SlideShare une entreprise Scribd logo
1  sur  41
Télécharger pour lire hors ligne
x
SIX SIGMA
FOUNDRY MATERIAL SCRAP REDUCTION
3.9L PISTON
BY
DR. BIKRAM JIT SINGH
PROFESSOR
GREEN BELT
MMDU MULLANA
MARCH 28TH 2007
x
BUSINESS CASE
In April 2006, started in the Automotive Business Unit the new part number production (81124,
3.9L piston). The foundry material scrap was 7.0% in average.
x
OBJECTIVE
Reduce the foundry material scrap from 7.0% at 2.0%
maximum, in a 4 months period, with the following benefits:
-Cost reduction
-More machining lines availability
-Less scrap re-melting
-Less customer complains
-$128,510.00 USD Annual savings
x
PROJECT SCOPE
In Scope: Run tests only with one dies serie (69 - 72), in order to
finish in the 4 months period established. After that the rest of the
dies (6 more series) will be modified according with the
improvement (6 months more).
Out of Scope: Other part numbers (4.8L, 5.3L, Polaris, Tecumseh
and HD Skirts)
Start: July 21st 2006
Stop: 1st Goal  5% Week 37
2nd Goal  3.5% Week 42
3rd Goal  2.0% Week 46
x
GOAL STATEMENT
Y= %Foundry material scrap pistons (Porosity).
X1: Pouring speed
X2: Robot ladles alignment
X3: Die design
X4: Top core design
X5 Ingate design
X6: Robot ladle cleanness
X7: Degassing
X8 Flux treatment
x
OTHER BENEFITS
More Foundry equipment availability
More Machining line availability
Less Customer complains (Machining, Phosphate,
Assembly and GM).
x
6 SIGMA MAP ROAD OF PROJECTPerformance
GOOD
BAD 3 Sigma
6 Sigma
Six Sigma
Discovering
Sustain
Start: 16/Nov/06
Finish: Permanent
Improve
Start: 13/Sep/06
Finish: 11/Oct/06
Control
Start: 12/Oct/06
Finish: 15/Nov/06
Analyze
Start: 17/August/06
Finish: 12/Sep/06
Measure
Start: 20/Ju/06
Finish: 16/Aug/06
Define
Start: 06/Jun/06
Finish: 21/Jul/06
x
PROJECT CHARTER
Foundry Material Scrap Reduction, 3.9L Piston
Green Belt: Víctor Espejo
Reduce the foundry material scrap from 7% (9,030 pistons/month) to 2%
max. (2,500 pistons/month), in 4 months.
Cost reduction and more machining line availability.
The piston cost = 1.64 USD/piece.
Total savings per year = $128,510 USD
Measurements / Objective / Target
- Identify the defect
- Scarp Mapping (identify the zones)
- Review the ingate system
- Magma modeling simulation
- Design a new ingate system and run with Magama
modeling.
- Modify the ingate system
- Test with proposal # 1
- Test with proposal # 2
- Choose the best ingate system for Puebla process
Key Actions
In April 2006 started the new part number production
(81124, 3.9L piston), The material scrap rate average
after machining is 7%.
Monthly production average is 129,000 pistons.
• Foundry Material
Scrap Reduction,
3.9L Piston
Current SituationProject
Reduce the foundry material scrap from 7% (9,030 pistons/month) to 2%
max. (2,500 pistons/month), in 4 months.
Cost reduction and more machining line availability.
The piston cost = 1.64 USD/piece.
Total savings per year = $128,510 USD
Measurements / Objective / Target
- Identify the defect
- Scarp Mapping (identify the zones)
- Review the ingate system
- Magma modeling simulation
- Design a new ingate system and run with Magama
modeling.
- Modify the ingate system
- Test with proposal # 1
- Test with proposal # 2
- Choose the best ingate system for Puebla process
Key Actions
In April 2006 started the new part number production
(81124, 3.9L piston), The material scrap rate average
after machining is 7%.
Monthly production average is 129,000 pistons.
• Foundry Material
Scrap Reduction,
3.9L Piston
Current SituationProject
Current ResourcesObstacles for
success:
4 Months
Implementation Time
£ 4,520.00
Only for two die blocks series for the test
Total 7 series (5 series for improvement
implementation)
Resources / Costs for Implementation
See team members chart
$
Members required for
implementation
Difficult
Grade
Impact
Value
Current ResourcesObstacles for
success:
4 Months
Implementation Time
£ 4,520.00
Only for two die blocks series for the test
Total 7 series (5 series for improvement
implementation)
Resources / Costs for Implementation
See team members chart
$
Members required for
implementation
Difficult
Grade
Impact
Value
Priority:
x
PROCESS MAP CONSTRUCTION
Step 5:
F
A B B,C C D E
J,K,L I
H G
Steps
10.- Die preparation Input Classification
20.- Ingots transportation to foundry Critic
30.- Ingots storage (in Cell) Controlled
40.- Furnace charge Noise
50.- Melting
60.- Degassing and flux treatment A.- Die coating
70.- Holding time and impurity flotation B.- Furnace charge relation
80.- Start up casting cell machine C.- Molten metal temperature
90.- Pouring D.- Density Index (ID)
100.- Croppers E.- Cycle time
110.- AQFD F.- Pouring speed
120.- Visual inspection and baskets accommodation G.- AQFD
130.- Storage before heat treatment H.- Without visual defects
140.- Heat Treatment I.- Aging
150.- Q.A. Release J.- Microstructure
160.- Transportation to release material area K.- Hardness
170.- Storage before machining L.- Chemical analysis
Write Down and Classify the Key Process Input
CTQ's
10 20 30 40 50 60
ID=1,5 max.
Si
No
70
80 90
100
110120130
Si
No
Scrap
130140150
Si
No
Scrap
160
170
Die temperature
Die coating density
Spray gun
Free of humidity
Free of slag
Charge relation
(60 Ingot /40 scrap)
Temperature
Metal Temp.
N2 Flow
RPM
Time Time
Water cooling
system
Cycle time
Pouring speed
Ladle cleaning
Metal temperature
Die Coating
Water cooling time
Water coling temp.
Ingate separation
AQFD
Free of visual
defects
Separate in baskets by
cavity
Temperature
Time
Chemical Analysis
Microstructure
Hardness
Q.A. Release card
10 20 30 40 50 60
ID=1,5 max.
Si
No
70
80 90
100
110120130
Si
No
Scrap
130140150
Si
No
Scrap
160
170
10 20 30 40 50 60
ID=1,5 max.
Si
No
70
80 90
100
110120130
Si
No
Scrap
130140150
Si
No
Scrap
160
170
x
PROCESS MAP CONSTRUCTION
Step 7:
F
A B B,C C D E
J,K,L I
H G
Ingots transportation to foundry
Pistons waiting for heat treatment
Heat treated pistons transportation
Pinstons stock for machining
Steps with out value
10 20 30 40 50 60
ID=1,5 max.
Yes
No
70
80 90
100
110120130
Yes
No
Scrap
130140150
Yes
No
Scrap
160
170
Die temperature
Coating Density
Spray gun
Free of humidity
Free of slag
Charge relation (60%
Ingot / 40% scrap)
Temperature
Metal Temp.
N2 Flow
RPM
Time Time
Water cooling
system
Cicle time
Pouring speed
Ladle cleanning
Metal temperature
Die coating
Water cooling time
Water cooling temp.
Ingate separation
AQFD
Free of defects
Separate in baskets per
cavity
Temperature
Time
Chemical Analysis
Microestructure
Hardness
Q.A. Release card
x
1,2%
1,0% PIEZAS 12789
BASE 9´05 DIC ' 05 SEM 23 SEM 24 SEM 25 SEM 26 SEM 27 PR/SEM ACUM.
8.601 36.501 50.075 34.706 53.764 0 35.009 175.046
495 2.625 3.291 2.076 4.797 0 2.558 12.789
5,44% 6,71% 6,17% 5,64% 8,19% #¡DIV/0! 6,81% 6,81%
[#] [PCS] [#] [PCS]
1 11430 8 0
2 889 9 0
3 381 10 0
4 54 11 0
5 16 12 0
6 14 13
SCRAP [%] OBJETIVO 7 5 14
1,2%
1,0%
BASE 9´05 ENE ' 06 FEB ' 06 MAR ' 06 ABR ' 06 MAY ' 06 JUN ' 06
8.601 39.063 175.046
495 3.351 12.789
5,44% 7,90% 6,81%
SCRAP [%] OBJETIVO
ACUM.
214.109
16.140
7,01%SCRAP [%]
SCRAP DE FUNDICION EN MAQUINADO
SCRAP DE FUNDICION EN MAQUINADO 6,81%
RECHAZO
[PZAS]
SCRAP [%]
PROD. NETA OK
[PZAS]
RECHAZO
[PZAS]
PROD. NETA OK
[PZAS]
@SEM 26
JUNIO '2006
INCLUSIONES
GOLPES
PINTURA
PROBLEMA
SCRAP EN FOSFATO
PIP DAÑADO
GAS
RECHUPES (Gate)
REBABA O FLASH
AIRE ATRAPADO
OXIDOS
RECHUPES (Back)
METAL PEGADO
SCRAP DE FUNDICION EN MAQUINADO
81124 (3,9L)
PROBLEMA
PARETO DE RECHAZOS
META @ JUN' 06
META @ DIC' 05
META @ JUN' 06
META @ DIC' 05
5,44%
6,71%
6,17%
5,64%
8,19%
0,00%
6,81%
0,0%
1,0%
2,0%
3,0%
4,0%
5,0%
6,0%
7,0%
8,0%
9,0%
10,0%
BASE 9´05 DIC ' 05 SEM 23 SEM 24 SEM 25 SEM 26 SEM 27 PR/SEM
11430
889
381 54 16 14 5 0 0 0
89%
96%
99% 100% 100% 100% 100% 100% 100% 100%
0
2000
4000
6000
8000
10000
12000
14000
84%
86%
88%
90%
92%
94%
96%
98%
100%
102%
5,44%
7,90%
6,81% 7,01%
0,0%
2,0%
4,0%
6,0%
8,0%
10,0%
BASE 9´05 ENE ' 06 FEB ' 06 MAR ' 06 ABR ' 06 MAY ' 06 JUN ' 06 ACUM.
New piston 3,9L (81124)
Foundry Material Scrap Pareto
3.9L Piston (81124)
x
5M DIAGRAM
Method Medio ambiente (Enviroment) Materials
Turbulence during pouring High humidity Dirty ingots from supplier
Pouring interrupted Water leaks on dies Metal temperature too high
Ladel drying Too much dust in the building Liquid metal level high, it touch the furnace iron ring
Aluminum in the pouring bush Metal contamination from ceramic fiber from the lids
Poor molten metal treatment Poor scrap conditions from other areas
Poor ladle cleaning
Incorrect molten metal surface skimming
Slow pouring speed
Molten metal regassing
Ladle alignment
Manpower Machinery
Poor metal cleaning practices Dirty ladle during pouring
Furnace lids are open all the time Ingate width too wide
Poor die coating conditions on cell Die design
Poor piston defects inspection Ingate design
Die conditions
Deskulling box in bad conditions
Dirty crucibles
Robot aborts
Top core design
Poor die venting
Turbulence during metal transportation (robot)
Robot scooping during ladle filling
Foundry Material Scrap
(3.9L Piston)
x
CAUSE – EFFECT MATRIX (80/20)
Critic
Control
Noise
10 8 6 5 3 4 3 3 3
2 3 4 5 6 7 8 9 10
AirBubbles
Misrun
Weeping
Coating
HitandDamages
pipdamage
Hydrogen
porosity
Warmers
Shrinkage
Total
Process Step Process Input
11 Set up Die coating 7 8 4 10 6 8 9 283
5 Set up Die preheating 8 9 8 8 216
14 Set up Water cooling connections 5 8 9 6 8 210
1 Pouring Low pouring speed 10 8 5 179
2 Design Ingate 10 7 6 174
10 Pouring Water cooling temperature too low 7 10 7 171
3 Pouring Water cooling time too short 9 9 7 165
18 Pouring Ladles alignment 9 7 6 164
8 Pouring Molten metal temperature too low 8 8 6 162
13 Design Blocks and cores 6 6 4 6 150
9 Pouring Water cooling temperature too high 8 8 7 149
15 Pouring Water cooling time too long 4 10 8 144
6 Pouring Molten metal temperature too high 8 6 5 4 143
4 Design Top core 9 5 6 128
Total
1310
728
270
90
18
76
87
171
237
3108
Correlation of Input to Output
Rating of Importance to Customer
Characteristic
Cause and Effect Matrix
for Foundry
x
AMEF Numero:
FD
60
Pouring
High Pouring
speed
Over pour,
incomplete
pieces, down
time
4
Wrong robot
adjustment
during pouring
4
Password to
robot program
Visual 6 96
New
passwords
controlled only
by team
leaders
O. Cruz
Week 34 2006
Set new
passwords
4 2 6 48
FD
60
Pouring
Low pouring
speed
Turbulences 4
Wrong robot
adjustment
during pouring
4
Password to
robot program
Visual 6 96
New
passwords
controlled only
by team
leaders
O. Cruz
Week 34 2006
Set new
passwords
4 2 6 48
FD
60
Pouring
Ladles
disalignment
Over pour,
incomplete
pieces, down
time,
turbulences
4
Wrong robot
ladles
adjustment,
wrong robot
adjustment
during metal pick
up and pouring
3
Robot
alignment every
ladles change
and set the
password to the
program
Visual 6 72
Device to verify
ladles
alignment and
height after
maintenance
R. Avila
Week 38 2006
FD
60
Pouring Ingate design
Porosity by air
trapped and
oxides
6
Air aspiration
and turbulences
3
Verify scrap
after machining
7 126
Magma
simulation for
new designs
Víctor Espejo
Week 38 2006
Modify tooling
with supplier
6 1 4 24
FD
60
Pouring
Robot arm
disalignment
Over pour,
incomplete
pieces, down
time
4
Robot arm
disalignment,
screw loose and
robot crash
4 Visual 7 112
Screw
adjustments
every PM
J. López
Week 36 2006
Robot PM
every month
(program)
4 3 6 72
N. P.
R.
Actions
recommended
Responsible y Due
date
Action done results
Action done
S
E
V
O
C
U
D
E
T
N
P
R
O
C
U
R
Current Process
Controls
PREVENTION
Current Process
Controls
DETECTION
D
E
T
Nombre de Parte / Descripción
GM 5.3L Fijo, GM 3.5L, GM 5.3L Perno Flotante, GM 3.9L, GM 4.8L; TECUMSEH
Ref.
No.
Process
description
Failure Mode
Effect potential
failure
S
E
V
C
L
A
S
E
Cause / Mechanism
Potential Failure
Numero de Parte / Ultima versión del cambio Equipo Central Otras Aprobaciones / Si es necesario
81030C(5.3L GM)
81063C(3.5L GM)
81064G(5.3L Flot GM)
81124 (3.9L GM)
81094 (4.8L GM)
80094 (Tecumseh)
B2
R005
R005
R001
R003
R C
V. Espejo, O. Cruz, M. Hernández,E. Miranda, O. Rodríguez, R.
Avila, A Farfan.
No. de revisión
Eric Miranda M. (222) 4043100 ext 210 13-Jul-02 07-Ago-06 11AMFD-01
Contacto / No. Telefono Fecha (Emisión) Fecha (Rev.)
FAILURE MODE EFFECT ANALYSIS
( PROCESS FMEA )
x
Capability Study
Automatic Sigma Calculator
Attribute Data
Total Defects 2768
# of opportunities 3
Total units 26255
These are your defects
(dpmo) 35143
These are the DPU 0,1054 232,6
Zbench 3,3101 This is the value of sigma in your process
Entitlement (defects) 18
Color code Not capable
Borderline
Capable
Air Trapped (90%) Oxide (7%) Shrinkage (3%)
Scrap 2768 2491 194 83 2768
Machined parts 26255
%Scrap 10.5%
Production Results Week 32
x
% Appraiser
0,0%
10,0%
20,0%
30,0%
40,0%
50,0%
60,0%
70,0%
80,0%
90,0%
100,0%
110,0%
Zully "Q.A." 0 0
%Efficiency
95% UCL
Calculated Score
95% LCL
% Score vs Appraiser
0,0%
10,0%
20,0%
30,0%
40,0%
50,0%
60,0%
70,0%
80,0%
90,0%
100,0%
110,0%
Zully "Q.A." 0 0
%Efficiency
95% UCL
Calculated Score
95% LCL
Measurement System Evaluation
x
Hypothesis Test
Datas Type:
Continuous
X1 Pouring speed (Fast and slow) *Discrete
X2 Ingate design (Ingate area, only 2 sizes) **Discrete
X3 Ladle alignment (Alignment and Not alignment) Discrete
X4 "Top Core" Design (Modified and Not modified) Discrete
Ho Not relation, Not difference
Ha Relation, Difference
* Pouring speed from 3,00 sec to 4,50 sec.
** Ingate areas average: 135 mm 2
y 165 mm 2
Critics X's for Y's
% Machining pistons with foundry defects
(Porosity)
Y
x
Hypothesis 1:
1.- The feeding area in the dies (“Ingates”), affect to the scrap by
porosity, the ingates are not well calculated in the design.
Y = % Scrap after machining (Foundry porosity). (Continuous)
X = Ingate design (Feeding area: 135mm2 y 165mm2). (Discrete)
Ho = There is not relationship between ingate design and % scrap
Ha = There is relationship between ingate design and % scrap 300 pistons per cavity
130 - 140 160 - 170
69 8.4% 12.2%
70 8.4% 20.9%
71 2.8% 11.0%
72 3.4% 10.4%
69 9.7%
70 8.0%
71 4.2%
72 11.1%
Cavity
Area (mm2)
x
%Scrap
Percent
2520151050-5
99
95
90
80
70
60
50
40
30
20
10
5
1
Mean 9,688
StDev 5,664
N 8
AD 0,371
P-Value 0,328
Probability Plot of %Scrap
Normal
Area
95% Bonferroni Confidence Intervals for StDevs
165
135
2520151050
Area
%Scrap
165
135
2015105
Test Statistic 0,39
P-Value 0,461
Test Statistic 0,02
P-Value 0,902
F-Test
Levene's Test
Test for Equal Variances for %Scrap
Hypothesis Test. One Way Anova.
Ingates Design Vs %Scrap
Data
Area 165Area 135
20
15
10
5
Individual Value Plot of Area 135; Area 165
Data
Area 165Area 135
20
15
10
5
Boxplot of Area 135; Area 165
x
One-way ANOVA: Area 135; Area 165
Source DF SS MS F P
Factor 1 124,0 124,0 7,40 0,035
Error 6 100,5 16,8
Total 7 224,5
S = 4,093 R-Sq = 55,24% R-Sq(adj) = 47,78%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev ---------+---------+---------+---------+
Area 135 4 5,750 3,070 (----------*---------)
Area 165 4 13,625 4,907 (---------*---------)
---------+---------+---------+---------+
5,0 10,0 15,0 20,0
Pooled StDev = 4,093
Hypothesis Test. One Way Anova.
Ingates Design Vs %Scrap
Conclusion: Discard Ho, Accept Ha.
x
Hypothesis 2:
2.- The robot ladles alignment to pour metal into the dies, affect the
scrap rate, should be alignment respect to the pouring bush.
Y = Foundry material scrap (Foundry porosity). (Continuous)
X = Ladles alignment (Alignment and non alignment). (Discrete)
Ho = There is not relationship between ladles alignment and % scrap
Ha = There is not relationship between ladles alignment and % scrap
300 pistons per cavity
Alignment Non Alignment
69 0.00 5.43
70 0.63 5.00
71 2.03 3.60
72 1.53 3.00
69 0.70 2.12
70 2.20 3.53
71 1.25 1.22
72 0.00 0.75
Robot Ladles (%Scrap)
Cavity
x Hypothesis Test. One Way Anova.
Ladle Alignment Vs %Scrap
%Scrap A.
Percent
6543210-1-2
99
95
90
80
70
60
50
40
30
20
10
5
1
Mean 2,062
StDev 1,657
N 16
AD 0,422
P-Value 0,283
Probability Plot of %Scrap A.
Normal
Alineacion
95% Bonferroni Confidence Intervals for StDevs
1
0
4,03,53,02,52,01,51,00,5
Alineacion
%Scrap A.
1
0
6543210
Test Statistic 0,26
P-Value 0,096
Test Statistic 2,82
P-Value 0,115
F-Test
Levene's Test
Test for Equal Variances for %Scrap A.
Data
No AlineadoAlineado
6
5
4
3
2
1
0
Boxplot of Alineado; No Alineado
Data
No AlineadoAlineado
6
5
4
3
2
1
0
Individual Value Plot of Alineado; No Alineado
x
One-way ANOVA: Alineado; No Alineado
Source DF SS MS F P
Factor 1 16,63 16,63 9,48 0,008
Error 14 24,56 1,75
Total 15 41,18
S = 1,324 R-Sq = 40,37% R-Sq(adj) = 36,11%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev +---------+---------+---------+---------
Alineado 8 1,043 0,850 (--------*-------)
No Alineado 8 3,081 1,669 (--------*-------)
+---------+---------+---------+---------
0,0 1,2 2,4 3,6
Pooled StDev = 1,324
Hypothesis Test. One Way Anova.
Ladle Alignment Vs %Scrap
Conclusion: Discard Ho, Accept Ha.
x
Hypothesis 3:
3.- A Top Core modification to increase the material in the crown to be
eliminated in the machining line, will be to decrease the scrap porosity around
the pockets.
Y = Foundry material scrap (Foundry porosity). (Continuous)
X = “Top Core” Design (Modified and Non modified). (Discrete)
Ho = There is not relationship between “Top Core” design and % scrap
Ha = There is relationship between “Top Core” design and %scrap
300 pistons per cavity
Modified Non Modified
1.18 3.00
0.51 1.90
4.17 1.27
1.75 1.20
1.19 1.90
2.82 4.56
5.71 5.40
Top core
Cavity (69)
x Hypothesis Test. One Way Anova.
Top Core Design Vs %Scrap
%Scrap top
Percent
76543210-1-2
99
95
90
80
70
60
50
40
30
20
10
5
1
Mean 2,611
StDev 1,706
N 14
AD 0,684
P-Value 0,058
Probability Plot of %Scrap top
Normal
Topcore
95% Bonferroni Confidence Intervals for StDevs
1
-1
54321
Topcore
%Scrap top
1
-1
6543210
Test Statistic 0,77
P-Value 0,764
Test Statistic 0,06
P-Value 0,812
F-Test
Levene's Test
Test for Equal Variances for %Scrap top
Data
%Scrap top_2%Scrap top_1
6
5
4
3
2
1
0
Individual Value Plot of %Scrap top_1; %Scrap top_2
Data
%Scrap top_2%Scrap top_1
6
5
4
3
2
1
0
Boxplot of %Scrap top_1; %Scrap top_2
x
One-way ANOVA: %Scrap top_1; %Scrap top_2
Source DF SS MS F P
Factor 1 0,26 0,26 0,08 0,779
Error 12 37,57 3,13
Total 13 37,83
S = 1,769 R-Sq = 0,68% R-Sq(adj) = 0,00%
Individual 95% CIs For Mean Based on
Pooled StDev
Level N Mean StDev -------+---------+---------+---------+--
%Scrap top_1 7 2,747 1,653 (-----------------*------------------)
%Scrap top_2 7 2,476 1,878 (-----------------*-----------------)
-------+---------+---------+---------+--
