SlideShare a Scribd company logo
1 of 82
Download to read offline
TALAT Lectures 2710


                   Static Design Example

                                 82 pages


                            Advanced Level


                   prepared during the TAS project:


       TAS               Leonardo da Vinci
                         Training in Aluminium Alloy Structural Design



             Example developed with the “Mathcad” Software




Date of Issue: 1999
 EAA - European Aluminium Association
2710 Static Design example

Table of Contents (Active)

2710 Static Design example........................................................................................... 2
    1. Introduction.......................................................................................................................6
    2. Materials ............................................................................................................................7
    3. Loads ..................................................................................................................................7
    4. Load Combinations........................................................................................................... 9
    5. Loads Effects ...................................................................................................................11
        5.1. Loads per unit length and concentrated loads...........................................................................11
        5.2 Finite element calculations ........................................................................................................12
        5.3. Section forces for characteristic loads ......................................................................................14
        5.4. Design moments, shear forces and deflections .........................................................................16
    6. Code Checking.................................................................................................................28
        6.1 Column A ..................................................................................................................................28
        6.2 Column B ..................................................................................................................................42
        6.3 Column C ..................................................................................................................................55
        6.4 Floor Beam D ............................................................................................................................56
        6.5 Roof Beam E .............................................................................................................................64
        6.6 Roof Beam F .............................................................................................................................65
        6.7 Welded Connections..................................................................................................................74



Table of Contents (Complete)


1           INTRODUCTION
         1.1             Description
         1.2             Sketches
         1.3             References
         1.4             S.I. units
2           MATERIALS
         2.1             Aluminium
         2.2             Other materials
3           LOADS
         3.1           Permanent loads
         3.2           Imposed loads
         3.3           Environmental loads
                   3.3.1      Snow loads
                   3.3.2     Wind loads




TALAT 2710                                                                       2
4    LOAD COMBINATIONS
    4.1      Ultimate limit state
    4.2      Serviceability limit state

5    LOAD EFFECTS
    5.1       Loads per unit length and concentrated loads
          5.1.1      Permanent loads
          5.1.2      Imposed loads, uniform distributed
          5.1.3      Imposed loads, concentrated
          5.1.4      Snow loads
          5.1.5     Wind loads

    5.2       Finite element calculations
          5.2.0       Nodes and elements
          5.2.1       Permanent loads
          5.2.2       Imposed loads, uniformly distributed
          5.2.3       Imposed loads, concentrated
          5.2.4       Snow loads
          5.2.4       Wind loads

    5.3       Section forces for characteristic loads
          5.3.1      Column A
          5.3.2      Column B
          5.3.3      Column C
          5.3.4      Floor beam D
          5.3.5      Floor beam E
          5.3.5      Floor beam F

    5.4       Design moments, shear forces and deflections
          5.4.1      Column A
          5.4.2      Column B
          5.4.3      Column C
          5.4.4      Floor beam D
          5.4.5      Floor beam E
          5.4.6      Floor beam F
          5.4.7      Joint A-D
          5.4.8      Joint B-D
          5.4.9      Joint A-E
          5.4.10     Joint B-E
          5.4.11     Joint B-F
          5.4.12     Joint F-C
          5.4.13    Column base




TALAT 2710                                    3
6    CODE CHECKING
    6.1       Column A
          6.1.1     Dimensions and material properties
          6.1.2     Internal moments and forces
          6.1.3     Classification of the cross section in y-y-axis bending
          6.1.4     Classification of the cross section in z-z-axis bending
          6.1,5     Classification of the cross section in axial compression
          6.1.6     Welds
          6.1.7     Design resistance, y-y-axis bending
          6.1.8     Design resistance, z-z-axis bending
          6.1.9     Axial force resistance, y-y buckling
          6.1.10    Axial force resistance, z-z axis buckling
          6.1.11    Flexural buckling of beam-column
          6.1.12    Lateral-torsional buckling between purlins
          6.1.13    Design moment at column base
          6.1.14    Deflections
          6.1.15   Summary

    6.2       Column B
          6.2.1     Dimensions and material properties
          6.2.2     Internal moments and forces
          6.2.3     Classification of the cross section in y-y-axis bending
          6.2.4     Classification of the cross section in z-z-axis bending
          6.2,5     Classification of the cross section in axial compression
          6.2.6     Welds
          6.2.7     Design resistance, y-y-axis bending
          6.2.8     Design resistance, z-z-axis bending
          6.2.9     Axial force resistance, y-y buckling
          6.2.10    Axial force resistance, z-z axis buckling
          6.2.11    Flexural buckling of beam-column
          6.2.12    Lateral-torsional buckling between purlins
          6.2.13    Design moment at column base
          6.2.14    Deflections
          6.2.14   Summary

    6.3 Column C

    6.4       Floor Beam D
          6.4.1      Dimensions and material properties
          6.4.2      Internal moments and forces
          6.4.3      Classification of the cross section
          6.4.4      Welds
          6.4.5      Bending moment resistance
          6.4.6      Bending resistance in a section with holes
          6.4.7      Shear force resistance
          6.4.8      Deflections
          6.4.8      Summary



TALAT 2710                                  4
6.5         Roof Beam E

         6.6          Roof Beam F
                  6.6.1     Dimensions and material properties
                  6.6.2     Internal moments and forces
                  6.6.3     Classification of the cross section
                  6.6.4     Welds
                  6.6.5     Bending moment resistance
                  6.6.6     Lateral-torsional buckling between purlins
                  6.6.7     Bending resistance in a section with holes
                  6.6.8     Shear force resistance
                  6.6.9     Concentrated transverse force
                  6.6.10    Deflections
                  6.6.11    Summary

         6.7         Welded connections
                  6.7.1    Weld properties
                  6.7.2    Longitudinal weld of floor beam D
                  6.7.3    Base of column B
                  6.7.4    Connection between floor beam D and column B




Software
The example is worked out using the MathCad software in which some symbols have special meanin
according to the following


x     50.6 . mm          Assign value
y 2.5 . mm               Global assignment
x     y = 53.1 mm        Evaluate expression
a b                      Boolean equals
0.5                      Decimal point
c     (1 3 2 )           Vector
d     (2 4 3 )           Vector
a     ( c .d )           Vectorize (multiply the elements in vector c with corresponding elements in d)
a = ( 2 12 6 )           Result



Structure
The structure was proposed by Steinar Lundberg, who also contributed with valuable suggestions.
Part 1 to 6.6 was worked out by Torsten Höglund and 6.7 by Myriam Bouet-Griffon.




