Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
MODELING AVENGERS
OSS TECHNOLOGY MIX FOR SAVING
THE WORLD
, OBEO ( )
, INRIA and Univ. Rennes 1 ( )
Cédric Brun @bruncedri...
GEMOC
The GEMOC ANR project ( ):
A Language Workbench for concurrent execution and
simulation of heterogeneous models
The ...
French National Institute for Agricultural Research
 
 
 
WATER RESOURCE MANAGEMENT IN
AGRICULTURE
Cultivator has to book for water one year in advance
Administration has to make sure there is twice the
quantity which has...
DECISIONS
Which field to use for growing what ?
How would the crops grows?
When would I have to add water ?
Machines ? Peo...
WHAT WE*
DO
build domain specific tools for supporting design and
analysis of complex so ware or embedded systems from
mul...
HOW OUR TECHNOLOGIES AND
TECHNIQUES WOULD FARE IN SUCH
CONTEXT?
Disclaimer: this experiment is not about the science itself
but about how to use the OSS modeling technologies.
This is a ...
PROCESS
1. State your resources (Machines, peoples, fields)
2. Pick some climate model
3. Assign surfaces to cultures
4. D...
Language
Engineers Domain Viewpoint
(Graph Editor)
Grammar
(Textual Editor)
Constraints
and Goals
(Score function)
Behavio...
DEMO TIME
EMF
SEVERAL ECORE MODELS
ὄ API
           
p u b l i c s t a t i c v o i d m a i n ( S t r i n g [ ] a r g s ) {
/ / . . .
E x p l o i t a t i o n ...
ὄ SEAMLESS DATA REUSE
           
p u b l i c c l a s s C l i m a t e D a t a R e s o u r c e I m p l e x t e n d s R e s ...
TEXTUAL SYNTAX : XTEXT
ὄ PREDICATES, EXPRESSIONS,
CONDITIONS
GRAPHICAL SYNTAX: SIRIUS
ὄ DYNAMIC EDITING
ὄ TABLE EDITORS
ὄ ANIMATION*
* with Sirius animator
BARELY SCRATCHED THE SURFACE
Eclipse ICE and Science WG
Generating reports using Acceleo
Comparing alternatives using EMF ...
ANALYSIS
PLANNING PROBLEMS
If you need to optimize goals under constraints while having
limited resources.
When will I seed the cro...
ὄ EASY TO MIX WITH EMF
           
@ P l a n n i n g E n t i t y (
d i f f i c u l t y C o m p a r a t o r C l a s s = A c...
ὄ EASY TO MIX WITH EMF
           
@ P l a n n i n g E n t i t y (
d i f f i c u l t y C o m p a r a t o r C l a s s = A c...
ὄ EASY TO MIX WITH EMF
           
@ P l a n n i n g E n t i t y (
d i f f i c u l t y C o m p a r a t o r C l a s s = A c...
SCORE FUNCTION
           
p u b l i c S c o r e c a l c u l a t e S c o r e ( S i m u l a t i o n S o l u t i o n s o l u...
WHAT HAVE WE LEARNED SO FAR?
“Do not compromise on your domain model.”
EFFORT TO BUILD THIS TOOLING ?
3 hours meeting + mail exchanges with INRA experts
10 days of Eclipse Modeling experts
Proo...
TECHNOLOGIES MEANT TO DO THIS
ARE RELEVANT TO SAVE THIS
TEAMING UP TECHNOLOGIES
INSTEAD OF STACKING IT
Eclipse: platform and User interface integration
EMF: data, resources, deep...
OPPORTUNITIES
Time modeling and management
Probabilistic models
Graph/Charts representation in Sirius
Alternatives compari...
...
FURTHER MATERIALS
[slides] (Benoit Combemale and Jean-Michel Bruel), CPS Seminar, 2016
[slides] (Benoit Combemale), IN...
Modeling avengers – open source technology mix for saving the world econ fr
Modeling avengers – open source technology mix for saving the world econ fr
Modeling avengers – open source technology mix for saving the world econ fr
Modeling avengers – open source technology mix for saving the world econ fr
Modeling avengers – open source technology mix for saving the world econ fr
Modeling avengers – open source technology mix for saving the world econ fr
Modeling avengers – open source technology mix for saving the world econ fr
Modeling avengers – open source technology mix for saving the world econ fr
Prochain SlideShare
Chargement dans…5
×

Modeling avengers – open source technology mix for saving the world econ fr

374 vues

Publié le

Planet earth is facing massive challenges: global warming and scarcity of natural resources among others. Those challenges are reaching a level of complexity unknown yet and trying to address those requires deep scientific understanding, real world data, specialized tools, inter-disciplinary collaboration and the ability to evaluate “What If” scenarios.

In collaboration with scientists from INRA (the French National Institute for Agricultural Research) we experienced one of those challenges: the use of natural resources for agricultural activities, especially water consumption. While the scientists insight was required in smart technologies like smart farms, this understanding was required to be expressed at an higher level of abstraction through specific tooling. They felt that providing highly dedicated tools with a small budget would require super powers. To us modeling people it looked like a very good fit for DSL’s (Domain Specific Languages), hence suitable for an experiment : let’s build specific modeling tools for smart farming systems!

This experiment represents a few days of work bringing open-source technologies together: EMF, Xtext, Sirius, Gemoc (a model debugging environment, including specific features for concurrency constraints), OptaPlanner (a constraint satisfaction solver from the JBoss community) and Acceleo, resulting in a collection of Eclipse based tools for farming systems (published on github). Just like in The Avengers, each technology bring its own capability but it is the amalgamation of all of them which lead to amazing power!

The session will start with a demo of the Smart Farming System Tooling, an environment to model, analyze and simulate an agricultural exploitation, biomass growth and water consumption based on user input and open data. Then we will dig deeper in how the technologies are mixed and used, among other questions: which of the textual or graphical syntax is better suited for a given aspect? how can we achieve a “perfect blend” of those syntaxes? how OptaPlanner and EMF can create a powerful synergy? how data from INRA can be structured and fed into the tool?