1,60 2,40 3,20 4,00
Pooled StDev = 1,769
Hypothesis Test. One Way Anova.
Top Core Design Vs %Scrap
Conclusion: Accept Ho, Discard Ha.
x
Levels
Response
Variables
Constants Noise Variables
Equipments and
measurement
instruments
Experimental
Unit
DOE Type
30 & 45
3,5 & 4,0
Factorial
Experiment
2x2x2x2 = 24
16 pouring. 4
repetitions
Die Coating
Ladel coating
Ceramic inserts in
good conditions
Water Cooling Time in
Center Core (seg)
Factors
3.
Piston 3,9L Part
Number 81124Cycle Time = 83
seg.
Chemicla Analysis
(same furnace)
Water cooling
connections
Visual Inspection.
Visual Aid FAC-003-
001 Rev. 4Pouring speed (seg)
4.
DOE
Same foundry cell
Degassing (ID =
1,5 máx.)
1. Metal Temperature (°C)
2. Water Cooling Temp. (°C)
2% Scrap max.
18 & 30
770 y 790
x
Interactions
(A) Center Core water
Cooling Time (°C)
(B) Pouring
Speed (seg)
(C) Water Cooling
Temperature (°C)
(D) Metal
Temperature
(°C)
(1) 30 3.5 18 770
a 45 3.5 18 770
b 30 4.0 18 770
ab 45 4.0 18 770
c 30 3.5 30 770
ac 45 3.5 30 770
bc 30 4.0 30 770
abc 45 4.0 30 770
d 30 3.5 18 790
ad 45 3.5 18 790
bd 30 4.0 18 790
abd 45 4.0 18 790
cd 30 3.5 30 790
acd 45 3.5 30 790
bcd 30 4.0 30 790
abcd 45 4.0 30 790
DOE
Same DOE for both series:
65 – 68 Choke Section &
77 – 80 Permanent Filter
x
Trials Results &
Savings
Víctor Espejo
x
Cell #: 4 Station #: 8 Machining Line #: 1
Shift: Mach. Date:
Die Cavity Qty m/ced No. Scrap %Scrap
Die Cavity
Pairing
Total Qty
m/ced
Total No
Scrap
Total Pair
% Scrap
3 Blow Holes
1 Oxide Inc.
1 Shrinkage
9 Blow Holes
2 Oxide Inc.
0 Shrinkage
7 Blow Holes
2 Oxide Inc.
0 Shrinkage
10 Blow Holes
0 Oxide Inc.
0 Shrinkage
Total Trial 5104 35 0.69%
870
9
10
0.95%
1.15%
FM Puebla Foundry
3,9L Piston 81124 Scrap Results
Basket #:
"Casting Trials" Choke Section. New Downsprue:
dd/mm/yy
Cav 67 0.80%1129
16
67 & 68 1999 19
11 0.74%
Cav 68
Scrap Defects
0.52%
Cav 65 1615 5 0.31%
65 & 66 3105
Cav 66 1490
In-Gate trials Results. Current Process Conditions
x
In-Gate trials Results. Current Process Conditions
Cell #: 4 Station #: 8 Machining Line #: 1
Shift: Mach. Date:
Die Cavity Qty m/ced No. Scrap %Scrap
Die Cavity
Pairing
Total Qty
m/ced
Total No
Scrap
Total Pair
% Scrap
7 Blow Holes
0 Oxide Inc.
0 Shrinkage
8 Blow Holes
0 Oxide Inc.
1 Shrinkage
7 Blow Holes
1 Oxide Inc.
0 Shrinkage
16 Blow Holes
0 Oxide Inc.
0 Shrinkage
Total Trial 5574 40 0.72%
1937
8
16
0.76%
0.83%
FM Puebla Foundry
3,9L Piston 81124 Scrap Results
Basket #:
"Casting Trials" Permanent Filter Ingate:
dd/mm/yy
Cav 79 0.66%1215
16
63A & 64A 3152 24
9 0.75%
Cav 80
Scrap Defects
0.66%
Cav 77 1214 7 0.58%
61A & 62A 2422
Cav 78 1208
x
September October November December January February March April May June July August September Octubre
140087 150165 147450 172582 184578 70171 127678 143730
9806 10512 10322 12081 12920 4912 8937 10061
$16,082 $17,239 $16,927 $19,812 $18,605 $7,073 $12,870 $14,488
6404 4457 7076 5379 5804 1932 1912 4108
$10,503 $7,309 $11,605 $8,822 $8,358 $2,782 $2,753 $5,916
$5,579 $9,929 $5,323 $10,991 $10,248 $4,291 $10,117 $8,572
$65,050
* % Scrap average (7%)
Scrap parts after improvement
Scrap Cost = 1.64 USD / piece
SAVINGS TABLE
SIX SIGMA - FOUNDRY MATERIAL SCRAP REDUCTION. PISTON 3.9L
Accumulated Total Savings (USD)
Scrap costs after improvement (USD)
Totales Savings (USD)
Period 2006 - 2007
Machined Parts
*Scrap pieces before improvement (7%)
Scrap costs before improvement (USD)
Material Scrap 81124 (3,9L) After Machining, 2006 - 2007
5.4
1.7
2.3
0.4
1.2
2.7
5.3
5.9
2.1
5.4
8.0
7.1
8.3
6.7
6.2
5.6
8.2
10.710.6
9.7
14.0
14.3
11.3
10.5
7.3
9.8
8.3
2.7
3.23.0
3.3
2.72.6
3.53.5
4.5
4.84.74.6
3.2
2.5
3.63.5
2.4
2.0
4.5
3.8
3.2
2.5
2.12.2
1.5
1.0
1.51.5
2.82.72.92.7
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16-Ago-05
26-Ago-05
05-Sep-05
15-Sep-05
25-Sep-05
05-Oct-05
15-Oct-05
25-Oct-05
04-Nov-05
14-Nov-05
24-Nov-05
04-Dic-05
14-Dic-05
24-Dic-05
03-Ene-06
13-Ene-06
23-Ene-06
02-Feb-06
12-Feb-06
22-Feb-06
04-Mar-06
14-Mar-06
24-Mar-06
03-Abr-06
13-Abr-06
23-Abr-06
03-May-06
13-May-06
23-May-06
02-Jun-06
12-Jun-06
22-Jun-06
02-Jul-06
12-Jul-06
22-Jul-06
01-Ago-06
11-Ago-06
21-Ago-06
31-Ago-06
10-Sep-06
20-Sep-06
30-Sep-06
10-Oct-06
20-Oct-06
30-Oct-06
09-Nov-06
19-Nov-06
29-Nov-06
09-Dic-06
19-Dic-06
29-Dic-06
08-Ene-07
18-Ene-07
28-Ene-07
07-Feb-07
17-Feb-07
27-Feb-07
09-Mar-07
19-Mar-07
29-Mar-07
08-Abr-07
18-Abr-07
28-Abr-07
08-May-07
18-May-07
28-May-07
07-Jun-07
17-Jun-07
27-Jun-07
07-Jul-07
17-Jul-07
27-Jul-07
06-Ago-07
16-Ago-07
26-Ago-07
05-Sep-07
15-Sep-07
25-Sep-07
05-Oct-07
15-Oct-07
25-Oct-07
04-Nov-07
14-Nov-07
24-Nov-07
04-Dic-07
14-Dic-07
24-Dic-07
03-Ene-08
Week
%Scrap
Choke section
improvement in the
current ingate desing
New ingate design, choke
section & permanent filter
firts trials (only 2 series)
New ingate design, choke
section & permanent filter out
of service (maintenance)
New ingate design, choke
section & permanent filter
second trials
Final test & decided to
modify all the ingates with
the choke section
Dacmac quotation on
track, anvilloy insert and
final modification.
Planned time one serie
per month.
Goal = 2.0%
x
Capability Study
Automatic Sigma Calculator
Attribute Data
Total Defects 2768
# of opportunities 3
Total units 26255
These are your defects
(dpmo) 35143
These are the DPU 0,1054 232,6
Zbench 3,3101 This is the value of sigma in your process
Entitlement (defects) 18
Color code Not capable
Borderline
Capable
Automatic Sigma Calculator
Attribute Data
Total Defects 4457
# of opportunities 3
Total units 150165
These are your defects
(dpmo) 9893.6
These are the DPU 0.0297 232.6
Zbench 3.8304 This is the value of sigma in your process
Entitlement (defects) 104
Color code Not capable
Borderline
Capable
Z Original Z Improved
x
Conclusions:
-The new in-gates design (both choke section and
permanent filter), reduce and stabilize the scrap trend by air
bubbles.
-The additional benefit is the misruns reduction due to high
pouring speed.
Project Status:
-4 set of dies are already modified (total 7 dies set)
-Process control should be improved, die coating, pouring
conditions and ladle cleaning (oxide problems increase).
x
Defect Characterization
& Magma Simulation
Mel Jones
x
Current In-Gate System.
Proposal In-Gate System.
x
PERMANENT FILTER IN-GATE TRIALS
Background
• New in-gate design needed to reduce turbulence during die filling
• More quiescent fill of the die leads to less fine oxide generation during piston casting and should
give better low temperature fatigue properties for the piston alloy – particularly important for
gasoline pistons
New in-gate design now in production at FM Nürnberg
x
Filter pins on both sides of the block to help stripping of casting
Permanent filter is designed for global standard twin cavity gasoline piston die
x
11Data classification: Internal mm/dd/yyyyFunction / BU name
Permanent filter
Verlauf KP - 9044
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
Jan Feb Mrz Apr Mai Jun Jul Aug
Monat
Auschußin%
0
x
CONTROL PLAN
PUEBLA PISTONS
Apr. del CliProducción (Si es necesario):
Prototipo Pre-Lanzamiento Producción Contacto/Telefono Fecha (Orig.) Fecha (Rev.) No. de Revisión
Plan de Control Número: WBGM-FD01 26-Abr-06 4
Número de Parte Nivel de Ingeniería Nombre de la Parte/Descripcion Miembros del Equipo:
No.
Size Frec.
FD50 Start up cell Foundry cell Cell conditions
See
FFD-02
Visual 1 Daily
Quality and Production
check list
FFD-02
Set up parameters.
DPS-6
Foundry cell
Pouring height (ladle
adjustment)
1.0 a 2.0 cm
from the pouring
bush
Rule 1
Every ladle
change
Maintenance check list
Stop production and fix
the height
Foundry cell Ladle alignment
Straight respect
to pouring bush
squadron guide 1
Every ladle
change
Maintenance check list
Stop production and
align the ladles
FD60 Pouring Casting station Metal temperature 780°C ± 10°C
Handle pyrometer /
Control panel
PI-D-FD-xx
1 Every 2 hrs
FFD-01
Production
Stop cell and fix
parameters, separate
product
Robot Motoman Pouring speed 4.0 sec. Max. Cronometer 1
Daily or every
cell start up
Quality and Production
check list
FFD-02
Robot program
adjustment
Casting cell Water cooling system 20 - 29 °C Temperature sensor 1 Every 4 hrs
Production check list
FFD-02
Stop cell and fix
parameters
Water flow Visual 1
Daily or every
cell start up
Quality and Production
check list
FFD-02
Stop cell and fix
parameters
Characteristic
EqupmentProcess decription
Part
number /
Operation
Spec.
Special
Charact.
ProcessProduct
Reaction Plan
Control method
Sample
Evaluation tchnique
or method
Method
14-Jul-02ERIC MIRANDA (01)(222) 404-3100
PC81030C, PC81064G (AFA06072),
PC81063C (AFA06122), PC81124C (AHS29361),
PC81094C (AHS13044)
B2/R005
R005 / R001
R003
PISTÓN FUNDIDO 5.3L & 5.3L FLOTANTE
PISTÓN FUNDIDO 3.5L, PISTÓN FUNDIDO 3.9L
PISTÓN FUNDIDO 4.8L
A. TORIJA, O RODRIGUEZ, V ESPEJO,
S LOPEZ, M HERNANADEZ
x
Measurement System Validation (X’s)
X´s (Variables) Controlled by Validation Restreability Location
PI-D-FD-22 Cell 1
PI-D-FD-23 Cell 2
PI-D-FD-24 Cell 3
PI-D-FD-29 Cell 4
Handle Pyrometer Calibration PI-D-FD-07
Control Panel Pyrometer Calibration PI-D-FD-XX 12 Control Panels
Water Cooling Time Casting Stations Timers 8 Casting Stations
Water Cooling Temperature
Fix Thermocouple and
Pyrometer
Calibration
Metal Temperature