TALAT 2710                                             5
1. Introduction

 1.1         Description
             The industrial building contains an administration part with offices, wardrobe, meeting rooms etc.
             and a fabrication hall. The load bearing system consist of frames standing at a distance of 5000 m

             In the serviceability limit state max. allowable deflection is 1/250 of span.



 1.2         Sketches




 1.3         References
    [1] ENV 1999-1-1. Eurocode 9 - Design of aluminium structures - Part 1-1: General rules. 1997

    [2] ENV 1991-2-1. Eurocode 1 - Basis of design and actions on structures - Part 2-1:
               Action on structures - Densities, self-weight and imposed loads. 1995

    [3] ENV 1991-2-3. Eurocode 1 - Basis of design and actions on structures -
               Part 2-3: Action on structures - Snow loads. 1995

    [4] ENV 1991-2-4. Eurocode 1 - Basis of design and actions on structures -
               Part 2-4: Action on structures - Wind loads. 1995

    [5] ENV 1991-1.     Eurocode 1 - Basis of design and actions on structures -
               Part 1: Basis of design. 1994

 1.4         S.I. units
                                                                                             N
             kN 1000 . N          MPa 1000000 . Pa           kNm kN . m         MPa = 1
                                                                                                  2
                                                                                             mm




TALAT 2710                                         6
2. Materials

2.1          Aluminium
[1], 3.2.2   The extrusions are alloy EN AW-6082, temper T6
             The plates are EN AW-5083 temper H24

             Strength of aluminium alloys

             EN AW-6082 T6                                        fo      260 . MPa         fu         310 . MPa
             EN AW-5083 H24
                                                                  fo      250 . MPa         fu         340 . MPa

[1], 5.1.1   The partial safety factor for the members            γ M1 1.10                 γ M2           1.25

[1], 6.1.1   The partial safety factor for welded connections     γ Mw         1.25
             Design values of material coefficients

                 Modulus of elasticity                            E    700000 . MPa
                 Shear modulus                                    G     27000 . MPa
                 Poisson´s ratio                                  ν    0.3
                                                                  α T 23 . 10
                                                                                 6
                 Coefficient of linear thermal expansion
                                                                  ρ 2700 . kg . m
                                                                                   3
                 Density

2.2          Other materials
             Comment: Properties of any other materials to be filled in




3. Loads

3.1          Permanent loads
[3], ??      Permanent loads are self-weight of structure, insulation, surface materials and fixed equipment

                                                                                 0.5 . kN . m
                                                                                                   2
             Permanent load on roof                                q´ p.roof

                                                                                  0.7 . kN . m
             Permanent load on floor                                                               2
                                                                   q´ p.floor

3.2          Imposed loads
[2], 6.3.1   Office area => Category B

                                                                                  3 . kN . m
                                                                                               2
                                                                   q´ k.floor
             Uniform distributed load
                                                                   Q k.floor      2 . kN
             Concentrated load

[2], 6.3.4   Roofs not accessible except for normal maintenance etc. => Category H =>

                                                                                 0.75 . kN . m
                                                                                                       2
             Uniform distributed load                              q´ k.roof

             Concentrated load                                     Q k.roof      1.5 . kN




TALAT 2710                                            7
[?], ??   Load from crane, the crane located in the middle of the roof beam in the production hall

          Concentrated load                                       Q crane     50 . kN




3.3       Environmental loads

3.3.1     Snow loads
[3]       Comment: The characteristic values of the snow loads vary from nation to nation. For simplicity
          for this design example, a snow load is chosen including shape coefficient, exposure coefficient
          and thermal coefficient. In a design report the calculation of the snow loads have to be shown.


                                                                              2 kN . m
                                                                                         2
          Snow load                                               q´ snow


3.3.2     Wind loads
[3]       Comment: The characteristic values of the wind loads vary from nation to nation. For
          simplicity, for this design example, a wind load is chosen including all coefficients. In a design
          report the calculation of the wind loads including all coefficients have to be shown.


                                                                               0.70 kN . m
                                                                                             2
          Maximum wind load on the external walls                 q´ w.wall

                                                                               0.27 kN . m
          Wind suction on leeward side of walls                                              2
                                                                  q´ w.lee

                                                                               0.70 kN . m
          Wind suction on the roof                                                           2
                                                                  q´ w.roof
          Max. wind suction at the lower edge of the
                                                                                1.0 kN . m
                                                                                             2
          roof and 1.6 m upwards                                  q´ w.edge




TALAT 2710                                        8
4. Load Combinations

4.1           Ultimate limit state
[3]           To decide the section forces on the different members, the following load combinations to
                                                      .
              be calculated in the ultimate limit state
              LC 1:        Permanent + imposed + crane + snow loads imposed load dominant
              LC 2:        Permanent + imposed + crane + snow loads crane load dominant
              LC 3:        Permanent + imposed + crane + snow loads snow load dominant
              LC 4:        Reduced permanent + wind loads    wind load dominant
              LC 5:        Permanent + imposed + crane + snow + wind imposed load dominant
              LC 6:        Permanent + imposed + crane + snow + wind wind load dominant


[3]           Comment: All possible load combinations to be calculated


[5], 9.4                                                                ultimate limit state
              Partial load factors for different load combinations in the

[5] Table 9.2 Partial factor for permanent action, unfavourable                 γ Gsup 1.35
              Partial factor for permanent action, favourable                   γ Ginf 1.0
              Partial factor for variable action, unfavourable                  γ Q     1.5

[5] Table 9.3 ψ factor for imposed loads                                        ψ 0i    0.7
              ψ factor for snow loads                                           ψ 0s     0.6
              ψ factor for wind loads                                           ψ 0w        0.6
[5] Eq        In load combinations where the imposed load is
(9.10b)       dominating ξ in Eq (9.10b) is less than 1.0, say                  ξ     0.9


                                              Load combinations
                      ξ . γ Gsup ξ . γ Gsup ξ . γ Gsup γ Ginf ξ . γ Gsup ξ . γ Gsup
                                                                                   Load case
                                                                                   1 permanent loads
                          γ Q    ψ 0i . γ Q ψ 0i . γ Q   0        γ Q    ψ 0i . γ Q
                                                                                   2 distributed loads
           ψ u        ψ 0i . γ Q     γ Q    ψ 0i . γ Q   0    ψ 0i . γ Q ψ 0i . γ Q
                                                                                   3 crane load
                      ψ 0s . γ Q ψ 0s . γ Q                    γ Q         0    ψ 0s . γ Q ψ 0s . γ Q4 snow loads

                            0                 0                 0         γ Q   ψ 0w . γ Q   γ Q 5 wind loads




              Resulting load factors in the ultimate limit state

                   1.215 1.215 1.215              1     1.215 1.215
                      1.5       1.05   1.05       0      1.5    1.05
           ψ u = 1.05           1.5    1.05       0     1.05    1.05
                  0.9           0.9    1.5        0      0.9        0.9
                       0         0      0         1.5    0.9        1.5




TALAT 2710                                                          9
4.2          Serviceability limit state
 [5], 9.5.2   Partial load factors forfrequent load combinations in the serviceability limit state
 and 9.5.5
              LC 1:       imposed load dominant
              LC 2:       crane load dominant
              LC 3:       snow load dominant
              LC 4:       wind load dominant
              LC 5:       wind load only         (for comparison)
              LC 6:       simplified, [5] (9.20) (for comparison)


 [5] Table 9.3 ψ factor for imposed loads                              ψ 1i 0.5          ψ 2i    0.3   ( = 0 for roof)
              ψ factor for crane loads                                 ψ 1c 0.5          ψ 2c    0.3
              ψ factor for snow loads                                  ψ 1s 0.2          ψ 2s 0
              ψ factor for wind loads                                  ψ 1w 0.5          ψ 2w 0

                                  Load combination
                          1       2     3   4    5        6
                                                                          Load case
                              1       1       1       1        0   1
                                                                          permanent loads
                          ψ 1i        0       0       0        0 0.9
                                                                          imposed distributed loads
              ψ s         ψ 2c ψ 1c ψ 2c              0        0 0.9      imposed crane load
                          ψ 2s ψ 2s ψ 1s ψ 2s 0 0.9                       snow loads

                       ψ 2w ψ 2w ψ 2w ψ 1w 1                       0      wind loads




              Resulting partial load factors in theserviceability limit state
                          Load combination
                      1     2 3      4 5          6
                          1       1   1   1   0   1
                      0.5         0   0   0   0 0.9
              ψ s = 0.3 0.5 0.3           0   0 0.9
                     0 0 0.2              0   0 0.9
                          0       0   0   0.5 1   0

              For the floor, the load combination 1 is valid
              For roofs, the load combinations 2, 3 and 4 are valid

              Comment: Load combinations 5 and 6 for comparison only




TALAT 2710                                                10
5. Loads Effects


5.1. Loads per unit length and concentrated loads


           Distance between all frames                                               c frame      5000 . mm

           Because of continuous purlins and secondary floor beams the load on a beam in a frame is mo
           than the distance between the beam times the load per area. Therefore, for the second frame, t
           load is increased with a factor ofkf where
                                                                                  k f 1.1


5.1.1      Permanent loads

                                                       k f . c frame . q´ p.floor    q p.floor = 3.85 kN . m
                                                                                                               1
           Permanent load on floor         q p.floor

                                                       k f . c frame . q´ p.roof     q p.roof = 2.75 kN . m
                                                                                                               1
           Permanent load on roof          q p.roof


5.1.2      Imposed loads, uniform distributed

                                                       k f . c frame . q´ k.floor    q k.floor = 16.5 kN . m
                                                                                                               1
           Distributed load on floor       q k.floor

                                                       k f . c frame . q´ k.roof     q k.roof = 4.125 kN . m
                                                                                                                   1
           Distributed load on roof        q k.roof


5.1.3      Imposed loads, concentrated

           Concentrated load on floor                                                 Q k.floor     2 . kN

           Concentrated load on roof                                                  Q k.roof      1.5 . kN

           Concentrated load from crane                                               P crane      50 . kN




5.1.4      Snow loads

                                                  k f . c frame . q´ snow           q snow = 11 kN . m
                                                                                                          1
           Snow load on roof             q snow




TALAT 2710                                        11
5.1.5       Wind loads

                                                   k f . c frame . q´ w.wall    q w.wall = 3.85 kN . m
                                                                                                         1
            Maximum wind load on the q w.wall
            external walls

                                                  k f . c frame . q´ w.lee      q w.lee = 1.485 kN . m
                                                                                                             1
            Wind suction on leeward    q w.lee
            side of walls
                                                   k f . c frame . q´ w.roof    q w.roof = 3.85 kN . m
                                                                                                         1
            Wind suction on the roof   q w.roof

            Max. wind suction at the                k f . c frame . q´ w.edge   q w.edge = 5.5 kN . m
                                                                                                         1
                                       q w.edge
            lower edge of the roof and
            1.6 m upwards




5.2 Finite element calculations


    Nodes and elements




TALAT 2710                                        12
Moment diagrams
5.2.1    Permanent loads

         Values of moments and shear
         forces for separate columns
         and beams are given in 5.3




5.2.2    Imposed loads,
         uniformly distributed




5.2.3    Imposed loads,
         concentrated




5.2.4    Snow loads




5.2.5    Wind loads




TALAT 2710                             13
5.3. Section forces for characteristic loads


5.3.1        Column A




(FE-cal-     Bending moments, section 1, 2, 3 and 4                 2.90   4.40 2.14     1.88
culation)
             Sections in columns, load cases in rows                9.43   15.6 12.1     5.96
             row 1,   permanent loads                          MA   3.65   4.60   5.22 5.81 . kNm
             row 2,   distributed loads
             row 3,   crane load                                    4.28   4.63   4.22   3.04
             row 4,   snow loads                                    12.8 6.45     2.52 1.95
             row 5,   wind loads
                                                                    18.8   7.32
             Axial force, part 1-2 and 3-4
                                                                    60.5   12.0
             Parts in columns, load cases in rows
                                                               NA   1.42   2.84 . kN
                                                   0.56             28.5   27.8
                                                   0.50             15.6   12.0
             Deflection in section 4      δ A      2.48 . mm
                                                   4.19
                                                   8.36

5.3.2        Column B
(FE-cal-     Bending moments, section 1, 2, 3, 4,5 and 6            0.07   2.73 4.51     4.35   7.46   9.07
culation)                                                           4.26   15.4 18.2     4.69   8.29   15.5
             Sections in columns, load cases in rows
                                                               MB   3.27 0.96     2.15 19.27    15.7   11.2 . kNm
             row 1,   permanent loads
             row 2,   distributed loads                             6.57 5.24     1.59   20.0   34.6   33.5
             row 3,   crane load
             row 4,   snow loads                                    17.0   13.5 0.49     10.95 11.4    12.7
             row 5,   wind loads
                                                                    35.1   23.5   9.18
             Sections in columns, load cases in rows                84.4   33.9   12.8
             Axial force, parts 1-2, 3-4 and 5-6               NB   31.7   31.1   4.34 kN

                                                   0.57             95.0   95.7   38.2

                                                   0.53             31.2   34.8   13.8

             Deflection in section 6      δ B      2.57 . mm
                                                   4.30
                                                   8.32




TALAT 2710                                            14
5.3.3       Column C
            Comment: To reduce the extent of this example, this column is left out. It can be given,
            conservatively the same section as column B

5.3.4       Floor beam D

(FE-cal-    Bending moments, section 1, 2 and 3                        6.56 10.4     7.25
culation)                                                              27.8 43.6     33.6
            Sections in columns, load cases in rows
                                                              MD      0.62 4.86 3.11 . kNm
            row 1,   permanent loads
            row 2,   distributed loads                                 0.40 1.62 3.65
            row 3,   crane load
            row 4,   snow loads                                       8.97 2.00      13.0
            row 5,   wind loads
                                                                      11.7   11.4
            Sections in columns, load cases in rows                   48.5   50.5
            Shear force, section 1 and 3                      VD      1.4     0.6 . kN

                                               3.21                   0.67   0.67

                                               13.1                   3.66 3.66

            Deflection in section 2      δ D   1.63 . mm
                                               0.92
                                               0.91




5.3.5       Roof beam E
            Comment: To reduce the extent of this example, this column is left out

5.3.6       Roof beam F

(FE-cal-    Bending moments, section 1, 2 and 3                        11.8 26.4      4.08
culation)                                                              13.0 42.4      5.28
            Sections in columns, load cases in rows
                                                              MF       35.0 102.0    10.94 kNm
            row 1,   permanent loads
            row 2,   distributed loads                                 54.1 101.7     17.5
            row 3,   crane load
            row 4,   snow loads                                       22.4   38.0    0.26
            row 5,   wind loads




TALAT 2710                                       15
Shear force, section 1 and 3                                            14.3   13.2

Sections in columns, load cases in rows                                 21.1   20.1
                                                             VF         43.4   23.3 . kN
                                         7.71                           57.6   52.5
                                         12.6                           21.1   17.4
Deflection in section 2       δ F        22.2 . mm
                                         29.3
                                         11.1




5.4. Design moments, shear forces and deflections


5.4.1         Column A
              Bending moments

              For the load cases 1 - 5 the bending moment in section 1 of column B is:

                              2.9
                      9.43
                <1>
(5.3.1)       MA    = 3.65              kNm
                      4.28
                              12.8

              The load factor matrix is

                     1.215 1.215 1.215          1     1.215 1.215
                      1.5       1.05     1.05   0      1.5    1.05
(4.1)         ψ u 1.05
                 =              1.5      1.05   0     1.05    1.05
                   0.9          0.9       1.5   0      0.9        0.9
                          0         0     0     1.5    0.9        1.5




TALAT 2710                                                    16
The values in the moment vector shall be multiplied with the corresponding load factor for every lo
          combination

          i   1 .. cols ψ u                                    (cols (ψu) is the number of columns in the matrix ψu)

           <i >             <1> . <i >
          M               MA     ψ u


                  3.524 3.524 3.524            2.9    3.524 3.524
                  14.145 9.901 9.901           0      14.145 9.901
          M = 3.832 5.475 3.832                0      3.832 3.832       kNm
                  3.852 3.852 6.42             0      3.852 3.852
                      0        0       0       19.2    11.52     19.2

                                                M
          The moments in the columns of the matrix (= load combination) are added
                            <i >
          M sum            M
                  i

               T
          M sum = ( 25.353 22.752 23.677                16.3 13.833 1.909 ) kNm

          Maximum and minimum of moment are

          M Amax           max M sum                              M Amax = 25.353 kNm
                      1                                                   1

          M Amin           min M sum                              M Amin = 16.3 kNm
                      1                                                  1



                                                         <i >         <s> . <i >                                 <i >
(5.3.1)   Moments in section 2             s    2       M           MA     ψ u                  M sum           M
                                                                                                        i
               T
          M sum = ( 37.743           32.793        33.501 5.275     31.938    21.048 ) kNm      M Amax          max M sum
                                                                                                            s

                                                                                                M Amin          min M sum
                                                                                                            s

                                                         <i >         <s> . <i >                                 <i >
(5.3.1)   Moments in section 3             s    3       M           MA     ψ u                  M sum           M
                                                                                                        i
               T
          M sum = ( 11.471 3.677 3.494                1.64 9.203 2.246 ) kNm                    M Amax          max M sum
                                                                                                            s

                                                                                                M Amin          min M sum
                                                                                                            s

                                                         <i >         <s> . <i >                                 <i >
(5.3.1)   Moments in section 4             s    4       M           MA     ψ u                  M sum           M
                                                                                                        i
               T
          M sum = ( 7.86           2.563   7.002 1.045         6.105    2.253 ) kNm             M Amax          max M sum
                                                                                                            s

                                                                                                M Amin          min M sum
                                                                                                            s




TALAT 2710                                                17
Resulting maximum moments and minimum moments in section 1 to 4 are

                T
          M Amax = ( 25.353 5.275 11.471 1.045 ) kNm


                T
          M Amin = ( 16.3     37.743          1.64         7.86 ) kNm


          Axial force

          Axial force in part 1-2         s       1

                      18.8
                   60.5
            <s>
(5.3.1)   NA    = 1.42       kN                             <i >        <s> . <i >                                 <i >
                                                           N          NA     ψ u                  N sum           N
                   28.5                                                                                   i

                     15.6                                                                         N Amax          max N sum
                                                                                                              s
               T
          N sum = ( 137.751         109.887           127.626 4.6       123.711     87.126 ) kN   N Amin          min N sum
                                                                                                              s

                                                            <i >        <s> . <i >                                 <i >
(5.3.1)   Axial force in part 3-4     s       2            N          NA     ψ u                  N sum           N
                                                                                                          i
               T
          N sum = ( 48.932        42.254          60.212 10.68        38.132      25.532 ) kN     N Amax          max N sum
                                                                                                              s

                                                                                                  N Amin          min N sum
                                                                                                              s
          Resulting maximum and minimum axial forces in part 1, 2 and 3 are:
                T                                                                        T
          N Amax = ( 4.6 10.68 ) kN                                                N Amin = ( 137.8    60.2 ) kN

          Deflection

          Deflection in section 6                      s    1

                    0.56
                 0.5
            <s>                                                <i >      <s> .    <i >                                    <i >
(5.3.1)   δ A = 2.48         mm                            δ          δ A      ψ s                    δ sum         δ
                                                                                                          i
                4.19
                                                           δ Amax       max δ sum                     δ Amin            min δ sum
                    8.36                                        s                                            s

