosBiomoleculas Carbohidratos
Biomoleculas Carbohidratosdario ibarra
 
Moleculas organicas e inorganicas en el proceso vital
Moleculas organicas e inorganicas en el proceso vitalMoleculas organicas e inorganicas en el proceso vital
Moleculas organicas e inorganicas en el proceso vitalRocio Añazco
 
1. las biomoléculas inorgánicas
1. las biomoléculas inorgánicas1. las biomoléculas inorgánicas
1. las biomoléculas inorgánicashome
 
Clase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasClase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasLoby
 
moleculas organicas
moleculas organicasmoleculas organicas
moleculas organicasluis3456789
 

La actualidad más candente (20)

Biomoleculas
BiomoleculasBiomoleculas
Biomoleculas
 
3 Moleculas Organicas
3 Moleculas Organicas3 Moleculas Organicas
3 Moleculas Organicas
 
Moleculas Organicas
Moleculas OrganicasMoleculas Organicas
Moleculas Organicas
 
Moléculas biológicas
Moléculas biológicasMoléculas biológicas
Moléculas biológicas
 
Las moléculas de la vida
Las moléculas de la vidaLas moléculas de la vida
Las moléculas de la vida
 
Moléculas orgánicas
Moléculas orgánicasMoléculas orgánicas
Moléculas orgánicas
 
Biomoléculas: hidratos de carbono
Biomoléculas: hidratos de carbonoBiomoléculas: hidratos de carbono
Biomoléculas: hidratos de carbono
 
Moléculas Orgánicas
Moléculas OrgánicasMoléculas Orgánicas
Moléculas Orgánicas
 
moleculas organicas
moleculas organicasmoleculas organicas
moleculas organicas
 
Glucidos (2)
Glucidos (2)Glucidos (2)
Glucidos (2)
 
Univeralidad Moleculas Organicas
Univeralidad Moleculas OrganicasUniveralidad Moleculas Organicas
Univeralidad Moleculas Organicas
 
MoléCulas BiolóGicas
MoléCulas BiolóGicasMoléCulas BiolóGicas
MoléCulas BiolóGicas
 
Biomoléculas orgánicas
Biomoléculas orgánicasBiomoléculas orgánicas
Biomoléculas orgánicas
 
Biomoleculas enfermería
Biomoleculas enfermeríaBiomoleculas enfermería
Biomoleculas enfermería
 
Biomoleculas Carbohidratos
Biomoleculas CarbohidratosBiomoleculas Carbohidratos
Biomoleculas Carbohidratos
 
Moleculas organicas e inorganicas en el proceso vital
Moleculas organicas e inorganicas en el proceso vitalMoleculas organicas e inorganicas en el proceso vital
Moleculas organicas e inorganicas en el proceso vital
 
1. las biomoléculas inorgánicas
1. las biomoléculas inorgánicas1. las biomoléculas inorgánicas
1. las biomoléculas inorgánicas
 
Moleculas biologicas
Moleculas biologicasMoleculas biologicas
Moleculas biologicas
 
Clase 4 Moleculas Organicas
Clase 4 Moleculas OrganicasClase 4 Moleculas Organicas
Clase 4 Moleculas Organicas
 
moleculas organicas
moleculas organicasmoleculas organicas
moleculas organicas
 

Destacado

Diapositivas biomoléculas
Diapositivas biomoléculasDiapositivas biomoléculas
Diapositivas biomoléculasCamila García
 
Normas apa cristian silva 11 a
Normas apa cristian silva 11 aNormas apa cristian silva 11 a
Normas apa cristian silva 11 aoncecsch
 
Realidades aumentadas
Realidades aumentadasRealidades aumentadas
Realidades aumentadasLipineca
 
Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...
Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...
Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...butest
 
didáctica por mayra zurita
didáctica por mayra zuritadidáctica por mayra zurita
didáctica por mayra zuritamayraely
 
Tecnologia de la informacion y de la comunicación (1)
Tecnologia de la informacion y de la comunicación (1)Tecnologia de la informacion y de la comunicación (1)
Tecnologia de la informacion y de la comunicación (1)Jesica Paez
 
Fritz Strassman
Fritz StrassmanFritz Strassman
Fritz StrassmanCrisiD
 
Aufruf ee-statt-atom03012011
Aufruf ee-statt-atom03012011Aufruf ee-statt-atom03012011
Aufruf ee-statt-atom03012011metropolsolar
 