Publié dans : Ingénierie
  • Identifiez-vous pour voir les commentaires

  • Soyez le premier à aimer ceci

Modeling avengers – open source technology mix for saving the world econ fr

  1. 1. MODELING AVENGERS OSS TECHNOLOGY MIX FOR SAVING THE WORLD , OBEO ( ) , INRIA and Univ. Rennes 1 ( ) Cédric Brun @bruncedric Benoit Combemale @bcombemale Slides available at http://cedric.brun.io/talks/ModelingAvengers/
  2. 2. GEMOC The GEMOC ANR project ( ): A Language Workbench for concurrent execution and simulation of heterogeneous models The GEMOC Initiative ( ): GEMOC is an open international initiative that aims to coordinate and disseminate the research results regarding the support of the coordinated use of various modeling languages that will lead to the concept of globalization of modeling languages, that is, the use of multiple modeling languages to support coordinated development of diverse aspects of a system. http://gemoc.org/ins http://gemoc.org/
  3. 3. French National Institute for Agricultural Research
  4. 4.       WATER RESOURCE MANAGEMENT IN AGRICULTURE
  5. 5. Cultivator has to book for water one year in advance Administration has to make sure there is twice the quantity which has been booked for the whole region. Domain expert (INRA) wants to defines and assess new cultures activities MULTIPLE STAKEHOLDERS, MULTIPLE CONCERNS AND SCALES
  6. 6. DECISIONS Which field to use for growing what ? How would the crops grows? When would I have to add water ? Machines ? Peoples ? COMPLEX SYSTEM, OPTIMIZATION WITH MULTIPLE FACTORS (WEATHER, COSTS, RESOURCES)
  7. 7. WHAT WE* DO build domain specific tools for supporting design and analysis of complex so ware or embedded systems from multiple viewpoints. *: modeling community
  8. 8. HOW OUR TECHNOLOGIES AND TECHNIQUES WOULD FARE IN SUCH CONTEXT?
  9. 9. Disclaimer: this experiment is not about the science itself but about how to use the OSS modeling technologies. This is a toy, but a toy complex enough that we can learn from it.
  10. 10. PROCESS 1. State your resources (Machines, peoples, fields) 2. Pick some climate model 3. Assign surfaces to cultures 4. Deduce a possible planning 5. See how the biomass would grow 6. See how much irrigation we would need 7. do it again !
  11. 11. Language Engineers Domain Viewpoint (Graph Editor) Grammar (Textual Editor) Constraints and Goals (Score function) Behavio Semant (animator) Language Users Data Views and static checking Text Optimization Executio simulat
  12. 12. DEMO TIME
  13. 13. EMF
  14. 14. SEVERAL ECORE MODELS
  15. 15. ὄ API             p u b l i c s t a t i c v o i d m a i n ( S t r i n g [ ] a r g s ) { / / . . . E x p l o i t a t i o n e x p l o i t a t i o n = l o a d F r o m F i l e ( a r g s [ 1 ] ) ; f o r ( W o r k G r o u p g r o u p : e x p l o i t a t i o n . g e t G r o u p s ( ) ) { S y s t e m . o u t . p r i n t l n ( g r o u p . g e t N a m e ( ) ) ; f o r ( C u l t u r e c u l t u r e A s s i g n e d T o T h i s G r o u p : g r o u p . g e t C u l t u r e s ( ) ) { f o r ( E x p l o i t a t i o n A c t i v i t y a c t i v i t y : c u l t u r e A s s i g n e d T o T h i s G r o u p . g e t A c t i v i t i e s ( ) ) { S y s t e m . o u t . p r i n t l n ( a c t i v i t y . g e t N a m e ( ) ) ; S y s t e m . o u t . p r i n t l n ( a c t i v i t y . g e t F r e q u e n c y ( ) ) ; S y s t e m . o u t . p r i n t l n ( a c t i v i t y . g e t S t a r t D a t e ( ) ) ; S y s t e m . o u t . p r i n t l n ( a c t i v i t y . g e t E n d D a t e ( ) ) ; } / / . . .          
  16. 16. ὄ SEAMLESS DATA REUSE             p u b l i c c l a s s C l i m a t e D a t a R e s o u r c e I m p l e x t e n d s R e s o u r c e I m p l { p u b l i c C l i m a t e D a t a R e s o u r c e I m p l ( U R I u r i ) { s u p e r ( u r i ) ; } @ O v e r r i d e p r o t e c t e d v o i d d o L o a d ( I n p u t S t r e a m i n p u t S t r e a m , M a p < ! - - ? , ? - - > o p t i o n s ) t h r o w s I O E x c e p t i o n { g e t C o n t e n t s ( ) . c l e a r ( ) ; C l i m a t e D a t a c l i m a t e = S i m u l a t i o n F a c t o r y . e I N S T A N C E . c r e a t e C l i m a t e D a t a ( ) ; S t r i n g c o n t e n t = C h a r S t r e a m s . t o S t r i n g ( n e w I n p u t S t r e a m R e a d e r ( i n p u t S t r e a m , C h a r s e t s . U S _ A S C I I ) ) ; L i s t < s t r i n g > l i n e s = L i s t s . n e w A r r a y L i s t ( S p l i t t e r . o n ( ' n ' ) . o m i t E m p t y S t r i n g s ( ) . s p l i t ( c o n t e n t ) ) ;          
  17. 17. TEXTUAL SYNTAX : XTEXT
  18. 18. ὄ PREDICATES, EXPRESSIONS, CONDITIONS
  19. 19. GRAPHICAL SYNTAX: SIRIUS
  20. 20. ὄ DYNAMIC EDITING
  21. 21. ὄ TABLE EDITORS
  22. 22. ὄ ANIMATION* * with Sirius animator
  23. 23. BARELY SCRATCHED THE SURFACE Eclipse ICE and Science WG Generating reports using Acceleo Comparing alternatives using EMF Compare ...
  24. 24. ANALYSIS
  25. 25. PLANNING PROBLEMS If you need to optimize goals under constraints while having limited resources. When will I seed the crop based on the culture constraints, the climate and the peoples, machine, fields I have ? NP class of problems, huge number of solutions, many being useless