Contenu connexe

Tendances

1 Basic Punching Theory Tt 2010
1  Basic Punching Theory Tt  20101  Basic Punching Theory Tt  2010
1 Basic Punching Theory Tt 2010Christer Lindholm
 
Aluminum forging presentation
Aluminum forging presentationAluminum forging presentation
Aluminum forging presentationMahmoud Khairy
 
Cold Forging | Precision Cold Forged Progressive Stamping
Cold Forging | Precision Cold Forged Progressive StampingCold Forging | Precision Cold Forged Progressive Stamping
Cold Forging | Precision Cold Forged Progressive StampingInterplex Holdings
 
Welding of Similar & dissimilar - Metal filler chart
Welding of Similar & dissimilar - Metal filler chartWelding of Similar & dissimilar - Metal filler chart
Welding of Similar & dissimilar - Metal filler chartVidhi Sukhadiya
 
Hardening (Heat treatment) Quenching
Hardening (Heat treatment)  QuenchingHardening (Heat treatment)  Quenching
Hardening (Heat treatment) QuenchingGulfam Hussain
 
Sheet metal forming process Chapter 7
Sheet metal forming process Chapter 7Sheet metal forming process Chapter 7
Sheet metal forming process Chapter 7Hosam Hane
 
Aluminum alloy castings
Aluminum alloy castingsAluminum alloy castings
Aluminum alloy castingsbayuadam11
 
Metal casting ppt3
Metal casting ppt3Metal casting ppt3
Metal casting ppt3maa924gourav
 
Classification of manufacturing process
Classification of manufacturing processClassification of manufacturing process
Classification of manufacturing processAkhtar Kamal
 
Sheet metal processes - shearing
Sheet metal processes - shearingSheet metal processes - shearing
Sheet metal processes - shearingRamesh Kumar A
 
Heat treatment process for steel
Heat treatment process for steelHeat treatment process for steel
Heat treatment process for steelPampania Jagdish
 

Tendances (20)

1 Basic Punching Theory Tt 2010
1  Basic Punching Theory Tt  20101  Basic Punching Theory Tt  2010
1 Basic Punching Theory Tt 2010
 
Forging
ForgingForging
Forging
 
Aluminum forging presentation
Aluminum forging presentationAluminum forging presentation
Aluminum forging presentation
 
Unit 4-SHEET METAL PROCESSES
Unit 4-SHEET METAL PROCESSESUnit 4-SHEET METAL PROCESSES
Unit 4-SHEET METAL PROCESSES
 
6.core
6.core6.core
6.core
 
Cold Forging | Precision Cold Forged Progressive Stamping
Cold Forging | Precision Cold Forged Progressive StampingCold Forging | Precision Cold Forged Progressive Stamping
Cold Forging | Precision Cold Forged Progressive Stamping
 
Welding of Similar & dissimilar - Metal filler chart
Welding of Similar & dissimilar - Metal filler chartWelding of Similar & dissimilar - Metal filler chart
Welding of Similar & dissimilar - Metal filler chart
 
Hardening (Heat treatment) Quenching
Hardening (Heat treatment)  QuenchingHardening (Heat treatment)  Quenching
Hardening (Heat treatment) Quenching
 
Sheet metal forming process Chapter 7
Sheet metal forming process Chapter 7Sheet metal forming process Chapter 7
Sheet metal forming process Chapter 7
 
Aluminum alloy castings
Aluminum alloy castingsAluminum alloy castings
Aluminum alloy castings
 
Metal casting ppt3
Metal casting ppt3Metal casting ppt3
Metal casting ppt3
 
Sheet Metal Forming and operations
Sheet Metal Forming and operationsSheet Metal Forming and operations
Sheet Metal Forming and operations
 
Classification of manufacturing process
Classification of manufacturing processClassification of manufacturing process
Classification of manufacturing process
 
Rolling of the metals
Rolling of the metalsRolling of the metals
Rolling of the metals
 
Rolling Process
Rolling ProcessRolling Process
Rolling Process
 
Sheet metal processes - shearing
Sheet metal processes - shearingSheet metal processes - shearing
Sheet metal processes - shearing
 
Heat treatment process for steel
Heat treatment process for steelHeat treatment process for steel
Heat treatment process for steel
 
Lethal service quick guide
Lethal service   quick guideLethal service   quick guide
Lethal service quick guide
 
Unit 3-METAL FORMING PROCESSES
Unit 3-METAL FORMING PROCESSESUnit 3-METAL FORMING PROCESSES
Unit 3-METAL FORMING PROCESSES
 
Cutting speed and feed
Cutting speed and feedCutting speed and feed
Cutting speed and feed
 

Similaire à Enigma of 'six sigma' for foundry sm es in india

Design and Analysis of fluid flow in AISI 1008 Steel reduction gear box
Design and Analysis of fluid flow in AISI 1008 Steel reduction gear boxDesign and Analysis of fluid flow in AISI 1008 Steel reduction gear box
Design and Analysis of fluid flow in AISI 1008 Steel reduction gear boxIRJET Journal
 
Lean six sigma black belt project by iftakhar
Lean six sigma black belt project   by iftakharLean six sigma black belt project   by iftakhar
Lean six sigma black belt project by iftakharMohammad IFTAKHAR
 
IRJET- Quality Improvement in Cover Support Casting using Auto-CAST Software
IRJET- Quality Improvement in Cover Support Casting using Auto-CAST SoftwareIRJET- Quality Improvement in Cover Support Casting using Auto-CAST Software
IRJET- Quality Improvement in Cover Support Casting using Auto-CAST SoftwareIRJET Journal
 
Operational Excellence Consultant
Operational Excellence ConsultantOperational Excellence Consultant
Operational Excellence Consultantbharat kumar
 
2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...
2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...
2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...Nadaraja Sarmilan
 
IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...
IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...
IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...IRJET Journal
 
ZBC in commodities.ppt
ZBC in commodities.pptZBC in commodities.ppt
ZBC in commodities.pptSoulmananIndia
 
