SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
HBase application developers face a number of challenges: schema management is performed at the application level, decoupled components of a system can break one another in unexpected ways, less-technical users cannot easily access data, and evolving data collection and analysis needs are difficult to plan for. In this talk, we describe a schema management methodology based on Apache Avro that enables users and applications to share data in HBase in a scalable, evolvable fashion. By adopting these practices, engineers independently using the same data have guarantees on how their applications interact. As data collection needs change, applications are resilient to drift in the underlying data representation. This methodology results in a data dictionary that allows less-technical users to understand what data is available to them for analysis and inspect data using general-purpose tools (for example, export it via Sqoop to an RDBMS). And because of Avro’s cross-language capabilities, HBase’s power can reach new domains, like web apps built in Ruby.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires