Exponents Intro with Practice.ppt

I
Exponents
Exponent
used to show repeated multiplication of a
number by itself.
3
4
Base
Exponent
Definition of Exponent
An exponent tells how many times a
number is multiplied by itself.
3
4
Base
Exponent
What an Exponent Represents
 the exponent stands for the number of times the
number is multiplied to itself.
3
4
= 3 x 3 x 3 x 3
How to read an Exponent
This exponent is read three to
the fourth power.
3
4
Base
Exponent
How to read an Exponent
This exponent is read three to
the 2nd power or three squared.
3
2
Base
Exponent
How to read an Exponent
This exponent is read three to
the 3rd power or three cubed.
3
3
Base
Exponent
Read These Exponents
3 2 6 7
2 3 5 4
What is the Exponent?
2 x 2 x 2 = 2
3
What is the Exponent?
3 x 3 = 3
2
What is the Exponent?
5 x 5 x 5 x 5 = 5
4
What is the Base and the Exponent?
8 x 8 x 8 x 8 = 8
4
What is the Base and the Exponent?
7 x 7 x 7 x 7 x 7 =7
5
What is the Base and the Exponent?
9 x 9 = 9 2
How to Multiply Out an Exponent to
Find the
Standard Form
= 3 x 3 x 3 x 3
3
9
27
81
4
What is the Base and Exponent
in Standard Form?
4
2
= 16
What is the Base and Exponent
in Standard Form?
2
3
= 8
What is the Base and Exponent
in Standard Form?
3
2
= 9
What is the Base and Exponent
in Standard Form?
5
3
= 125
Common Mistake
25 ≠(does not equal) 2 x 5
25 ≠(does not equal)10
25 =2 x 2 x 2 x 2 x
Common Mistake
-24 ≠(does not equal)(-2)4
Without the parenthesis, positive 2 is
multiplied by itself 4 times; then the answer
is negative.
With the parenthesis, negative 2 is
multiplied by itself 4 times; then the answer
becomes positive.
Common mistake
-24 = (-1)x(x means
times)
+24
=
Why?
The 1 and the positive sign are invisible.
Anything x 1=anything, so 1 x 2 x 2 x 2 x 2 = 16;
and negative x positive = negative
Common Mistake
(-2)4=- 2 x -2 x -2 x -2 = +16
Why?
Multiply the numbers: 2 x 2 x 2 x 2 = 16 and
then multiply the signs:
1st negative x 2nd negative = positive; that
positive x 3rd negative = negative;
that negative x 4th negative = positive; so
answer = positive 16
Exponents Intro with Practice.ppt
The Laws of Exponents:
#1: Exponential form: The exponent of a power indicates
how many times the base multiplies itself.
n
n times
x x x x x x x x

      
3
Example: 5 5 5 5
  
n factors of x
#2: Multiplying Powers: If you are multiplying Powers
with the same base, KEEP the BASE & ADD the EXPONENTS!
m n m n
x x x 
 
512
2
2
2
2 9
3
6
3
6



 
So, I get it!
When you
multiply
Powers, you
add the
exponents!
#3: Dividing Powers: When dividing Powers with the same
base, KEEP the BASE & SUBTRACT the EXPONENTS!
m
m n m n
n
x
x x x
x

  
So, I get it!
When you
divide
Powers, you
subtract the
exponents!
16
2
2
2
2 4
2
6
2
6


 
Try these:

 2
2
3
3
.
1

 4
2
5
5
.
2

 2
5
.
3 a
a

 7
2
4
2
.
4 s
s



 3
2
)
3
(
)
3
(
.
5

 3
7
4
2
.
6 t
s
t
s

4
12
.
7
s
s

5
9
3
3
.
8

4
4
8
12
.
9
t
s
t
s

5
4
8
5
4
36
.
10
b
a
b
a

 2
2
3
3
.
1

 4
2
5
5
.
2

 2
5
.
3 a
a

 7
2
4
2
.
4 s
s



 3
2
)
3
(
)
3
(
.
5

 3
7
4
2
.
6 t
s
t
s
81
3
3 4
2
2



7
2
5
a
a 

9
7
2
8
4
2 s
s 

 
SOLUTIONS
6
4
2
5
5 

243
)
3
(
)
3
( 5
3
2




 
7
9
3
4
7
2
t
s
t
s 



4
12
.
7
s
s

5
9
3
3
.
8

4
4
8
12
.
9
t
s
t
s

5
4
8
5
4
36
.
10
b
a
b
a
SOLUTIONS
8
4
12
s
s 

81
3
3 4
5
9



4
8
4
8
4
12
t
s
t
s 


3
5
8
4
5
9
4
36 ab
b
a 

 