(Company profile)ykt pcb manufacturer_in_korea_2019_1st_half
(Company profile)ykt pcb manufacturer_in_korea_2019_1st_half(Company profile)ykt pcb manufacturer_in_korea_2019_1st_half
(Company profile)ykt pcb manufacturer_in_korea_2019_1st_halfPark Jin Young
 
IRJET- Productivity Improvement Kaizen of XC-60 Housing
IRJET- Productivity Improvement Kaizen of XC-60 HousingIRJET- Productivity Improvement Kaizen of XC-60 Housing
IRJET- Productivity Improvement Kaizen of XC-60 HousingIRJET Journal
 
Six Sigma Case Study
Six Sigma Case StudySix Sigma Case Study
Six Sigma Case Studysanjay_asati
 
Chart (Repaired).docx
Chart (Repaired).docxChart (Repaired).docx
Chart (Repaired).docxdkdjs1
 
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter MediumIRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter MediumIRJET Journal
 
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using FeaIRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using FeaIRJET Journal
 
Atlas Internship report
Atlas Internship reportAtlas Internship report
Atlas Internship reportM Nadeem
 
Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...
Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...
Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...IRJET Journal
 
IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...
IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...
IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...IRJET Journal
 
Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014John Glenning
 

Similaire à Enigma of 'six sigma' for foundry sm es in india (20)

Project
ProjectProject
Project
 
Design and Analysis of fluid flow in AISI 1008 Steel reduction gear box
Design and Analysis of fluid flow in AISI 1008 Steel reduction gear boxDesign and Analysis of fluid flow in AISI 1008 Steel reduction gear box
Design and Analysis of fluid flow in AISI 1008 Steel reduction gear box
 
Lean six sigma black belt project by iftakhar
Lean six sigma black belt project   by iftakharLean six sigma black belt project   by iftakhar
Lean six sigma black belt project by iftakhar
 
IRJET- Quality Improvement in Cover Support Casting using Auto-CAST Software
IRJET- Quality Improvement in Cover Support Casting using Auto-CAST SoftwareIRJET- Quality Improvement in Cover Support Casting using Auto-CAST Software
IRJET- Quality Improvement in Cover Support Casting using Auto-CAST Software
 
Case study
Case studyCase study
Case study
 
Operational Excellence Consultant
Operational Excellence ConsultantOperational Excellence Consultant
Operational Excellence Consultant
 
2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...
2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...
2nd progress presentation on Minimum Quantity Lubrication(MQL) with vegitable...
 
FINAL REVIEW
FINAL REVIEWFINAL REVIEW
FINAL REVIEW
 
IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...
IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...
IRJET- Analysis of Hard Chrome Plating Process to Reduce Rejections using PDC...
 
ZBC in commodities.ppt
ZBC in commodities.pptZBC in commodities.ppt
ZBC in commodities.ppt
 
(Company profile)ykt pcb manufacturer_in_korea_2019_1st_half
(Company profile)ykt pcb manufacturer_in_korea_2019_1st_half(Company profile)ykt pcb manufacturer_in_korea_2019_1st_half
(Company profile)ykt pcb manufacturer_in_korea_2019_1st_half
 
IRJET- Productivity Improvement Kaizen of XC-60 Housing
IRJET- Productivity Improvement Kaizen of XC-60 HousingIRJET- Productivity Improvement Kaizen of XC-60 Housing
IRJET- Productivity Improvement Kaizen of XC-60 Housing
 
Six Sigma Case Study
Six Sigma Case StudySix Sigma Case Study
Six Sigma Case Study
 
Chart (Repaired).docx
Chart (Repaired).docxChart (Repaired).docx
Chart (Repaired).docx
 
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter MediumIRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
IRJET- Diesel Particulate Filter by using Copper Oxide as a Filter Medium
 
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using FeaIRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
IRJET- Modal Analysis and Optimization of Tile Cutter Blade using Fea
 
Atlas Internship report
Atlas Internship reportAtlas Internship report
Atlas Internship report
 
Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...
Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...
Defects Analysis and Optimization of Process Parameters using Taguchi Doe Tec...
 
IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...
IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...
IRJET- Deburring Methods for Elimination of Chips in the Internal Tubes of Fr...
 
Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014Velocys ppt140813_ENFL-ACS_2014
Velocys ppt140813_ENFL-ACS_2014
 

Plus de Dr. Bikram Jit Singh

Scrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryScrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryDr. Bikram Jit Singh
 
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technoloDr. Bikram Jit Singh
 
Scope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operationsScope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operationsDr. Bikram Jit Singh
 
Risk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmeaRisk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmeaDr. Bikram Jit Singh
 
Ambience of six sigma in indian foundries
Ambience of six sigma in indian foundriesAmbience of six sigma in indian foundries
Ambience of six sigma in indian foundriesDr. Bikram Jit Singh
 
Operational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pumpOperational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pumpDr. Bikram Jit Singh
 
Parametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsmParametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsmDr. Bikram Jit Singh
 
Optimizing the backup power systems through six sigma
Optimizing the backup power systems through six sigmaOptimizing the backup power systems through six sigma
Optimizing the backup power systems through six sigmaDr. Bikram Jit Singh
 

Plus de Dr. Bikram Jit Singh (20)

P22 & P91n Steels
P22 & P91n SteelsP22 & P91n Steels
P22 & P91n Steels
 
Swot
SwotSwot
Swot
 
Friction Stir Welding
Friction Stir WeldingFriction Stir Welding
Friction Stir Welding
 
Mixture DoE
Mixture DoE Mixture DoE
Mixture DoE
 
LSS in Textile Industry
LSS in Textile Industry LSS in Textile Industry
LSS in Textile Industry
 
Scrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundryScrap reduction in piston die casting foundry
Scrap reduction in piston die casting foundry
 
Admissions in engineering
Admissions in engineeringAdmissions in engineering
Admissions in engineering
 
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
0000. the blockchain-revolution-an-analysis-of-regulation-and-technolo
 
Bjs green belt ppt
Bjs green belt pptBjs green belt ppt
Bjs green belt ppt
 
Msa presentation
Msa presentationMsa presentation
Msa presentation
 
Reliability
ReliabilityReliability
Reliability
 
FSW of AL alloys
FSW of AL alloysFSW of AL alloys
FSW of AL alloys
 
Measurement system analysis
Measurement system analysisMeasurement system analysis
Measurement system analysis
 
Scope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operationsScope of six sigma in indian foundry operations
Scope of six sigma in indian foundry operations
 
Risk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmeaRisk management in complex changeovers through cfmea
Risk management in complex changeovers through cfmea
 
Ambience of six sigma in indian foundries
Ambience of six sigma in indian foundriesAmbience of six sigma in indian foundries
Ambience of six sigma in indian foundries
 
Operational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pumpOperational management of a centrifugal slurry pump
Operational management of a centrifugal slurry pump
 
Six sigma case study (bjs)
Six sigma case study (bjs)Six sigma case study (bjs)
Six sigma case study (bjs)
 
Parametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsmParametric optimisation of cnc turning for al 7020 with rsm
Parametric optimisation of cnc turning for al 7020 with rsm
 
Optimizing the backup power systems through six sigma
Optimizing the backup power systems through six sigmaOptimizing the backup power systems through six sigma
Optimizing the backup power systems through six sigma
 

Dernier

A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProRay Yuan Liu
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectGayathriM270621
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier Fernández Muñoz
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptxmohitesoham12
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodManicka Mamallan Andavar
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 

Dernier (20)

A brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision ProA brief look at visionOS - How to develop app on Apple's Vision Pro
A brief look at visionOS - How to develop app on Apple's Vision Pro
 
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectSTATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subject
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptx
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
Python Programming for basic beginners.pptx
Python Programming for basic beginners.pptxPython Programming for basic beginners.pptx
Python Programming for basic beginners.pptx
 
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfComprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
 
Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Levelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument methodLevelling - Rise and fall - Height of instrument method
Levelling - Rise and fall - Height of instrument method
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewArtificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 