La herencia política y social de la edad
La herencia política y social de la edadLa herencia política y social de la edad
La herencia política y social de la edadMalee20
 
Taller+medios+de+transmisíon++no+guiados kate
Taller+medios+de+transmisíon++no+guiados kateTaller+medios+de+transmisíon++no+guiados kate
Taller+medios+de+transmisíon++no+guiados kateKaterine Mendosa
 
Antrag zur Errichtung eines Mehrgenerationenplatzes in Birkenfeld
Antrag zur Errichtung eines Mehrgenerationenplatzes in BirkenfeldAntrag zur Errichtung eines Mehrgenerationenplatzes in Birkenfeld
Antrag zur Errichtung eines Mehrgenerationenplatzes in BirkenfeldSPD Birkenfeld
 
Bayerische Staatsbibliothek: mobiler OPACplus
Bayerische Staatsbibliothek: mobiler OPACplusBayerische Staatsbibliothek: mobiler OPACplus
Bayerische Staatsbibliothek: mobiler OPACplusAndreas Neumann
 

Destacado (20)

Presentacion biomoleculas
Presentacion biomoleculasPresentacion biomoleculas
Presentacion biomoleculas
 
Diapositivas biomoléculas
Diapositivas biomoléculasDiapositivas biomoléculas
Diapositivas biomoléculas
 
Normas apa cristian silva 11 a
Normas apa cristian silva 11 aNormas apa cristian silva 11 a
Normas apa cristian silva 11 a
 
Digitale Identiaet
Digitale IdentiaetDigitale Identiaet
Digitale Identiaet
 
Realidades aumentadas
Realidades aumentadasRealidades aumentadas
Realidades aumentadas
 
Instructivo ciudadanos
Instructivo ciudadanosInstructivo ciudadanos
Instructivo ciudadanos
 
Guia sexta reunion cte primaria
Guia sexta reunion cte primariaGuia sexta reunion cte primaria
Guia sexta reunion cte primaria
 
Echavarria
EchavarriaEchavarria
Echavarria
 
imagenes
imagenesimagenes
imagenes
 
Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...
Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...
Praktikumsbericht als docx - HTW Berlin - Hochschule für Technik ...
 
didáctica por mayra zurita
didáctica por mayra zuritadidáctica por mayra zurita
didáctica por mayra zurita
 
Tecnologia de la informacion y de la comunicación (1)
Tecnologia de la informacion y de la comunicación (1)Tecnologia de la informacion y de la comunicación (1)
Tecnologia de la informacion y de la comunicación (1)
 
Fritz Strassman
Fritz StrassmanFritz Strassman
Fritz Strassman
 
Aufruf ee-statt-atom03012011
Aufruf ee-statt-atom03012011Aufruf ee-statt-atom03012011
Aufruf ee-statt-atom03012011
 
Markenerlebnis Quarterly Edition #2
Markenerlebnis Quarterly Edition #2Markenerlebnis Quarterly Edition #2
Markenerlebnis Quarterly Edition #2
 
Presentacion1
Presentacion1Presentacion1
Presentacion1
 
La herencia política y social de la edad
La herencia política y social de la edadLa herencia política y social de la edad
La herencia política y social de la edad
 
Taller+medios+de+transmisíon++no+guiados kate
Taller+medios+de+transmisíon++no+guiados kateTaller+medios+de+transmisíon++no+guiados kate
Taller+medios+de+transmisíon++no+guiados kate
 
Antrag zur Errichtung eines Mehrgenerationenplatzes in Birkenfeld
Antrag zur Errichtung eines Mehrgenerationenplatzes in BirkenfeldAntrag zur Errichtung eines Mehrgenerationenplatzes in Birkenfeld
Antrag zur Errichtung eines Mehrgenerationenplatzes in Birkenfeld
 
Bayerische Staatsbibliothek: mobiler OPACplus
Bayerische Staatsbibliothek: mobiler OPACplusBayerische Staatsbibliothek: mobiler OPACplus
Bayerische Staatsbibliothek: mobiler OPACplus
 

Similar a Est. metabolico de las biomoleculas

Similar a Est. metabolico de las biomoleculas (20)

Biomoleculas-trini
Biomoleculas-triniBiomoleculas-trini
Biomoleculas-trini
 
biomoléculas
biomoléculasbiomoléculas
biomoléculas
 
Biomoleculas
BiomoleculasBiomoleculas
Biomoleculas
 
Biomoleculas
BiomoleculasBiomoleculas
Biomoleculas
 
Biomoleculas
BiomoleculasBiomoleculas
Biomoleculas
 
Tema 1
Tema  1Tema  1
Tema 1
 
Clase 3 biologia
Clase 3 biologiaClase 3 biologia
Clase 3 biologia
 
Compuestos químicos importantes en los seres vivos
Compuestos químicos importantes en los seres vivosCompuestos químicos importantes en los seres vivos
Compuestos químicos importantes en los seres vivos
 
Proycto
ProyctoProycto
Proycto
 
Para el blok
Para el blokPara el blok
Para el blok
 
Bioelementos y biomoleculas
Bioelementos y biomoleculasBioelementos y biomoleculas
Bioelementos y biomoleculas
 
Bioelementos y Biomoleculas
Bioelementos y BiomoleculasBioelementos y Biomoleculas
Bioelementos y Biomoleculas
 
Mi Exposicion
Mi ExposicionMi Exposicion
Mi Exposicion
 
Mi Exposición
Mi Exposición Mi Exposición
Mi Exposición
 
Mi exposición
Mi exposición Mi exposición
Mi exposición
 
Mi trabajo
Mi trabajoMi trabajo
Mi trabajo
 
Universidad de san luis (n.e.)
Universidad de san luis (n.e.)Universidad de san luis (n.e.)
Universidad de san luis (n.e.)
 
Biomoleculas organicas e inorganicas
Biomoleculas organicas e inorganicasBiomoleculas organicas e inorganicas
Biomoleculas organicas e inorganicas
 
Portaforio de bioquimica
Portaforio de bioquimicaPortaforio de bioquimica
Portaforio de bioquimica
 
Biomoléculas inorgánicas y orgánicas 1° medio
Biomoléculas inorgánicas y orgánicas 1° medioBiomoléculas inorgánicas y orgánicas 1° medio
Biomoléculas inorgánicas y orgánicas 1° medio
 