#4: Power of a Power: If you are raising a Power to an
exponent, you multiply the exponents!
 
n
m mn
x x

So, when I
take a Power
to a power, I
multiply the
exponents
5
2
3
2
3
5
5
)
5
( 
 
#5: Product Law of Exponents: If the product of the
bases is powered by the same exponent, then the result is a
multiplication of individual factors of the product, each powered
by the given exponent.
 
n n n
xy x y
 
So, when I take
a Power of a
Product, I apply
the exponent to
all factors of
the product.
2
2
2
)
( b
a
ab 
#6: Quotient Law of Exponents: If the quotient of the
bases is powered by the same exponent, then the result is both
numerator and denominator , each powered by the given exponent.
n n
n
x x
y y
 

 
 
So, when I take a
Power of a
Quotient, I apply
the exponent to
all parts of the
quotient.
81
16
3
2
3
2
4
4
4








Try these:
  
5
2
3
.
1
  
4
3
.
2 a
  
3
2
2
.
3 a
  
2
3
5
2
2
.
4 b
a

 2
2
)
3
(
.
5 a
  
3
4
2
.
6 t
s







5
.
7
t
s









2
5
9
3
3
.
8









2
4
8
.
9
rt
st









2
5
4
8
5
4
36
.
10
b
a
b
a
  
5
2
3
.
1
  
4
3
.
2 a
  
3
2
2
.
3 a
  
2
3
5
2
2
.
4 b
a

 2
2
)
3
(
.
5 a
  
3
4
2
.
6 t
s
SOLUTIONS
10
3
12
a
6
3
2
3
8
2 a
a 

6
10
6
10
4
2
3
2
5
2
2
16
2
2 b
a
b
a
b
a 




  4
2
2
2
9
3 a
a 

 
12
6
3
4
3
2
t
s
t
s 









5
.
7
t
s









2
5
9
3
3
.
8









2
4
8
.
9
rt
st









2
5
4
8
5
4
36
10
b
a
b
a
SOLUTIONS
  6
2
2
3
2
2
2
3
81
9
9 b
a
b
a
ab 
 
2
8
2
2
4
r
t
s
r
st









  8
2
4
3
3 
5
5
t
s
#7: Negative Law of Exponents: If the base is powered
by the negative exponent, then the base becomes reciprocal with the
positive exponent.
1
m
m
x
x


So, when I have a
Negative Exponent, I
switch the base to its
reciprocal with a
Positive Exponent.
Ha Ha!
If the base with the
negative exponent is in
the denominator, it
moves to the
numerator to lose its
negative sign!
9
3
3
1
125
1
5
1
5
2
2
3
3






and
#8: Zero Law of Exponents: Any base powered by zero
exponent equals one.
0
1
x 
1
)
5
(
1
1
5
0
0
0



a
and
a
and
So zero
factors of a
base equals 1.
That makes
sense! Every
power has a
coefficient
of 1.
Try these:
  