Enigma of 'six sigma' for foundry sm es in india

  • 1. x SIX SIGMA FOUNDRY MATERIAL SCRAP REDUCTION 3.9L PISTON BY DR. BIKRAM JIT SINGH PROFESSOR GREEN BELT MMDU MULLANA MARCH 28TH 2007
  • 2. x BUSINESS CASE In April 2006, started in the Automotive Business Unit the new part number production (81124, 3.9L piston). The foundry material scrap was 7.0% in average.
  • 3. x OBJECTIVE Reduce the foundry material scrap from 7.0% at 2.0% maximum, in a 4 months period, with the following benefits: -Cost reduction -More machining lines availability -Less scrap re-melting -Less customer complains -$128,510.00 USD Annual savings
  • 4. x PROJECT SCOPE In Scope: Run tests only with one dies serie (69 - 72), in order to finish in the 4 months period established. After that the rest of the dies (6 more series) will be modified according with the improvement (6 months more). Out of Scope: Other part numbers (4.8L, 5.3L, Polaris, Tecumseh and HD Skirts) Start: July 21st 2006 Stop: 1st Goal  5% Week 37 2nd Goal  3.5% Week 42 3rd Goal  2.0% Week 46
  • 5. x GOAL STATEMENT Y= %Foundry material scrap pistons (Porosity). X1: Pouring speed X2: Robot ladles alignment X3: Die design X4: Top core design X5 Ingate design X6: Robot ladle cleanness X7: Degassing X8 Flux treatment
  • 6. x OTHER BENEFITS More Foundry equipment availability More Machining line availability Less Customer complains (Machining, Phosphate, Assembly and GM).
  • 7. x 6 SIGMA MAP ROAD OF PROJECTPerformance GOOD BAD 3 Sigma 6 Sigma Six Sigma Discovering Sustain Start: 16/Nov/06 Finish: Permanent Improve Start: 13/Sep/06 Finish: 11/Oct/06 Control Start: 12/Oct/06 Finish: 15/Nov/06 Analyze Start: 17/August/06 Finish: 12/Sep/06 Measure Start: 20/Ju/06 Finish: 16/Aug/06 Define Start: 06/Jun/06 Finish: 21/Jul/06
  • 8. x PROJECT CHARTER Foundry Material Scrap Reduction, 3.9L Piston Green Belt: Víctor Espejo Reduce the foundry material scrap from 7% (9,030 pistons/month) to 2% max. (2,500 pistons/month), in 4 months. Cost reduction and more machining line availability. The piston cost = 1.64 USD/piece. Total savings per year = $128,510 USD Measurements / Objective / Target - Identify the defect - Scarp Mapping (identify the zones) - Review the ingate system - Magma modeling simulation - Design a new ingate system and run with Magama modeling. - Modify the ingate system - Test with proposal # 1 - Test with proposal # 2 - Choose the best ingate system for Puebla process Key Actions In April 2006 started the new part number production (81124, 3.9L piston), The material scrap rate average after machining is 7%. Monthly production average is 129,000 pistons. • Foundry Material Scrap Reduction, 3.9L Piston Current SituationProject Reduce the foundry material scrap from 7% (9,030 pistons/month) to 2% max. (2,500 pistons/month), in 4 months. Cost reduction and more machining line availability. The piston cost = 1.64 USD/piece. Total savings per year = $128,510 USD Measurements / Objective / Target - Identify the defect - Scarp Mapping (identify the zones) - Review the ingate system - Magma modeling simulation - Design a new ingate system and run with Magama modeling. - Modify the ingate system - Test with proposal # 1 - Test with proposal # 2 - Choose the best ingate system for Puebla process Key Actions In April 2006 started the new part number production (81124, 3.9L piston), The material scrap rate average after machining is 7%. Monthly production average is 129,000 pistons. • Foundry Material Scrap Reduction, 3.9L Piston Current SituationProject Current ResourcesObstacles for success: 4 Months Implementation Time £ 4,520.00 Only for two die blocks series for the test Total 7 series (5 series for improvement implementation) Resources / Costs for Implementation See team members chart $ Members required for implementation Difficult Grade Impact Value Current ResourcesObstacles for success: 4 Months Implementation Time £ 4,520.00 Only for two die blocks series for the test Total 7 series (5 series for improvement implementation) Resources / Costs for Implementation See team members chart $ Members required for implementation Difficult Grade Impact Value Priority:
  • 9. x PROCESS MAP CONSTRUCTION Step 5: F A B B,C C D E J,K,L I H G Steps 10.- Die preparation Input Classification 20.- Ingots transportation to foundry Critic 30.- Ingots storage (in Cell) Controlled 40.- Furnace charge Noise 50.- Melting 60.- Degassing and flux treatment A.- Die coating 70.- Holding time and impurity flotation B.- Furnace charge relation 80.- Start up casting cell machine C.- Molten metal temperature 90.- Pouring D.- Density Index (ID) 100.- Croppers E.- Cycle time 110.- AQFD F.- Pouring speed 120.- Visual inspection and baskets accommodation G.- AQFD 130.- Storage before heat treatment H.- Without visual defects 140.- Heat Treatment I.- Aging 150.- Q.A. Release J.- Microstructure 160.- Transportation to release material area K.- Hardness 170.- Storage before machining L.- Chemical analysis Write Down and Classify the Key Process Input CTQ's 10 20 30 40 50 60 ID=1,5 max. Si No 70 80 90 100 110120130 Si No Scrap 130140150 Si No Scrap 160 170 Die temperature Die coating density Spray gun Free of humidity Free of slag Charge relation (60 Ingot /40 scrap) Temperature Metal Temp. N2 Flow RPM Time Time Water cooling system Cycle time Pouring speed Ladle cleaning Metal temperature Die Coating Water cooling time Water coling temp. Ingate separation AQFD Free of visual defects Separate in baskets by cavity Temperature Time Chemical Analysis Microstructure Hardness Q.A. Release card 10 20 30 40 50 60 ID=1,5 max. Si No 70 80 90 100 110120130 Si No Scrap 130140150 Si No Scrap 160 170 10 20 30 40 50 60 ID=1,5 max. Si No 70 80 90 100 110120130 Si No Scrap 130140150 Si No Scrap 160 170
  • 10. x PROCESS MAP CONSTRUCTION Step 7: F A B B,C C D E J,K,L I H G Ingots transportation to foundry Pistons waiting for heat treatment Heat treated pistons transportation Pinstons stock for machining Steps with out value 10 20 30 40 50 60 ID=1,5 max. Yes No 70 80 90 100 110120130 Yes No Scrap 130140150 Yes No Scrap 160 170 Die temperature Coating Density Spray gun Free of humidity Free of slag Charge relation (60% Ingot / 40% scrap) Temperature Metal Temp. N2 Flow RPM Time Time Water cooling system Cicle time Pouring speed Ladle cleanning Metal temperature Die coating Water cooling time Water cooling temp. Ingate separation AQFD Free of defects Separate in baskets per cavity Temperature Time Chemical Analysis Microestructure Hardness Q.A. Release card
  • 11. x 1,2% 1,0% PIEZAS 12789 BASE 9´05 DIC ' 05 SEM 23 SEM 24 SEM 25 SEM 26 SEM 27 PR/SEM ACUM. 8.601 36.501 50.075 34.706 53.764 0 35.009 175.046 495 2.625 3.291 2.076 4.797 0 2.558 12.789 5,44% 6,71% 6,17% 5,64% 8,19% #¡DIV/0! 6,81% 6,81% [#] [PCS] [#] [PCS] 1 11430 8 0 2 889 9 0 3 381 10 0 4 54 11 0 5 16 12 0 6 14 13 SCRAP [%] OBJETIVO 7 5 14 1,2% 1,0% BASE 9´05 ENE ' 06 FEB ' 06 MAR ' 06 ABR ' 06 MAY ' 06 JUN ' 06 8.601 39.063 175.046 495 3.351 12.789 5,44% 7,90% 6,81% SCRAP [%] OBJETIVO ACUM. 214.109 16.140 7,01%SCRAP [%] SCRAP DE FUNDICION EN MAQUINADO SCRAP DE FUNDICION EN MAQUINADO 6,81% RECHAZO [PZAS] SCRAP [%] PROD. NETA OK [PZAS] RECHAZO [PZAS] PROD. NETA OK [PZAS] @SEM 26 JUNIO '2006 INCLUSIONES GOLPES PINTURA PROBLEMA SCRAP EN FOSFATO PIP DAÑADO GAS RECHUPES (Gate) REBABA O FLASH AIRE ATRAPADO OXIDOS RECHUPES (Back) METAL PEGADO SCRAP DE FUNDICION EN MAQUINADO 81124 (3,9L) PROBLEMA PARETO DE RECHAZOS META @ JUN' 06 META @ DIC' 05 META @ JUN' 06 META @ DIC' 05 5,44% 6,71% 6,17% 5,64% 8,19% 0,00% 6,81% 0,0% 1,0% 2,0% 3,0% 4,0% 5,0% 6,0% 7,0% 8,0% 9,0% 10,0% BASE 9´05 DIC ' 05 SEM 23 SEM 24 SEM 25 SEM 26 SEM 27 PR/SEM 11430 889 381 54 16 14 5 0 0 0 89% 96% 99% 100% 100% 100% 100% 100% 100% 100% 0 2000 4000 6000 8000 10000 12000 14000 84% 86% 88% 90% 92% 94% 96% 98% 100% 102% 5,44% 7,90% 6,81% 7,01% 0,0% 2,0% 4,0% 6,0% 8,0% 10,0% BASE 9´05 ENE ' 06 FEB ' 06 MAR ' 06 ABR ' 06 MAY ' 06 JUN ' 06 ACUM. New piston 3,9L (81124) Foundry Material Scrap Pareto 3.9L Piston (81124)
  • 12. x 5M DIAGRAM Method Medio ambiente (Enviroment) Materials Turbulence during pouring High humidity Dirty ingots from supplier Pouring interrupted Water leaks on dies Metal temperature too high Ladel drying Too much dust in the building Liquid metal level high, it touch the furnace iron ring Aluminum in the pouring bush Metal contamination from ceramic fiber from the lids Poor molten metal treatment Poor scrap conditions from other areas Poor ladle cleaning Incorrect molten metal surface skimming Slow pouring speed Molten metal regassing Ladle alignment Manpower Machinery Poor metal cleaning practices Dirty ladle during pouring Furnace lids are open all the time Ingate width too wide Poor die coating conditions on cell Die design Poor piston defects inspection Ingate design Die conditions Deskulling box in bad conditions Dirty crucibles Robot aborts Top core design Poor die venting Turbulence during metal transportation (robot) Robot scooping during ladle filling Foundry Material Scrap (3.9L Piston)