               T
          δ sum = ( 1.054 1.8 2.142 4.74 8.36 6.113 ) mm

          Resulting maximum and minimum deflection in section 6                                       δ Amax= ( 8.36 ) mm

                                                                                                      δ Amin ( 1.054 ) mm
                                                                                                            =




TALAT 2710                                                      18
5.4.2     Column B

          Bending moments

          For the load cases 1 - 5 the bending moment in section 1 of column B is:

                               0.07
                              4.26
            <1>
(5.3.2)   MB    =              3.27       kNm
                               6.57
                               17

          The load factor matrix is

                      1.215 1.215 1.215              1    1.215 1.215
                       1.5       1.05      1.05      0        1.5      1.05
(4.1)     ψ u 1.05
             =                      1.5    1.05      0        1.05     1.05
               0.9                  0.9     1.5      0        0.9       0.9
                          0          0      0       1.5       0.9       1.5

          The values in the moment vector shall be multiplied with the corresponding load factor for every l
          combination

          i   1 .. cols ψ u                                             (cols (ψu) is the number of columns in the matrix ψu)

           <i >             <1> . <i >
          M               MB     ψ u


                  0.085          0.085      0.085        0.07        0.085    0.085
                  6.39          4.473       4.473         0          6.39     4.473
          M=      3.433          4.905      3.433         0          3.433    3.433       kNm
                  5.913          5.913      9.855         0          5.913    5.913
                      0              0          0     25.5           15.3     25.5


                                                M
          The moments in the columns of the matrix (= load combination) are added
                               <i >
          M sum               M
                  i

               T
          M sum = ( 3.042                 6.43      8.901 25.43 12.258 20.541 ) kNm

          Maximum and minimum of moment are

          M Bmax              max M sum                                       M Bmax = 25.43 kNm
                      1                                                               1

          M Bmin              min M sum                                       M Bmin = 8.901 kNm
                      1                                                               1




TALAT 2710                                                            19
<i >         <s> . <i >                                     <i >
(5.3.2)   Moments in section 2         s      2      M           MB     ψ u                  M sum               M
                                                                                                     i
               T
          M sum = ( 20.693        13.331      10.619     22.98     32.843     34.013 ) kNm   M Bmax              max M sum
                                                                                                             s

                                                                                             M Bmin              min M sum
                                                                                                         s

                                                      <i >         <s> . <i >                                     <i >
(5.3.2)   Moments in section 3         s      3      M           MB     ψ u                  M sum               M
                                                                                                     i
               T
          M sum = ( 31.953 22.796 24.717 5.245 32.394 24.498 ) kNm                           M Bmax              max M sum
                                                                                                             s

                                                                                             M Bmin              min M sum
                                                                                                         s

                                                      <i >         <s> . <i >                                     <i >
(5.3.2)   Moments in section 4         s      4      M           MB     ψ u                  M sum               M
                                                                                                     i
               T
          M sum = ( 36.484 47.266 50.594             12.075 26.629 22.169 ) kNm              M Bmax              max M sum
                                                                                                             s

                                                                                             M Bmin              min M sum
                                                                                                         s

                                                      <i >         <s> . <i >                                     <i >
(5.3.2)   Moments in section 5         s      5      M           MB     ψ u                  M sum               M
                                                                                                     i
               T
          M sum = ( 69.124        72.458      86.153 9.64        58.864     48.293 ) kNm     M Bmax              max M sum
                                                                                                             s

                                                                                             M Bmin              min M sum
                                                                                                         s

                                                      <i >         <s> . <i >                                     <i >
(5.3.2)   Moments in section 6         s      6      M           MB     ψ u                  M sum               M
                                                                                                     i
               T
          M sum = ( 76.18     74.245       89.305 9.98          64.75     50.155 ) kNm       M Bmax              max M sum
                                                                                                             s

                                                                                             M Bmin              min M sum
                                                                                                         s

          Resulting maximum moments and minimum moments in section 1 to 6 are

                T
          M Bmax = ( 25.43     10.619 32.394 50.594 9.64 9.98 ) kNm

                T
          M Bmin = ( 8.901        34.013 5.245         12.075     86.153     89.305 ) kNm




          Axial force

          Axial force in part 1-2      s      1

                      35.1
                      84.4
            <s>
(5.3.2)   NB    =     31.7   kN                       <i >         <s> . <i >                                     <i >
                                                     N           NB     ψ u                  N sum               N
                       95                                                                            i

                     31.2                                                                    N Bmax              max N sum
                                                                                                         s
               T
          N sum = ( 288.031         264.317       307.051 11.7      259.951     203.251 ) kN N Bmin              min N sum
                                                                                                         s

TALAT 2710                                              20
<i >        <s> . <i >                                <i >
(5.3.2)   Axial force in part 3-4     s   2          N          NB     ψ u                 N sum           N
                                                                                                   i
               T
          N sum = ( 198.187         196.927     240.352 28.7       166.868    130.732 ) kN N Bmax          max N sum
                                                                                                  s

                                                                                           N Bmin          min N sum
                                                                                                       s

                                                      <i >        <s> . <i >                                <i >
(5.3.2)   Axial force in part 5-6     s   3          N          NB     ψ u                 N sum           N
                                                                                                   i
               T
          N sum = ( 69.291     65.484         86.451 11.52      56.871   42.831 ) kN       N Bmin          min N sum
                                                                                                       s

                                                                                           N Bmax          max N sum
                                                                                                       s

          Resulting maximum and minimum axial forces in part 1, 2 and 3 are:
                T                                                                  T
          N Bmax = ( 11.7 28.7 11.52 ) kN                                    N Bmin = ( 307.1    240.4      86.5 ) kN



          Deflection

          Deflection in section 6                s   1

                     0.57
                 0.53
            <s>                                          <i >      <s> .    <i >                                   <i >
(5.3.2)   δ B = 2.57        mm                       δ          δ B      ψ s                    δ sum        δ
                                                                                                    i
                 4.3
                                                     δ Bmax max δ sum                           δ Bmin           min δ sum
                     8.32                                 s                                           s

               T
          δ sum = ( 1.076 1.855 2.201 4.73 8.32 6.276 ) mm

          Resulting maximum and minimum deflection in section 6                                 δ Bmax ( 8.32 ) mm
                                                                                                      =

                                                                                                δ Bmin ( 1.076 ) mm
                                                                                                     =


5.4.3     Column C
          Comment: To reduce the extent of this example,
          calculation of this column is left out. It can,
          conservatively, be given the same dimensions
          as column B




TALAT 2710                                               21
5.4.4     Floor beam D
          Bending moments

          For the load cases 1 - 5 the bending moment in section 1 of beam D is:

                               6.56
                  27.8
            <1>
(5.3.4)   MD    = 0.62                  kNm
                   0.4
                              8.97

          The load factor matrix is

                      1.215 1.215 1.215          1         1.215 1.215
                       1.5       1.05    1.05    0          1.5     1.05
(4.1)     ψ u 1.05
             =                   1.5     1.05    0         1.05     1.05
               0.9               0.9      1.5    0          0.9     0.9
                          0       0       0      1.5        0.9     1.5

          The values in the moment vector shall be multiplied with the corresponding load factor for every l
          combination

          i   1 .. cols ψ u                                          (cols (ψu) is the number of columns in the matrix ψu)

           <i >              <1> . <i >
          M                MD     ψ u


                  7.97          7.97      7.97       6.56         7.97     7.97
                  41.7          29.19    29.19         0          41.7     29.19
          M = 0.651             0.93     0.651         0      0.651 0.651           kNm
                  0.36          0.36      0.6          0          0.36     0.36
                      0          0        0      13.455 8.073 13.455

                                                M
          The moments in the columns of the matrix (= load combination) are added
                               <i >
          M sum               M
                  i

               T
          M sum = ( 49.379               36.59    37.109 6.895             41.306       23.414 ) kNm

          Maximum and minimum of moment are

          M Dmax              max M sum                                    M Dmax = 6.895 kNm
                       1                                                            1

          M Dmin              min M sum                                    M Dmin = 49.379 kNm
                      1                                                            1




TALAT 2710                                                         22
<i >          <s> . <i >                                   <i >
(5.3.4)   Moments in section 2       s    2           M            MD     ψ u                M sum               M
                                                                                                     i
               T
          M sum = ( 84.597 67.164 65.949 13.4 86.397 67.977 ) m kN                           M Dmin              min M sum
                                                                                                         s

                                                                                             M Dmax               max M sum
                                                                                                             s

                                                       <i >          <s> . <i >                                   <i >
(5.3.4)   Moments in section 3       s    3           M            MD     ψ u                M sum               M
                                                                                                     i
               T
          M sum = ( 52.658       36.139       35.348       26.75    64.358   57.038 ) m kN   M Dmin              min M sum
                                                                                                         s

                                                                                             M Dmax               max M sum
                                                                                                             s

          Resulting maximum moments and minimum moments in section 1 to 3 are

                                                                    6.895                                         49.379
                                                     M Dmax = 86.397         kNm             M Dmin =              13.4        kNm
                                                                    26.75                                         64.358

          Shear force

          Shear force in section 1               s     1

                     11.7
                     48.5
            <s>
(5.3.4)   VD    =    1.4    kN                         <i >          <s> . <i >                                   <i >
                                                      V            VD     ψ u                V sum               V
                     0.67                                                                            i

                     3.66                             V Dmax         max V sum               V Dmin              min V sum
                                                               s                                         s
               T
          V sum = ( 89.038 67.844 67.615 6.21 85.745 61.723 ) kN


          Shear force in section 2               s     2

                     11.4
                     50.5
            <s>
(5.3.4)   VD    =     0.6   kN                         <i >          <s> . <i >                                   <i >
                                                      V            VD     ψ u                V sum               V
                     0.67                                                                            i

                     3.66                             V Dmax         max V sum               V Dmin              min V sum
                                                               s                                         s
               T
          V sum = ( 88.368 65.373 65.241 16.89 91.662 71.133 ) kN


          Resulting maximum and minimum shear forces in section 1 and 3 are

                                                              89.038                                             6.21
                                               V Dmax =                 kN                   V Dmin =                     kN
                                                              91.662                                             16.89
          Deflection




TALAT 2710                                             23
89.038                                        6.21
                                             V Dmax =                     kN                 V Dmin =                   kN
                                                               91.662                                        16.89
          Deflection

          Deflection in section 2              s     1

                     3.21
                13.1
            <s>
(5.3.4)   δ D = 1.63        mm                         <i >         <s> .    <i >                                <i >
                                                   δ             δ D      ψ s                δ sum           δ
                0.92                                                                             i

                     0.91                          δ Dmax          max δ sum                 δ Dmin              min δ sum
                                                        s                                          s

               T
          δ sum = ( 10.249 4.025 3.883 2.755                  0.91 17.295 ) mm

          Resulting maximum and minimum deflection in section 2
                                             δ Dmax= ( 17.295 ) mm                           δ Dmin ( 0.91 ) mm
                                                                                                  =


5.4.5     Roof beam E
          Comment: To reduce the extent of this example, calculation of this beam is left out. It can be given
          the same dimensions as floor beam D


5.4.6     Roof beam F
          Moment
          For the load cases 1 - 5 the bending moments in section 1 to 3 of the beam F are

                                                    <i >            <s> . <i >                                <i >
(5.3.6)   Moments in section 1      s   1          M              MF     ψ u                 M sum           M
                                                                                                     i
               T
          M sum = ( 119.277      129.177      145.887 21.8          99.117     79.827 ) m kN M Fmin          min M sum
                                                                                                    s

                                                                                             M Fmax              max M sum
                                                                                                         s

                                                    <i >            <s> . <i >                                <i >
(5.3.6)   Moments in section 2      s   2          M              MF     ψ u                 M sum           M
                                                                                                     i
               T
          M sum = ( 294.306 321.126 336.246              30.6 260.106 218.226 ) m kN         M Fmin          min M sum
                                                                                                         s

                                                                                             M Fmax              max M sum
                                                                                                         s

                                                    <i >            <s> . <i >                                <i >
(5.3.6)   Moments in section 3      s   3          M              MF     ψ u                 M sum           M
                                                                                                     i
               T
          M sum = ( 40.114     42.661       48.238       3.69     39.88    37.348 ) m kN     M Fmin          min M sum
                                                                                                         s

                                                                                             M Fmax              max M sum
                                                                                                         s




TALAT 2710                                               24
Resulting maximum moments and minimum moments in section 1 to 3 are

                                                               21.8                                           145.887
                                              M Fmax = 336.246              kNm              M Fmin =           30.6         kNm
                                                               3.69                                            48.238
             Shear force
             Shear force in section 1     s    1
                        14.3
                     21.1
               <s>
(5.3.4)      VF    = 43.4       kN              <i >           <s> . <i >                                     <i >
                                               V             VF     ψ u                      V sum           V
                     57.6                                                                            i

                         21.1                  V Fmax         max V sum                      V Fmin          min V sum
                                                         s                                               s
                  T
             V sum = ( 146.435 156.47 171.5    17.35 127.444 105.289 ) kN

             Shear force in section 3     s    2
                        13.2
                     20.1
               <s>
(5.3.4)      VF    = 23.3       kN              <i >           <s> . <i >                                     <i >
                                               V             VF     ψ u                      V sum           V
                     52.5                                                                            i

                         17.4                  V Fmax         max V sum                      V Fmin          min V sum
                                                         s                                               s
                  T
             V sum = ( 117.903 119.343 140.358      12.9 102.243 82.758 ) kN

             Resulting maximum and minimum shear force in section 1 and 3 are

                                                              171.5                                          17.35
                                              V Fmax =                      kN               V Fmin =                   kN
                                                             140.358                                          12.9
             Deflection

             Deflection in section 2      s    1
               <s>T                                                  <i >           <s> .    <i >                                <i >
(5.3.4)      δ F    = ( 7.71 12.6 22.2 29.3    11.1 ) mm         δ               δ F      ψ s                 δ sum          δ
                                                                                                                  i

                                                                                             δ Fmin min δ sum
                                                                                                  s
                  T
             δ sum = ( 20.67 18.81 20.23 2.16       11.1 65.4 ) mm                           δ Fmax          max δ sum
                                                                                                  s

[5] (9.20)   Simplified verification    δ Fmax = ( 65.4 ) mm                                 δ Fmin ( 11.1 ) mm
                                                                                                   =
[5] (9.16)   Load combination 3         δ sum = 20.2 mm
                                                3




TALAT 2710                                          25
5.4.7         Joint A-D
(5.4.1) and   Moment                M Amax = 11.5 kNm
(5.5.4)                                      3
                                    M Dmin = 49.4 kNm
                                             1
                                    M Amin = 37.7 kNm
                                             2
              Shear                 V Dmax = 89 kN
                                             1

              Check:                M Amax       M Dmin         M Amin       = 0.17 kNm
                                             3            1              2


5.4.8         Joint B-D
(5.4.2) and   Moment                M Bmax = 32.4 kNm           M Bmin = 34 kNm
(5.5.4)                                      3                           2
                                    M Dmin = 64.4 kNm                                                                 V
                                             3

              Check:                M Bmax       M Dmin         M Bmin       = 2.05 kNm                               V
                                             3            3              2
              Shear                 V Dmax = 91.7 kN
                                             2
                                                                                                                      N
                                    V B3 = 2.306 kN             V B2 = 18.184 kN

              Axial                 N B3 = 240.4 kN             N B2 = 307.1 kN



5.4.9         Joint A-E and joint B-E
5.4.10        Comment: To reduce the extent of this example, calculation of this joint is left out


5.4.11        Joint B-F
(5.4.2) and   Moment                M Bmin = 86.153 kNm
(5.5.6)                                    5
                                    M Fmin = 145.9 kNm
                                             1
                                    M Bmax = 50.6 kNm
                                             4
              Shear                 V Fmax = 171.5 kN
                                             1

              Check:                M Bmin       M Fmin       M Bmax = 9.14 kNm
                                           5              1         4

              (The reason why the sum of the moments is not = 0 is the fact that all the moments does not belong to
              the same load combination)




TALAT 2710                                            26
5.4.12    Joint F-C
(5.4.6)   Moment         M Fmin = 48.238 kNm
                               3
                         M Fmax = 3.7 kNm
                                   3
          Shear          V Fmin = 12.9 kN
                               2
                         V Fmax = 140.4 kN
                               2



5.4.13    Column bases     See 6.1.13 and 6.2.13




TALAT 2710                             27
6. Code Checking


6.1 Column A

6.1.1            Dimensions and material properties

                 Section height:                          h        160 . mm
                 Flange depth:                            b        150 . mm


                 Web thickness:                           tw        5 . mm
                 Flange thickness:                        tf       14 . mm
                 Overall length:                          L1        3 .m
                 Distance between purlins:                cp        1 .m



[1] Table 3.2b Alloy: EN AW-6082 T6 EP/O t > 5 mm
                                   newton                  newton
                 f 0.2     260 .              fu   310 .
                                         2                          2
                                    mm                         mm
                 heat_treated        1        (if heat-treated then 1 else 0)



[1] (5.4), (5.5) f o     f 0.2                fa   fu

                         fo                                newton                                    newton                   newton
[1] (5.6)        fv                           f v = 150                              E     70000 .              G   27000 .
                                                                    2                                      2                        2
                          3                                    mm                                     mm                       mm


                 Partial safety factors:                       γ M11.10                                    γ M2 1.25

                 Inner radius:                                 r        5 . mm


                 Web height:                                   bw         h      2 .t f   2 .r             b w = 122 mm

                 S.I. units:                 kN 1000 . newton                    kNm kN . m                MPa 1000000 . Pa




TALAT 2710                                                     28
6.1.2       Internal moments and forces
 (5.4.2)     Bending moments and axial forces for load case LC1, LC3 and LC6 in section 1, 2, 3 and 4
                   0                       25.4                              23.8                                    1.91
                  3.0                       37.7                              33.5                                   21.1
             x                 M LC1                   . kNm        M LC3                 . kNm        M LC6                    . kNm
                  3.1                      11.5                              3.49                                    2.24
                  5.5                       7.86                              7.00                                   2.25

                                           138                               127                                         87
                                           138                               127                                         87
                               N LC1              . kN              N LC3             . kN              N LC6                 . kN
                                           49                                60                                          26
                                           49                                60                                          26



                            Bending moment kNm                                                Axial force kN




                   4                                                          4




                   2                                                          2




                   0                                                          0
                       40     20       0          20           40                 0               50           100              150
                             Load case 1                                                      Load case 1
                             Load case 3                                                      Load case 3
                             Load case 6                                                      Load case 6



                                             Load case 1                     Load case 3                       Load case 6
             Moment in section 2             M LC1 = 37.7 kNm               M LC3 = 33.5 kNm                   M LC6 = 21.1 kNm
                                                           2                              2                              2
             Moment at column base 1         M LC1 = 25.4 kNm               M LC3 = 23.8 kNm                   M LC6 = 1.91 kNm
                                                           1                              1                              1
             Axial force in part 1-2        N LC1 = 138 kN                  N LC3 = 127 kN                  N LC6 = 87 kN
                                                       1                              1                              1


             Preliminary calculations show that load case 1 is governing. Study part 1-2 from column base
             to floor beam. Moment in top of part 1-2 (section 2) is larger than at column base (section 1) why
             M 1.Ed (below) correspond to section 2 andM 2.Ed to section 1 of the column.