0
2
2
.
1 b
a

 4
2
.
2 y
y
  
1
5
.
3 a


 7
2
4
.
4 s
s
  

 4
3
2
3
.
5 y
x
  
0
4
2
.
6 t
s









1
2
2
.
7
x









2
5
9
3
3
.
8









2
4
4
2
2
.
9
t
s
t
s









2
5
4
5
4
36
.
10
b
a
a
SOLUTIONS
  
0
2
2
.
1 b
a
  
1
5
.
3 a


 7
2
4
.
4 s
s
  

 4
3
2
3
.
5 y
x
  
0
4
2
.
6 t
s
1
5
1
a
5
4s
  12
8
12
8
4
81
3
y
x
y
x 


1









1
2
2
.
7
x









2
5
9
3
3
.
8









2
4
4
2
2
.
9
t
s
t
s









2
5
4
5
4
36
.
10
b
a
a
SOLUTIONS
4
4
1
x
x








  8
8
2
4
3
1
3
3 
 

  4
4
2
2
2
t
s
t
s 



2
10
10
2
2
81
9
a
b
b
a 


1 sur 41

Contenu connexe

Similaire à Exponents Intro with Practice.ppt

Donna g. bautistaDonna g. bautista
Donna g. bautistaDonna Bautista
257 vues19 diapositives
Donna G. BautistaDonna G. Bautista
Donna G. BautistaDonna Bautista
1K vues19 diapositives
E1E1
E1Dreams4school
231 vues21 diapositives
Rules of ExponentsRules of Exponents
Rules of ExponentsKelly Scallion
10.5K vues10 diapositives
ExponentsExponents
Exponentslothomas
345 vues22 diapositives
laws_of_exponents.pptxlaws_of_exponents.pptx
laws_of_exponents.pptxerickcabutaje1
3 vues17 diapositives

Similaire à Exponents Intro with Practice.ppt(20)

Donna g. bautistaDonna g. bautista
Donna g. bautista
Donna Bautista257 vues
Donna G. BautistaDonna G. Bautista
Donna G. Bautista
Donna Bautista1K vues
E1E1
E1
Dreams4school231 vues
Rules of ExponentsRules of Exponents
Rules of Exponents
Kelly Scallion10.5K vues
ExponentsExponents
Exponents
lothomas345 vues
laws_of_exponents.pptxlaws_of_exponents.pptx
laws_of_exponents.pptx
erickcabutaje13 vues
Mathtest 01Mathtest 01
Mathtest 01
leoscotch2.5K vues
Basics about exponentsBasics about exponents
Basics about exponents
Onele makhanda38.3K vues
Laws of exponents   completeLaws of exponents   complete
Laws of exponents complete
nyambi james 296 vues
Computational skillsComputational skills
Computational skills
leoscotch3.8K vues
Powers and ExponentsPowers and Exponents
Powers and Exponents
Taleese 84.6K vues
Laws of exponentsLaws of exponents
Laws of exponents
princessjessamae2.9K vues
MathematicsMathematics
Mathematics
Michael Nguyen388 vues
La potenciaciónLa potenciación
La potenciación
MariaBayard4.2K vues
Exponents[1]Exponents[1]
Exponents[1]
hiratufail1.9K vues
Section 4.7 And 4.8 Plus Warm UpsSection 4.7 And 4.8 Plus Warm Ups
Section 4.7 And 4.8 Plus Warm Ups
Jessca Lundin435 vues
8 1 Exponents8 1 Exponents
8 1 Exponents
taco40847 vues
ExponentsExponents
Exponents
lothomas312 vues
Algebra Exponents MultiplicationAlgebra Exponents Multiplication
Algebra Exponents Multiplication
Passy World1.9K vues

Plus de Izah Catli

secant.pptsecant.ppt
secant.pptIzah Catli
8 vues22 diapositives
circle  theorem 2.pptcircle  theorem 2.ppt
circle theorem 2.pptIzah Catli
22 vues9 diapositives
discriminants.pptxdiscriminants.pptx
discriminants.pptxIzah Catli
4 vues22 diapositives
circles.pptcircles.ppt
circles.pptIzah Catli
6 vues34 diapositives