  • 13. x CAUSE – EFFECT MATRIX (80/20) Critic Control Noise 10 8 6 5 3 4 3 3 3 2 3 4 5 6 7 8 9 10 AirBubbles Misrun Weeping Coating HitandDamages pipdamage Hydrogen porosity Warmers Shrinkage Total Process Step Process Input 11 Set up Die coating 7 8 4 10 6 8 9 283 5 Set up Die preheating 8 9 8 8 216 14 Set up Water cooling connections 5 8 9 6 8 210 1 Pouring Low pouring speed 10 8 5 179 2 Design Ingate 10 7 6 174 10 Pouring Water cooling temperature too low 7 10 7 171 3 Pouring Water cooling time too short 9 9 7 165 18 Pouring Ladles alignment 9 7 6 164 8 Pouring Molten metal temperature too low 8 8 6 162 13 Design Blocks and cores 6 6 4 6 150 9 Pouring Water cooling temperature too high 8 8 7 149 15 Pouring Water cooling time too long 4 10 8 144 6 Pouring Molten metal temperature too high 8 6 5 4 143 4 Design Top core 9 5 6 128 Total 1310 728 270 90 18 76 87 171 237 3108 Correlation of Input to Output Rating of Importance to Customer Characteristic Cause and Effect Matrix for Foundry
  • 14. x AMEF Numero: FD 60 Pouring High Pouring speed Over pour, incomplete pieces, down time 4 Wrong robot adjustment during pouring 4 Password to robot program Visual 6 96 New passwords controlled only by team leaders O. Cruz Week 34 2006 Set new passwords 4 2 6 48 FD 60 Pouring Low pouring speed Turbulences 4 Wrong robot adjustment during pouring 4 Password to robot program Visual 6 96 New passwords controlled only by team leaders O. Cruz Week 34 2006 Set new passwords 4 2 6 48 FD 60 Pouring Ladles disalignment Over pour, incomplete pieces, down time, turbulences 4 Wrong robot ladles adjustment, wrong robot adjustment during metal pick up and pouring 3 Robot alignment every ladles change and set the password to the program Visual 6 72 Device to verify ladles alignment and height after maintenance R. Avila Week 38 2006 FD 60 Pouring Ingate design Porosity by air trapped and oxides 6 Air aspiration and turbulences 3 Verify scrap after machining 7 126 Magma simulation for new designs Víctor Espejo Week 38 2006 Modify tooling with supplier 6 1 4 24 FD 60 Pouring Robot arm disalignment Over pour, incomplete pieces, down time 4 Robot arm disalignment, screw loose and robot crash 4 Visual 7 112 Screw adjustments every PM J. López Week 36 2006 Robot PM every month (program) 4 3 6 72 N. P. R. Actions recommended Responsible y Due date Action done results Action done S E V O C U D E T N P R O C U R Current Process Controls PREVENTION Current Process Controls DETECTION D E T Nombre de Parte / Descripción GM 5.3L Fijo, GM 3.5L, GM 5.3L Perno Flotante, GM 3.9L, GM 4.8L; TECUMSEH Ref. No. Process description Failure Mode Effect potential failure S E V C L A S E Cause / Mechanism Potential Failure Numero de Parte / Ultima versión del cambio Equipo Central Otras Aprobaciones / Si es necesario 81030C(5.3L GM) 81063C(3.5L GM) 81064G(5.3L Flot GM) 81124 (3.9L GM) 81094 (4.8L GM) 80094 (Tecumseh) B2 R005 R005 R001 R003 R C V. Espejo, O. Cruz, M. Hernández,E. Miranda, O. Rodríguez, R. Avila, A Farfan. No. de revisión Eric Miranda M. (222) 4043100 ext 210 13-Jul-02 07-Ago-06 11AMFD-01 Contacto / No. Telefono Fecha (Emisión) Fecha (Rev.) FAILURE MODE EFFECT ANALYSIS ( PROCESS FMEA )
  • 15. x Capability Study Automatic Sigma Calculator Attribute Data Total Defects 2768 # of opportunities 3 Total units 26255 These are your defects (dpmo) 35143 These are the DPU 0,1054 232,6 Zbench 3,3101 This is the value of sigma in your process Entitlement (defects) 18 Color code Not capable Borderline Capable Air Trapped (90%) Oxide (7%) Shrinkage (3%) Scrap 2768 2491 194 83 2768 Machined parts 26255 %Scrap 10.5% Production Results Week 32
  • 16. x % Appraiser 0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0% 110,0% Zully "Q.A." 0 0 %Efficiency 95% UCL Calculated Score 95% LCL % Score vs Appraiser 0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0% 110,0% Zully "Q.A." 0 0 %Efficiency 95% UCL Calculated Score 95% LCL Measurement System Evaluation
  • 17. x Hypothesis Test Datas Type: Continuous X1 Pouring speed (Fast and slow) *Discrete X2 Ingate design (Ingate area, only 2 sizes) **Discrete X3 Ladle alignment (Alignment and Not alignment) Discrete X4 "Top Core" Design (Modified and Not modified) Discrete Ho Not relation, Not difference Ha Relation, Difference * Pouring speed from 3,00 sec to 4,50 sec. ** Ingate areas average: 135 mm 2 y 165 mm 2 Critics X's for Y's % Machining pistons with foundry defects (Porosity) Y
  • 18. x Hypothesis 1: 1.- The feeding area in the dies (“Ingates”), affect to the scrap by porosity, the ingates are not well calculated in the design. Y = % Scrap after machining (Foundry porosity). (Continuous) X = Ingate design (Feeding area: 135mm2 y 165mm2). (Discrete) Ho = There is not relationship between ingate design and % scrap Ha = There is relationship between ingate design and % scrap 300 pistons per cavity 130 - 140 160 - 170 69 8.4% 12.2% 70 8.4% 20.9% 71 2.8% 11.0% 72 3.4% 10.4% 69 9.7% 70 8.0% 71 4.2% 72 11.1% Cavity Area (mm2)
  • 19. x %Scrap Percent 2520151050-5 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 9,688 StDev 5,664 N 8 AD 0,371 P-Value 0,328 Probability Plot of %Scrap Normal Area 95% Bonferroni Confidence Intervals for StDevs 165 135 2520151050 Area %Scrap 165 135 2015105 Test Statistic 0,39 P-Value 0,461 Test Statistic 0,02 P-Value 0,902 F-Test Levene's Test Test for Equal Variances for %Scrap Hypothesis Test. One Way Anova. Ingates Design Vs %Scrap Data Area 165Area 135 20 15 10 5 Individual Value Plot of Area 135; Area 165 Data Area 165Area 135 20 15 10 5 Boxplot of Area 135; Area 165
  • 20. x One-way ANOVA: Area 135; Area 165 Source DF SS MS F P Factor 1 124,0 124,0 7,40 0,035 Error 6 100,5 16,8 Total 7 224,5 S = 4,093 R-Sq = 55,24% R-Sq(adj) = 47,78% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev ---------+---------+---------+---------+ Area 135 4 5,750 3,070 (----------*---------) Area 165 4 13,625 4,907 (---------*---------) ---------+---------+---------+---------+ 5,0 10,0 15,0 20,0 Pooled StDev = 4,093 Hypothesis Test. One Way Anova. Ingates Design Vs %Scrap Conclusion: Discard Ho, Accept Ha.
  • 21. x Hypothesis 2: 2.- The robot ladles alignment to pour metal into the dies, affect the scrap rate, should be alignment respect to the pouring bush. Y = Foundry material scrap (Foundry porosity). (Continuous) X = Ladles alignment (Alignment and non alignment). (Discrete) Ho = There is not relationship between ladles alignment and % scrap Ha = There is not relationship between ladles alignment and % scrap 300 pistons per cavity Alignment Non Alignment 69 0.00 5.43 70 0.63 5.00 71 2.03 3.60 72 1.53 3.00 69 0.70 2.12 70 2.20 3.53 71 1.25 1.22 72 0.00 0.75 Robot Ladles (%Scrap) Cavity
  • 22. x Hypothesis Test. One Way Anova. Ladle Alignment Vs %Scrap %Scrap A. Percent 6543210-1-2 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 2,062 StDev 1,657 N 16 AD 0,422 P-Value 0,283 Probability Plot of %Scrap A. Normal Alineacion 95% Bonferroni Confidence Intervals for StDevs 1 0 4,03,53,02,52,01,51,00,5 Alineacion %Scrap A. 1 0 6543210 Test Statistic 0,26 P-Value 0,096 Test Statistic 2,82 P-Value 0,115 F-Test Levene's Test Test for Equal Variances for %Scrap A. Data No AlineadoAlineado 6 5 4 3 2 1 0 Boxplot of Alineado; No Alineado Data No AlineadoAlineado 6 5 4 3 2 1 0 Individual Value Plot of Alineado; No Alineado
  • 23. x One-way ANOVA: Alineado; No Alineado Source DF SS MS F P Factor 1 16,63 16,63 9,48 0,008 Error 14 24,56 1,75 Total 15 41,18 S = 1,324 R-Sq = 40,37% R-Sq(adj) = 36,11% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev +---------+---------+---------+--------- Alineado 8 1,043 0,850 (--------*-------) No Alineado 8 3,081 1,669 (--------*-------) +---------+---------+---------+--------- 0,0 1,2 2,4 3,6 Pooled StDev = 1,324 Hypothesis Test. One Way Anova. Ladle Alignment Vs %Scrap Conclusion: Discard Ho, Accept Ha.
  • 24. x Hypothesis 3: 3.- A Top Core modification to increase the material in the crown to be eliminated in the machining line, will be to decrease the scrap porosity around the pockets. Y = Foundry material scrap (Foundry porosity). (Continuous) X = “Top Core” Design (Modified and Non modified). (Discrete) Ho = There is not relationship between “Top Core” design and % scrap Ha = There is relationship between “Top Core” design and %scrap 300 pistons per cavity Modified Non Modified 1.18 3.00 0.51 1.90 4.17 1.27 1.75 1.20 1.19 1.90 2.82 4.56 5.71 5.40 Top core Cavity (69)
  • 25. x Hypothesis Test. One Way Anova. Top Core Design Vs %Scrap %Scrap top Percent 76543210-1-2 99 95 90 80 70 60 50 40 30 20 10 5 1 Mean 2,611 StDev 1,706 N 14 AD 0,684 P-Value 0,058 Probability Plot of %Scrap top Normal Topcore 95% Bonferroni Confidence Intervals for StDevs 1 -1 54321 Topcore %Scrap top 1 -1 6543210 Test Statistic 0,77 P-Value 0,764 Test Statistic 0,06 P-Value 0,812 F-Test Levene's Test Test for Equal Variances for %Scrap top Data %Scrap top_2%Scrap top_1 6 5 4 3 2 1 0 Individual Value Plot of %Scrap top_1; %Scrap top_2 Data %Scrap top_2%Scrap top_1 6 5 4 3 2 1 0 Boxplot of %Scrap top_1; %Scrap top_2
  • 26. x One-way ANOVA: %Scrap top_1; %Scrap top_2 Source DF SS MS F P Factor 1 0,26 0,26 0,08 0,779 Error 12 37,57 3,13 Total 13 37,83 S = 1,769 R-Sq = 0,68% R-Sq(adj) = 0,00% Individual 95% CIs For Mean Based on Pooled StDev Level N Mean StDev -------+---------+---------+---------+-- %Scrap top_1 7 2,747 1,653 (-----------------*------------------) %Scrap top_2 7 2,476 1,878 (-----------------*-----------------) -------+---------+---------+---------+-- 1,60 2,40 3,20 4,00 Pooled StDev = 1,769 Hypothesis Test. One Way Anova. Top Core Design Vs %Scrap Conclusion: Accept Ho, Discard Ha.