  26. 26. ὄ EASY TO MIX WITH EMF             @ P l a n n i n g E n t i t y ( d i f f i c u l t y C o m p a r a t o r C l a s s = A c t i v i t y W o r k D i f f i c u l t y C o m p a r a t o r . c l a s s ) p u b l i c i n t e r f a c e A c t i v i t y W o r k e x t e n d s E O b j e c t { / / . . . @ P l a n n i n g V a r i a b l e ( v a l u e R a n g e P r o v i d e r R e f s = { " d a y s " } ) D a y g e t S c h e d u l e d O n ( ) ; / / . . . }                       @ P l a n n i n g E n t i t y ( d i f f i c u l t y C o m p a r a t o r C l a s s = R e s o u r c e A l l o c a t i o n D i f f i c u l t y C o m p a r a t o r . c l a s s ) p u b l i c i n t e r f a c e R e s o u r c e A l l o c a t i o n e x t e n d s E O b j e c t { / / . . . @ P l a n n i n g V a r i a b l e ( v a l u e R a n g e P r o v i d e r R e f s = { " r e s o u r c e s " } ) R e s o u r c e g e t R e s o u r c e ( ) ; / / . . . }          
  27. 27. ὄ EASY TO MIX WITH EMF             @ P l a n n i n g E n t i t y ( d i f f i c u l t y C o m p a r a t o r C l a s s = A c t i v i t y W o r k D i f f i c u l t y C o m p a r a t o r . c l a s s ) p u b l i c i n t e r f a c e A c t i v i t y W o r k e x t e n d s E O b j e c t { / / . . . @ P l a n n i n g V a r i a b l e ( v a l u e R a n g e P r o v i d e r R e f s = { " d a y s " } ) D a y g e t S c h e d u l e d O n ( ) ; / / . . . }                       @ P l a n n i n g E n t i t y ( d i f f i c u l t y C o m p a r a t o r C l a s s = R e s o u r c e A l l o c a t i o n D i f f i c u l t y C o m p a r a t o r . c l a s s ) p u b l i c i n t e r f a c e R e s o u r c e A l l o c a t i o n e x t e n d s E O b j e c t { / / . . . @ P l a n n i n g V a r i a b l e ( v a l u e R a n g e P r o v i d e r R e f s = { " r e s o u r c e s " } ) R e s o u r c e g e t R e s o u r c e ( ) ; / / . . . }          
  28. 28. ὄ EASY TO MIX WITH EMF             @ P l a n n i n g E n t i t y ( d i f f i c u l t y C o m p a r a t o r C l a s s = A c t i v i t y W o r k D i f f i c u l t y C o m p a r a t o r . c l a s s ) p u b l i c i n t e r f a c e A c t i v i t y W o r k e x t e n d s E O b j e c t { / / . . . @ P l a n n i n g V a r i a b l e ( v a l u e R a n g e P r o v i d e r R e f s = { " d a y s " } ) D a y g e t S c h e d u l e d O n ( ) ; / / . . . }                       @ P l a n n i n g E n t i t y ( d i f f i c u l t y C o m p a r a t o r C l a s s = R e s o u r c e A l l o c a t i o n D i f f i c u l t y C o m p a r a t o r . c l a s s ) p u b l i c i n t e r f a c e R e s o u r c e A l l o c a t i o n e x t e n d s E O b j e c t { / / . . . @ P l a n n i n g V a r i a b l e ( v a l u e R a n g e P r o v i d e r R e f s = { " r e s o u r c e s " } ) R e s o u r c e g e t R e s o u r c e ( ) ; / / . . . }          
  29. 29. SCORE FUNCTION             p u b l i c S c o r e c a l c u l a t e S c o r e ( S i m u l a t i o n S o l u t i o n s o l u t i o n ) { i n t h a r d S c o r e = 0 ; i n t s o f t S c o r e = 0 ; / / . . . / * * C o n s t r a i n t : a l l t h e r e s o u r c e s w h i c h a r e r e q u i r e d s h o u l d b e a l l o c a t e d . * / f o r ( R e s o u r c e A l l o c a t i o n a l l o c : s o l u t i o n . g e t S i m u l a t i o n ( ) . g e t A l l o c a t i o n s ( ) ) i f ( a l l o c . g e t R e s o u r c e ( ) = = n u l l ) { h a r d S c o r e + = m e d i u m P e n a l t y ( 1 ) ; a d d F e e d b a c k ( a l l o c . g e t W o r k ( ) , ( c r e a t e F e e d b a c k ( F e e d b a c k L e v e l . E R R O R , " A r e q u i r e d r e s o u r c e o f k i n d " + a l l o c . g e t K i n d ( ) . g e t N a m e ( ) + " i s m i s s i n g . " ) ) ) ; } }          
  30. 30. WHAT HAVE WE LEARNED SO FAR?
  31. 31. “Do not compromise on your domain model.”
  32. 32. EFFORT TO BUILD THIS TOOLING ? 3 hours meeting + mail exchanges with INRA experts 10 days of Eclipse Modeling experts Proof of concept code is on github
  33. 33. TECHNOLOGIES MEANT TO DO THIS
  34. 34. ARE RELEVANT TO SAVE THIS
  35. 35. TEAMING UP TECHNOLOGIES INSTEAD OF STACKING IT Eclipse: platform and User interface integration EMF: data, resources, deeplinkink, reflective manipulation
  36. 36. OPPORTUNITIES Time modeling and management Probabilistic models Graph/Charts representation in Sirius Alternatives comparisons
  37. 37. ... FURTHER MATERIALS [slides] (Benoit Combemale and Jean-Michel Bruel), CPS Seminar, 2016 [slides] (Benoit Combemale), INRA Seminar, 2015 [paper] (Jean-Michel Bruel, Benoit Combemale, Ileana Ober, Hélène Raynal), In International Conference on Computational Science (ICCS), 2015. [video, french] (Benoit Combemale, DEVLOG-IDM2014, Oct. 2014) [video, french] (Benoit Combemale, DEVLOG-IDM2013, Oct. 2013) Modeling for Smart CPS Modeling for Sustainability MDE in Practice for Computational Science L'IDM par la pratique dans le contexte des modèles agronomiques autour d'une étude de cas Composition and concurrent execution of heterogeneous domain-specific models

×