Plus de Izah Catli(20)

secant.pptsecant.ppt
secant.ppt
Izah Catli8 vues
circle  theorem 2.pptcircle  theorem 2.ppt
circle theorem 2.ppt
Izah Catli22 vues
discriminants.pptxdiscriminants.pptx
discriminants.pptx
Izah Catli4 vues
circles.pptcircles.ppt
circles.ppt
Izah Catli6 vues
PROPORTIONALITY THEOREM.pptxPROPORTIONALITY THEOREM.pptx
PROPORTIONALITY THEOREM.pptx
Izah Catli61 vues
G-6 Circle.pptG-6 Circle.ppt
G-6 Circle.ppt
Izah Catli19 vues
circles.pptcircles.ppt
circles.ppt
Izah Catli7 vues
probability 2.pptprobability 2.ppt
probability 2.ppt
Izah Catli15 vues
PASCAL’S TRIANGLE.pptPASCAL’S TRIANGLE.ppt
PASCAL’S TRIANGLE.ppt
Izah Catli32 vues
Arithmetic Mean Q1W2.pptxArithmetic Mean Q1W2.pptx
Arithmetic Mean Q1W2.pptx
Izah Catli43 vues
combination q3w2.pptcombination q3w2.ppt
combination q3w2.ppt
Izah Catli59 vues
geometric sequence.pptxgeometric sequence.pptx
geometric sequence.pptx
Izah Catli13 vues

Dernier(20)