  • 27. x Levels Response Variables Constants Noise Variables Equipments and measurement instruments Experimental Unit DOE Type 30 & 45 3,5 & 4,0 Factorial Experiment 2x2x2x2 = 24 16 pouring. 4 repetitions Die Coating Ladel coating Ceramic inserts in good conditions Water Cooling Time in Center Core (seg) Factors 3. Piston 3,9L Part Number 81124Cycle Time = 83 seg. Chemicla Analysis (same furnace) Water cooling connections Visual Inspection. Visual Aid FAC-003- 001 Rev. 4Pouring speed (seg) 4. DOE Same foundry cell Degassing (ID = 1,5 máx.) 1. Metal Temperature (°C) 2. Water Cooling Temp. (°C) 2% Scrap max. 18 & 30 770 y 790
  • 28. x Interactions (A) Center Core water Cooling Time (°C) (B) Pouring Speed (seg) (C) Water Cooling Temperature (°C) (D) Metal Temperature (°C) (1) 30 3.5 18 770 a 45 3.5 18 770 b 30 4.0 18 770 ab 45 4.0 18 770 c 30 3.5 30 770 ac 45 3.5 30 770 bc 30 4.0 30 770 abc 45 4.0 30 770 d 30 3.5 18 790 ad 45 3.5 18 790 bd 30 4.0 18 790 abd 45 4.0 18 790 cd 30 3.5 30 790 acd 45 3.5 30 790 bcd 30 4.0 30 790 abcd 45 4.0 30 790 DOE Same DOE for both series: 65 – 68 Choke Section & 77 – 80 Permanent Filter
  • 30. x Cell #: 4 Station #: 8 Machining Line #: 1 Shift: Mach. Date: Die Cavity Qty m/ced No. Scrap %Scrap Die Cavity Pairing Total Qty m/ced Total No Scrap Total Pair % Scrap 3 Blow Holes 1 Oxide Inc. 1 Shrinkage 9 Blow Holes 2 Oxide Inc. 0 Shrinkage 7 Blow Holes 2 Oxide Inc. 0 Shrinkage 10 Blow Holes 0 Oxide Inc. 0 Shrinkage Total Trial 5104 35 0.69% 870 9 10 0.95% 1.15% FM Puebla Foundry 3,9L Piston 81124 Scrap Results Basket #: "Casting Trials" Choke Section. New Downsprue: dd/mm/yy Cav 67 0.80%1129 16 67 & 68 1999 19 11 0.74% Cav 68 Scrap Defects 0.52% Cav 65 1615 5 0.31% 65 & 66 3105 Cav 66 1490 In-Gate trials Results. Current Process Conditions
  • 31. x In-Gate trials Results. Current Process Conditions Cell #: 4 Station #: 8 Machining Line #: 1 Shift: Mach. Date: Die Cavity Qty m/ced No. Scrap %Scrap Die Cavity Pairing Total Qty m/ced Total No Scrap Total Pair % Scrap 7 Blow Holes 0 Oxide Inc. 0 Shrinkage 8 Blow Holes 0 Oxide Inc. 1 Shrinkage 7 Blow Holes 1 Oxide Inc. 0 Shrinkage 16 Blow Holes 0 Oxide Inc. 0 Shrinkage Total Trial 5574 40 0.72% 1937 8 16 0.76% 0.83% FM Puebla Foundry 3,9L Piston 81124 Scrap Results Basket #: "Casting Trials" Permanent Filter Ingate: dd/mm/yy Cav 79 0.66%1215 16 63A & 64A 3152 24 9 0.75% Cav 80 Scrap Defects 0.66% Cav 77 1214 7 0.58% 61A & 62A 2422 Cav 78 1208
  • 32. x September October November December January February March April May June July August September Octubre 140087 150165 147450 172582 184578 70171 127678 143730 9806 10512 10322 12081 12920 4912 8937 10061 $16,082 $17,239 $16,927 $19,812 $18,605 $7,073 $12,870 $14,488 6404 4457 7076 5379 5804 1932 1912 4108 $10,503 $7,309 $11,605 $8,822 $8,358 $2,782 $2,753 $5,916 $5,579 $9,929 $5,323 $10,991 $10,248 $4,291 $10,117 $8,572 $65,050 * % Scrap average (7%) Scrap parts after improvement Scrap Cost = 1.64 USD / piece SAVINGS TABLE SIX SIGMA - FOUNDRY MATERIAL SCRAP REDUCTION. PISTON 3.9L Accumulated Total Savings (USD) Scrap costs after improvement (USD) Totales Savings (USD) Period 2006 - 2007 Machined Parts *Scrap pieces before improvement (7%) Scrap costs before improvement (USD) Material Scrap 81124 (3,9L) After Machining, 2006 - 2007 5.4 1.7 2.3 0.4 1.2 2.7 5.3 5.9 2.1 5.4 8.0 7.1 8.3 6.7 6.2 5.6 8.2 10.710.6 9.7 14.0 14.3 11.3 10.5 7.3 9.8 8.3 2.7 3.23.0 3.3 2.72.6 3.53.5 4.5 4.84.74.6 3.2 2.5 3.63.5 2.4 2.0 4.5 3.8 3.2 2.5 2.12.2 1.5 1.0 1.51.5 2.82.72.92.7 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-Ago-05 26-Ago-05 05-Sep-05 15-Sep-05 25-Sep-05 05-Oct-05 15-Oct-05 25-Oct-05 04-Nov-05 14-Nov-05 24-Nov-05 04-Dic-05 14-Dic-05 24-Dic-05 03-Ene-06 13-Ene-06 23-Ene-06 02-Feb-06 12-Feb-06 22-Feb-06 04-Mar-06 14-Mar-06 24-Mar-06 03-Abr-06 13-Abr-06 23-Abr-06 03-May-06 13-May-06 23-May-06 02-Jun-06 12-Jun-06 22-Jun-06 02-Jul-06 12-Jul-06 22-Jul-06 01-Ago-06 11-Ago-06 21-Ago-06 31-Ago-06 10-Sep-06 20-Sep-06 30-Sep-06 10-Oct-06 20-Oct-06 30-Oct-06 09-Nov-06 19-Nov-06 29-Nov-06 09-Dic-06 19-Dic-06 29-Dic-06 08-Ene-07 18-Ene-07 28-Ene-07 07-Feb-07 17-Feb-07 27-Feb-07 09-Mar-07 19-Mar-07 29-Mar-07 08-Abr-07 18-Abr-07 28-Abr-07 08-May-07 18-May-07 28-May-07 07-Jun-07 17-Jun-07 27-Jun-07 07-Jul-07 17-Jul-07 27-Jul-07 06-Ago-07 16-Ago-07 26-Ago-07 05-Sep-07 15-Sep-07 25-Sep-07 05-Oct-07 15-Oct-07 25-Oct-07 04-Nov-07 14-Nov-07 24-Nov-07 04-Dic-07 14-Dic-07 24-Dic-07 03-Ene-08 Week %Scrap Choke section improvement in the current ingate desing New ingate design, choke section & permanent filter firts trials (only 2 series) New ingate design, choke section & permanent filter out of service (maintenance) New ingate design, choke section & permanent filter second trials Final test & decided to modify all the ingates with the choke section Dacmac quotation on track, anvilloy insert and final modification. Planned time one serie per month. Goal = 2.0%
  • 33. x Capability Study Automatic Sigma Calculator Attribute Data Total Defects 2768 # of opportunities 3 Total units 26255 These are your defects (dpmo) 35143 These are the DPU 0,1054 232,6 Zbench 3,3101 This is the value of sigma in your process Entitlement (defects) 18 Color code Not capable Borderline Capable Automatic Sigma Calculator Attribute Data Total Defects 4457 # of opportunities 3 Total units 150165 These are your defects (dpmo) 9893.6 These are the DPU 0.0297 232.6 Zbench 3.8304 This is the value of sigma in your process Entitlement (defects) 104 Color code Not capable Borderline Capable Z Original Z Improved
  • 34. x Conclusions: -The new in-gates design (both choke section and permanent filter), reduce and stabilize the scrap trend by air bubbles. -The additional benefit is the misruns reduction due to high pouring speed. Project Status: -4 set of dies are already modified (total 7 dies set) -Process control should be improved, die coating, pouring conditions and ladle cleaning (oxide problems increase).
  • 35. x Defect Characterization & Magma Simulation Mel Jones
  • 37. x PERMANENT FILTER IN-GATE TRIALS Background • New in-gate design needed to reduce turbulence during die filling • More quiescent fill of the die leads to less fine oxide generation during piston casting and should give better low temperature fatigue properties for the piston alloy – particularly important for gasoline pistons New in-gate design now in production at FM Nürnberg
  • 38. x Filter pins on both sides of the block to help stripping of casting Permanent filter is designed for global standard twin cavity gasoline piston die
  • 39. x 11Data classification: Internal mm/dd/yyyyFunction / BU name Permanent filter Verlauf KP - 9044 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Jan Feb Mrz Apr Mai Jun Jul Aug Monat Auschußin% 0
  • 40. x CONTROL PLAN PUEBLA PISTONS Apr. del CliProducción (Si es necesario): Prototipo Pre-Lanzamiento Producción Contacto/Telefono Fecha (Orig.) Fecha (Rev.) No. de Revisión Plan de Control Número: WBGM-FD01 26-Abr-06 4 Número de Parte Nivel de Ingeniería Nombre de la Parte/Descripcion Miembros del Equipo: No. Size Frec. FD50 Start up cell Foundry cell Cell conditions See FFD-02 Visual 1 Daily Quality and Production check list FFD-02 Set up parameters. DPS-6 Foundry cell Pouring height (ladle adjustment) 1.0 a 2.0 cm from the pouring bush Rule 1 Every ladle change Maintenance check list Stop production and fix the height Foundry cell Ladle alignment Straight respect to pouring bush squadron guide 1 Every ladle change Maintenance check list Stop production and align the ladles FD60 Pouring Casting station Metal temperature 780°C ± 10°C Handle pyrometer / Control panel PI-D-FD-xx 1 Every 2 hrs FFD-01 Production Stop cell and fix parameters, separate product Robot Motoman Pouring speed 4.0 sec. Max. Cronometer 1 Daily or every cell start up Quality and Production check list FFD-02 Robot program adjustment Casting cell Water cooling system 20 - 29 °C Temperature sensor 1 Every 4 hrs Production check list FFD-02 Stop cell and fix parameters Water flow Visual 1 Daily or every cell start up Quality and Production check list FFD-02 Stop cell and fix parameters Characteristic EqupmentProcess decription Part number / Operation Spec. Special Charact. ProcessProduct Reaction Plan Control method Sample Evaluation tchnique or method Method 14-Jul-02ERIC MIRANDA (01)(222) 404-3100 PC81030C, PC81064G (AFA06072), PC81063C (AFA06122), PC81124C (AHS29361), PC81094C (AHS13044) B2/R005 R005 / R001 R003 PISTÓN FUNDIDO 5.3L & 5.3L FLOTANTE PISTÓN FUNDIDO 3.5L, PISTÓN FUNDIDO 3.9L PISTÓN FUNDIDO 4.8L A. TORIJA, O RODRIGUEZ, V ESPEJO, S LOPEZ, M HERNANADEZ
  • 41. x Measurement System Validation (X’s) X´s (Variables) Controlled by Validation Restreability Location PI-D-FD-22 Cell 1 PI-D-FD-23 Cell 2 PI-D-FD-24 Cell 3 PI-D-FD-29 Cell 4 Handle Pyrometer Calibration PI-D-FD-07 Control Panel Pyrometer Calibration PI-D-FD-XX 12 Control Panels Water Cooling Time Casting Stations Timers 8 Casting Stations Water Cooling Temperature Fix Thermocouple and Pyrometer Calibration Metal Temperature