Est. metabolico de las biomoleculas

  • 1. UNIVERSIDAD DEL MAGDALENA DIVISIÓN DE EDUCACIÓN LICENCIATURA: ASIGNATURA: ESTUDIO METABOLICO DE LAS BIOMOLECULAS SEMESTRE: VII TUTOR: HERNEY ARMANDO RODRIGUEZ HOYOS Biólogo. GUIA TUTORIAL 1. PRESENTACION La biología moderna no puede comprenderse sin cierto conocimiento de química. En este texto se introducen algunos conceptos básicos, como elemento, moléculas, formación de moléculas, los elementos químicos que forman la materia viva (bioelementos), los principios inmediatos o biomoléculas, las propiedades de las proteínas y ácidos nucleicos para la formación de la vida. 2. PROPÓSITOS GENERALES  Ampliar los conceptos fundamentales sobre el estudio metabólico de las biomoléculas, como herramienta fundamental para entender procesos vitales de los organismos vivos y su aporte en diferentes campos de la ciencia. 2.2 ESPECIFICOS  Reconocer las diferentes biomoléculas esenciales para la formación de la vida.  Identificar las diferentes reacciones que realiza el cuerpo humano para su funcionamiento, crecimiento y desarrollo. 3. CONTENIDO 3.1 Elemento químico. 3.2 Compuesto químico 3.3 Biomoléculas 3.4 Proteínas 3.5 Hormonas 3.6 ADN 3.7 Metabolismo. Elemento químico
  • 2. Es toda aquella sustancia que no se puede descomponer en otras más simples mediante procesos químicos. Ejemplos de elementos son: cobre, oro, sodio, hidrógeno, oxígeno, nitrógeno. Para representar a los elementos se emplea un conjunto de símbolos químicos que son combinaciones de letras. La primera letra del símbolo químico es siempre mayúscula acompañada por una segunda y hasta una tercera, que son siempre minúsculas. Los símbolos de algunos elementos provienen de su nombre en latín, por ejemplo, el elemento sodio se simboliza Na (natrium), el hierro, Fe (ferrum), otros están relacionados con una zona geográfica, el galio (Ga) y el germanio (Ge). Uno sólo, el del tungsteno, W, proviene de la palabra en alemán wolfram. Compuestos químicos: son sustancias puras que pueden descomponerse por procesos químicos en dos o más sustancias simples. Esta descomposición no se puede lograr por medios físicos por más drásticos que sean. Ejemplos de compuestos comunes son: la sal, el alcohol, el azúcar y la vitamina C. a diferencia de las mezclas los compuestos tienen una composición invariable o definida. Es decir, un compuesto dado presenta siempre sus componentes en la misma proporción. Por ejemplo, el agua, cualquiera sea su origen o estado físico, esta formado por 88.8% de Oxigeno y 11.2% de Hidrogeno, por peso. BIOELEMENTOS El protoplasma está constituido por iones, moléculas y partículas de variedad que al combinarse integran los organelos que definitivamente constituyen a la célula. Estos elementos también se conocen como elementos biogenésicos. Cuando los elementos biogenésicos se combinan entre sí, forman compuestos que pueden ser inorgánicos u orgánicos. Los compuestos inorgánicos se forman por enlace iónico; tenemos tres tipos: agua, gases y sales minerales. El agua (H2O) es el principal compuesto inorgánico de todos los seres vivos, algunos de los cuales como la medusa la contienen en grandes cantidades. Para comprender la importancia del agua, basta recordar que los líquidos celulares son sustancias suspendidas o disueltas en agua. Asimismo, el agua actúa en el transporte de alimentos y sustancias de desecho. También participa en la hidrólisis de proteínas y carbohidratos. Desde el punto de vista físico, garantiza la turgencia celular y actúa como termorregulador. Los gases más importantes del protoplasma son el oxígeno molecular (O2) y el dióxido de carbono, que participan básicamente en los procesos de fotosíntesis y respiración. Las sales minerales se producen a partir de la reacción de un ácido con una base. Los iones de sales minerales se presentan disueltos en soluciones que los contienen y desempeñan importantes funciones como por ejemplo: a) El sodio (Na). Participa al igual que el potasio en el transporte por las membranas. b) El fósforo (P). Juega importante papel en el metabolismo celular. c) El calcio (Ca). Forma parte del esqueleto y los dientes. d) El nitrógeno (N). Participa en la síntesis de proteínas. Existen una gran variedad de compuestos orgánicos tales como: carbohidratos, proteínas, lípidos, ácidos nucleídos y las moléculas energéticas. Algunos forman parte estructural de las
  • 3. células, otros son fuentes de energía y otros regulan el metabolismo. La mayoría de los compuestos orgánicos presentan o están formados por cadenas carbonadas, a las que se les asocian átomos de hidrógeno y nitrógeno. CARBOHIDRATOS Los carbohidratos, conocidos también como glúcidos o azúcares se consideran derivados aldehídicos y cetónicos de alcoholes polivalentes; están formados por carbono, oxígeno e hidrógeno. Se obtienen a partir de la fotosíntesis y en sus ligaduras (C-H) almacenan energía que se utiliza en la actividad respiratoria intracelular de los seres vivos. C6H12O6 + 6O2 6H2O + 6CO2 + energía Los azúcares se clasifican en monosacáridos, disacáridos, oligosacáridos y polisacáridos. MONOSACÁRIDOS Son los azúcares más simples (fig.2.4). Atendiendo al número de carbono en su estructura pueden ser: triosas, tetrosas, pentosas o hexosas y responden a la fórmula general Cn H2n On, donde (n) es el número de carbonos que tiene la molécula. Las hexosas. Son azúcares sencillos de gran importancia biológica pues son la principal fuente de energía de los seres vivos. Entre ellos tenemos la glucosa, la galactosa y la fructosa. Glucosa. Sustancia soluble en agua, cristalina, de sabor dulce, que se puede encontrar en todos los tejidos animales y vegetales. El déficit de esta hexosa en la sangre produce la diabetes mellitus. Galactosa. Es un isómero de la glucosa, sintetizada por las glándulas mamarias de las hembras de los mamíferos para la producción de leche. Fructosa. Se encuentra en los frutos maduros y en la miel de las abejas. Posee un alto nivel edulcorante. POLISACÁRIDOS Son sólidos insolubles en agua, se forman a partir de la unión de numerosos monosacáridos. Podemos citar entre ellos el almidón, el glucógeno y la celulosa. Almidón. Polisacárido abundante en la papa, el trigo, el arroz, la cebada, etc. Constituye la mayor reserva energética de los organismos. Glucógeno. Almidón animal que se localiza en el corazón, el hígado y en los tejidos musculares. Celulosa. Abundante en las fibras de algodón, cáñamo y madera. Es de color blanco y poco soluble en agua. Forma parte estructural de las plantas, siendo el componente principal de la pared celular de las células vegetales. Al llegar al organismo los polisacáridos son hidrolizados hasta transformarse en monosacáridos y de esta manera poder ser utilizados en las diferentes funciones estructurales y metabólicas. Al combinarse con proteínas (glucoproteínas) o con lípidos (Glucolípidos), muchos carbohidratos sirven como componentes estructurales de las células; otros forman el tejido conectivo, y los cartílagos. No menos importantes son las ribosas y desoxirribosas que forman parte de los ácidos nucleícos. LÍPIDOS Son compuestos orgánicos insolubles en agua, se encuentran ampliamente difundidos formando parte de organismos vegetales y animales (sebo de res, tocino, aceite de oliva e hígado de bacalao). Están formados por carbono, hidrógeno y oxígeno. Se disuelven en benceno, cloroformo y acetona entre otros. Como lípidos más frecuentes en los organismos tenemos las grasas neutras (triglicéridos), los fosfolípidos, los esteroides y las ceras.
  • 4. Triglicéridos. Son compuestos simples, formados por una molécula de glicerol y tres moléculas de ácidos grasos. Los triglicéridos son importantes en nuestra dieta alimentaria por la presencia en su composición de ácidos grasos, cuya deficiencia en el organismo puede provocar dermatitis y defectos en la reproducción. Fosfolípidos. Son esteres derivados del glicerol. Estructuralmente están constituidos por dos grupos acilo (ácido grasos) y un grupo fosfato. Están formando parte de las membranas de las células y son componentes estructurales de los seres vivos. Esfingolípidos. Son considerados esteres de ácidos grasos; contienen ácido fosfórico y en algunos casos carbohidratos. Esteroides. Son moléculas complejas, se destacan como moléculas biológicas la vitamina D, las hormonas sexuales, las sales biliares y el colesterol. Ceras. Son esteres propios de ácidos grasos con alcoholes de cadena larga. Son utilizados para confeccionar betunes y cosméticos entre otros. Los lípidos constituyen la principal fuente energética de los seres vivos. Son importantes como aislante térmico y como soporte protector de órganos vitales. Por otra parte, son componentes fundamentales de la membrana celular y participan en la actividad reguladora como hormonas. PROTEÍNAS Son macromoléculas presentes en la célula. Se componen de carbono, hidrógeno, oxígeno, nitrógeno, azufre y fósforo. Las enzimas, algunas hormonas y la mayoría de los componentes estructurales de la célula son proteínas. Las proteínas están constituidas por numerosos compuestos más sencillos llamados aminoácidos, unidos entre sí por enlace peptídico. Estos aminoácidos poseen un grupo amino (-NH2) y un grupo carboxilo (- COOH) unidos a un carbón central; al carbono también se le unen un átomo de hidrógeno y un radical. Existen veinte tipos de aminoácidos lo cual está determinado por la posición del radical. Las proteínas difieren entre sí por el número, secuencia y ordenamiento de sus aminoácidos. ESTRUCTURA DE LA PROTEÍNA Las proteínas están estructuradas en cuatro niveles diferentes. Estructura Primaria. Representa la secuencia exacta de aminoácidos que forman a la proteína así como la forma de unión de los átomos. Adopta forma de lámina plana. Estructura Secundaria. Estas cadenas están adoptando forma de espiral, láminas plegadas o enrollamiento al azar; tal es el caso del colágeno y la queratina. Estructura Terciaria. Las cadenas polipeptídicas se curvan o pliegan adoptando aspectos globulares como ocurre en la hemoglobina de la sangre. Estructura Cuaternaria. Cuando las proteínas están formadas por varias cadenas de aminoácidos y su disposición espacial es más compleja. CLASIFICACIÓN DE LAS PROTEÍNAS A PARTIR DE SU COMPOSICIÓN QUÍMICA. Proteínas Simples. Al hidrolizarse sólo producen aminoácidos, pues están constituidas por C, H, O y N; tal es el caso de las albúminas, globulinas, glutaminas y protaminas. Proteínas Complejas. Son las que por hidrólisis liberan otros componentes orgánicos o inorgánicos además de aminoácidos; en este grupo encontramos las nucleoproteínas, las lipoproteínas y las glucoproteínas entre otras.
  • 5. DESNATURALIZACIÓN DE LAS PROTEÍNAS La desnaturalización es un proceso que sufren las proteínas, donde se desintegran poco a poco en aminoácidos bajo la acción del calor o determinadas sustancias químicas. De esta manera pierde sus propiedades y queda fisiológicamente inactiva. FUNCIONES DE LAS PROTEÍNAS Las proteínas son de gran importancia como componentes estructurales de la célula, al descomponerse en aminoácidos, estos últimos son utilizados por las células para formar nueva “materia viva”. Asimismo son constituyentes funcionales de las enzimas y de algunas hormonas. También pueden servir de combustible al transformarse en glucosa por el proceso de desaminación. Es importante destacar que la mayoría de los anticuerpos del organismo son proteínas. ÁCIDOS NUCLEICOS Los ácidos nucléicos son biomoléculas de gran tamaño. Están presentes en todas las células de los organismos vivos donde desarrollan funciones importantes; son los encargados de guardar toda la información, por lo cual son capaces de dirigir las actividades de las células. Desde el punto de vista químico, los ácidos nucleídos están conformados por unidades llamadas nucleótidos que presentan cada uno tres tipos de componentes: azúcar, un grupo fosfato y una base nitrogenada. Las bases nitrogenadas son: adenina, timina, citosina, guanina y uracilo. La unión de una molécula de azúcar con una que contiene fósforo y con una de las bases nitrogenadas, forma un nucleótido. CLASIFICACIÓN DE LOS ÁCIDOS NUCLEICOS Los ácidos nucléicos se clasifican de acuerdo al tipo de azúcar que los constituye. El ácido ribonucleico (ARN) contiene el azúcar ribosa y el ácido desoxirribonucleico (ADN), tiene el azúcar llamado desoxirribosas. Los dos tipos de ácidos nucléicos también difieren en que las moléculas en el ARN consisten en líneas sencillas de nucleótidos, conteniendo las bases nitrogenadas, citosina, guanina, adenina y uracilo; mientras que las moléculas en el ADN están formadas por líneas dobles de nucleótidos y contienen las bases citosina, guanina, adenina y timina. Ácido desoxirribonucleico. Según James Watson y Francis Criek, la molécula de ADN está formada por dos cadenas antiparalelas de nucleótidos. Estas cadenas se unen por puentes de hidrógeno que se establecen entre las bases; así la timina se une con la adenina por dos enlaces y la citosina se une a la guanina por tres enlaces. La secuencia de ordenamiento de las bases en la molécula de ADN, le da la especificidad biológica. Ácido ribonucleico. Están constituidos por una ribosa, y las bases nitrogenadas adenina, guanina, citosina y uracilo. Existen tres tipos: los ARN mensajeros ARNm), los ARN de transferencia (ARNt) y los ARN ribosomal (ARNr). • El ARNm (mensajero): Es el encargado de llevar el mensaje genético al citoplasma. • El ARNt (transporte): Transporta los aminoácidos en el orden que se necesitan hacia los ribosomas, donde se realiza la síntesis. El ARNr (ribosomal): Unido a otras proteínas forma el organelo encargado de la síntesis de proteínas. EL METABOLISMO