Exponents Intro with Practice.ppt

  • 2. Exponent used to show repeated multiplication of a number by itself. 3 4 Base Exponent
  • 3. Definition of Exponent An exponent tells how many times a number is multiplied by itself. 3 4 Base Exponent
  • 4. What an Exponent Represents  the exponent stands for the number of times the number is multiplied to itself. 3 4 = 3 x 3 x 3 x 3
  • 5. How to read an Exponent This exponent is read three to the fourth power. 3 4 Base Exponent
  • 6. How to read an Exponent This exponent is read three to the 2nd power or three squared. 3 2 Base Exponent
  • 7. How to read an Exponent This exponent is read three to the 3rd power or three cubed. 3 3 Base Exponent
  • 8. Read These Exponents 3 2 6 7 2 3 5 4
  • 9. What is the Exponent? 2 x 2 x 2 = 2 3
  • 10. What is the Exponent? 3 x 3 = 3 2
  • 11. What is the Exponent? 5 x 5 x 5 x 5 = 5 4
  • 12. What is the Base and the Exponent? 8 x 8 x 8 x 8 = 8 4
  • 13. What is the Base and the Exponent? 7 x 7 x 7 x 7 x 7 =7 5
  • 14. What is the Base and the Exponent? 9 x 9 = 9 2
  • 15. How to Multiply Out an Exponent to Find the Standard Form = 3 x 3 x 3 x 3 3 9 27 81 4
  • 16. What is the Base and Exponent in Standard Form? 4 2 = 16
  • 17. What is the Base and Exponent in Standard Form? 2 3 = 8
  • 18. What is the Base and Exponent in Standard Form? 3 2 = 9
  • 19. What is the Base and Exponent in Standard Form? 5 3 = 125
  • 20. Common Mistake 25 ≠(does not equal) 2 x 5 25 ≠(does not equal)10 25 =2 x 2 x 2 x 2 x
  • 21. Common Mistake -24 ≠(does not equal)(-2)4 Without the parenthesis, positive 2 is multiplied by itself 4 times; then the answer is negative. With the parenthesis, negative 2 is multiplied by itself 4 times; then the answer becomes positive.
  • 22. Common mistake -24 = (-1)x(x means times) +24 = Why? The 1 and the positive sign are invisible. Anything x 1=anything, so 1 x 2 x 2 x 2 x 2 = 16; and negative x positive = negative
  • 23. Common Mistake (-2)4=- 2 x -2 x -2 x -2 = +16 Why? Multiply the numbers: 2 x 2 x 2 x 2 = 16 and then multiply the signs: 1st negative x 2nd negative = positive; that positive x 3rd negative = negative; that negative x 4th negative = positive; so answer = positive 16
  • 25. The Laws of Exponents: #1: Exponential form: The exponent of a power indicates how many times the base multiplies itself. n n times x x x x x x x x         3 Example: 5 5 5 5    n factors of x
  • 26. #2: Multiplying Powers: If you are multiplying Powers with the same base, KEEP the BASE & ADD the EXPONENTS! m n m n x x x    512 2 2 2 2 9 3 6 3 6      So, I get it! When you multiply Powers, you add the exponents!
  • 27. #3: Dividing Powers: When dividing Powers with the same base, KEEP the BASE & SUBTRACT the EXPONENTS! m m n m n n x x x x x     So, I get it! When you divide Powers, you subtract the exponents! 16 2 2 2 2 4 2 6 2 6    
  • 28. Try these:   2 2 3 3 . 1   4 2 5 5 . 2   2 5 . 3 a a   7 2 4 2 . 4 s s     3 2 ) 3 ( ) 3 ( . 5   3 7 4 2 . 6 t s t s  4 12 . 7 s s  5 9 3 3 . 8  4 4 8 12 . 9 t s t s  5 4 8 5 4 36 . 10 b a b a
  • 29.   2 2 3 3 . 1   4 2 5 5 . 2   2 5 . 3 a a   7 2 4 2 . 4 s s     3 2 ) 3 ( ) 3 ( . 5   3 7 4 2 . 6 t s t s 81 3 3 4 2 2    7 2 5 a a   9 7 2 8 4 2 s s     SOLUTIONS 6 4 2 5 5   243 ) 3 ( ) 3 ( 5 3 2       7 9 3 4 7 2 t s t s   
  • 31. #4: Power of a Power: If you are raising a Power to an exponent, you multiply the exponents!   n m mn x x  So, when I take a Power to a power, I multiply the exponents 5 2 3 2 3 5 5 ) 5 (   
  • 32. #5: Product Law of Exponents: If the product of the bases is powered by the same exponent, then the result is a multiplication of individual factors of the product, each powered by the given exponent.   n n n xy x y   So, when I take a Power of a Product, I apply the exponent to all factors of the product. 2 2 2 ) ( b a ab 
  • 33. #6: Quotient Law of Exponents: If the quotient of the bases is powered by the same exponent, then the result is both numerator and denominator , each powered by the given exponent. n n n x x y y        So, when I take a Power of a Quotient, I apply the exponent to all parts of the quotient. 81 16 3 2 3 2 4 4 4        
  • 34. Try these:    5 2 3 . 1    4 3 . 2 a    3 2 2 . 3 a    2 3 5 2 2 . 4 b a   2 2 ) 3 ( . 5 a    3 4 2 . 6 t s        5 . 7 t s          2 5 9 3 3 . 8          2 4 8 . 9 rt st          2 5 4 8 5 4 36 . 10 b a b a
  • 35.    5 2 3 . 1    4 3 . 2 a    3 2 2 . 3 a    2 3 5 2 2 . 4 b a   2 2 ) 3 ( . 5 a    3 4 2 . 6 t s SOLUTIONS 10 3 12 a 6 3 2 3 8 2 a a   6 10 6 10 4 2 3 2 5 2 2 16 2 2 b a b a b a        4 2 2 2 9 3 a a     12 6 3 4 3 2 t s t s   
  • 37. #7: Negative Law of Exponents: If the base is powered by the negative exponent, then the base becomes reciprocal with the positive exponent. 1 m m x x   So, when I have a Negative Exponent, I switch the base to its reciprocal with a Positive Exponent. Ha Ha! If the base with the negative exponent is in the denominator, it moves to the numerator to lose its negative sign! 9 3 3 1 125 1 5 1 5 2 2 3 3       and
  • 38. #8: Zero Law of Exponents: Any base powered by zero exponent equals one. 0 1 x  1 ) 5 ( 1 1 5 0 0 0    a and a and So zero factors of a base equals 1. That makes sense! Every power has a coefficient of 1.
  • 39. Try these:    0 2 2 . 1 b a   4 2 . 2 y y    1 5 . 3 a    7 2 4 . 4 s s      4 3 2 3 . 5 y x    0 4 2 . 6 t s          1 2 2 . 7 x          2 5 9 3 3 . 8          2 4 4 2 2 . 9 t s t s          2 5 4 5 4 36 . 10 b a a
  • 40. SOLUTIONS    0 2 2 . 1 b a    1 5 . 3 a    7 2 4 . 4 s s      4 3 2 3 . 5 y x    0 4 2 . 6 t s 1 5 1 a 5 4s   12 8 12 8 4 81 3 y x y x    1