  • 6. En diversas y numerosas células que componen los sistemas vivos se están realizando constantemente una gran cantidad de reacciones químicas, las cuales en su conjunto, constituyen lo que conocemos como metabolismo. Estas reacciones son de dos tipos. Reacciones catabólicas, en las cuales se degradan moléculas complejas (muchas de ellas provenientes de los alimentos) para formar otras mas pequeñas, a la par que se libera energía. Reacciones anabólicas, en las que se emplea energía para sintetizar los compuestos que requiere el organismo para su funcionamiento y para el crecimiento y desarrollo del cuerpo. Anabolismo y Catabolismo. El metabolismo está constituido por dos tipos de reacciones básicas: las anabólicas y las catabólicas. Anabolismo: Es el conjunto de reacciones con las que los organismos vivos sintetizan (fabrican) las biomoléculas que los componen, hidratos de carbono, proteínas, lípidos y ácidos nucleicos, a partir de compuestos presentes en la célula. La energía necesaria para reacciones anabólicas es provista por moléculas de ATP (Adenosina Tri-Fosfato). La fotosíntesis, biosíntesis de ácidos grasos y aminoácidos son ejemplos de rutas anabólicas. Catabolismo: Es el conjunto de reacciones de degradación a través de las cuales los seres vivos obtienen energía. Los polímeros o biomoléculas presentes en las células son transformadas en moléculas más simples (orgánicas o inorgánicas), como el piruvato, ácido láctico, amoniaco y CO2. La energía contenida en los enlaces de las moléculas degradadas es liberada y luego almacenada en los enlaces fosfato de alta energía del ATP. La β-oxidación de ácidos grasos, la glucólisis, la fermentación y la respiración celular son ejemplos de rutas catabólicas. Relación entre energía y metabolismo La energía se define como la capacidad para realizar un trabajo. En particular los seres vivos recurren a la energía química contenida en las uniones de las moléculas, para sus reacciones metabólicas. Según el enunciado de la primera ley de la termodinámica, la energía no se crea ni destruye, se transforma. Es decir que la energía no se “produce” sino que se convierte de una forma en otra. Por ejemplo, de energía lumínica en química, de energía química en calórica. La energía liberada durante una reacción representa energía útil para alguna otra. La energía libre de Gibbs, expresada con la letra”G”, es la energía liberada durante una reacción, que es utilizable para realizar un trabajo. El cambio de energía libre (ΔG) de una reacción, denota si la reacción puede ocurrir de forma espontánea o no. Moléculas transportadoras de energía Los seres vivos, desde el organismo más simple hasta el más complejo, necesitan un aporte permanente de energía. Algunas reacciones producen energía, mientras que otras la consumen. ¿Cómo acurre esa transferencia de energía entre distintos tipos de reacciones metabólicas? Usualmente, la energía liberada durante reacciones catabólicas se almacena en enlaces de alta energía de moléculas transportadoras. De esta manera, se producen compuestos que almacenan la energía en su estructura. El ATP (Adenosín trifosfato) es la “moneda de energía” más frecuente en los seres vivos. Está compuesta por una base nitrogenada (Adenina), un azúcar (ribosa) y tres grupos fosfato. Es un tipo de nucleótido que contiene enlaces fosfato de alta energía, y lábiles (que se rompen con facilidad y ceden su energía). El ATP provee de energía para: Síntesis de polímeros o moléculas complejas.
  • 7. Trabajo mecánico en la contracción muscular Transporte activo a través de membranas. Movimiento celular (cilias, flagelos, movimiento de cromosomas, etc.) La hidrólisis del ATP en ADP (adenosin difosfato) o AMP (adenosin monofosfato) libera grandes cantidades de energía, que es aprovechada por reacciones que la absorben para llevarse a cabo. Fig 1. Hidrólisis del ATP y producción de energía. La transformación de ATP en ADP y AMP es un mecanismo sumamente dinámico, que responde a las necesidades energéticas de la célula. BIBLIOGRAFIA CERVANTES. M. Biología General. Primera edición. México, Publicaciones Cultural, 1998. CERVANTES. R. M. Recursos, Ecología y Sociedad. México, UNAN, 1987. FRIED. G. H. Biología. Sexta edición. México, Mc Graw Hill, 1990. Francis A. Carey and Richard J. Sundberg, Advanced Organic Chemistry: Part A: Structure and Mechanisms 4th Ed. Springer, 2000. GUYTON. Arthur. C. Tratado de Fisiología Médica. Novena edición. México, Mc Graw Hill.2000. LIZCANO. A. El origen de la vida. México, Trillas, 1984. LIRA. S. Ricardo. H. Fisiología Vegetal. Primera edición. México, Trillas, 1994.
  • 8. MURRAY. Robert. K. Bioquímica de Harper. Decimoquinta edición. México, Manual Moderno. 2001. ODUN. E.P. Ecología. Tercera edición. México. Interamericana. 1972.