TALAT 2710                                             29
Load case 1
                  Bending moment in section 2                                          M 1.Ed          M LC1                M 1.Ed = 37.7 kNm
                                                                                                               2
                  Bending moment at column base (1)                                    M 2.Ed          M LC1                M 2.Ed = 25.4 kNm
                                                                                                               1
                  Axial force in part 1-2 (compression)                                N Ed       N LC1                     N Ed = 138 kN
                                                                                                          1


 6.1.3            Classification of the cross section in y-y-axis bending
                                                                                                                   β w bending
                  a) Web
                                                                                                  b1
 [1] 5.4.3        b1        bw                 t1        tw                      β w     0.40 .                    β w 9.76
                                                                                                                      =
                                                                                                  t1
                        250 . newton
 [1] Tab. 5.1     ε                                               β 1w 11 . ε                                      β 1w 10.786
                                                                                                                       =
                            fo          2
                                   mm
 Heat treated,
 unwelded = no                                                    β 2w 16 . ε                                      β 2w 15.689
                                                                                                                       =
 longitudinal
 weld                                                             β 3w 22 . ε                                      β 3w 21.573
                                                                                                                       =

                  class w        if β w β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1
                                      >                                                                                                class w = 1

 [1] 5.4.5        Local buckling

                                  β w                     32                 220
                  ρ cw if                   22 , 1.0 ,                                                             ρ cw 1
                                                                                                                       =
                                   ε                     β w             β w
                                                                                   2

                                                          ε                  ε

                  t w.ef.b        if class w 4 , t w . ρ cwt w
                                                          ,                            ( b = bending)              t w.ef.b = 5.0 mm


                  b) Flanges
 [1] 5.4.3        ψ    1
                                                                  0.8
 [1] (5.7.),(5.8.) g   if ψ > 1 , 0.7           0.3 . ψ ,                                                          g=1
                                                              1     ψ

                            b    tw     2 .r                                                     b2
                  b2                                              t2    tf                β f g.                   β f 4.821
                                                                                                                     =
                                   2                                                             t2

 [1] Tab. 5.1     ε = 0.981                                              β 1f 3 . ε                                β 1f 2.942
                                                                                                                      =
                                                                         β 2f 4.5 . ε                              β 2f 4.413
                                                                                                                      =
                                                                         β 3f 6 . ε                                β 3f 5.883
                                                                                                                      =


                  class f        if β > β 1f , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1
                                       f                                                                                               class f = 3




TALAT 2710                                                              30
[1] 5.4.5      Local buckling:

                              β f                 10            24
                ρ cf if               6 , 1.0 ,                                                  ρ cf 1
                                                                                                    =
                              ε                   β f           β f
                                                                      2

                                                  ε             ε

                t f.ef    if class f 4 , t f . ρ cft f
                                                  ,                                              t f.ef = 14.0 mm



                Classification of the cross-section in y-y axis bending

                class y     if class f > class w , class f , class w                                                class y = 3




 6.1.4          Classification of the cross section in z-z-axis bending

                Cross section class of web: No bending stresses                                                      class w       1

                Cross section class for flanges: According to above                                                  class f = 3

                class z     if class f > class w , class f , class w                                                 class z = 3




 6.1.5          Classification of the cross section in axial compression
                                                                                                 β wc compression
                a) Web
                                                                                    b1
                b1       bw                t1         tw              β wc                       β wc = 24.4
                                                                                    t1

 [1] Tab. 5.1                                                                                    β 1w 10.786
                                                                                                     =
                                                                                                 β 2w 15.689
                                                                                                     =
                                                                                                 β 3w 21.573
                                                                                                     =

                class wc       if β wc β 1w , if β wc > β 2w , if β wc > β 3w , 4 , 3 , 2 , 1
                                     >                                                                                 class wc = 4

 [1] 5.4.5      Local buckling

                              β wc                         32             220
                ρ cw if                   22 , 1.0 ,                                             ρ cw 0.931
                                                                                                     =
                                  ε                    β wc           β wc
                                                                                2

                                                           ε              ε

                t w.ef     if class wc 4 , t w . ρ cwt w
                                                    ,                               t w = 5 mm   t w.ef = 4.7 mm


                b) Flanges
                Same as in bending                                                               t f.ef = 14.0 mm      class f = 3


                Classification of the total cross-section in axial compression
                class c     if class f > class wc , class f , class wc                                                 class c = 4
TALAT 2710                                                          31
6.1.6.        Welds
[1] 5.5       HAZ softening at column ends
[1] Tab.5.2   ρ haz 0.65

[1] Fig.5.6   Extent of HAZ (MIG-weld)                            t1         tf

              b haz     if t 1 > 6 . mm , if t 1 > 12 . mm , if t 1 > 25 . mm , 40 . mm , 35 . mm , 30 . mm , 20 . mm

              b haz = 35 mm



6.1.7         Design resistance, y-y-axis bending
[1] 5.6.1                                               W
              Elastic modulus of the gross cross section el:

                      2 .b .t f                   2 .t f .t w            A g = 4.86 . 10 mm
                                                                                      3       2
              Ag                          h

                       1. . 3
                                                    tw . h      2 .t f
                                                                         3
              Ig         bh                   b
                      12

                                                                         I g = 2.341 . 10 mm
                                                                                      7        4


                       I g .2
                                                                         W el = 2.926 . 10 mm
                                                                                          5        3
              W el
                           h


                                                        W
              Plastic modulus of the gross cross section pl:

                       1.
                               b .h                 tw . h      2 .t f                         W pl = 3.284 . 10 mm
                                      2                                  2                                   5        3
              W pl                            b
                       4




TALAT 2710                                                                   32
W
                Elastic modulus of the effective cross section effe:


                t f = 14 mm                        t f.ef = 14 mm

                                                          bw
                As tf.ef = tf then                 bc                         b c = 61 mm
                                                              2
                t w = 5 mm

                t w.ef.b = 5 mm


                bf      0.5 . b        tw    2 .r                             b f = 67.5 mm


                                    2 .b f . t f                   b c. t w                                    A eff = 4.86 . 10 mm
                                                                                                                             3        2
                A eff     Ag                         t f.ef                       t w.ef.b

                Shift of gravity centre:
                                                                              2
                                                     h        tf      bc                               1
                e ef      2 .b f . t f      t f.ef .                        . t
                                                                                w          t w.ef.b .          e ef = 0 mm
                                                     2        2           2                           A eff

                Second moment of area wiht respect to centre of gross cross section:
                                                                          2           3
                                                             h       tf           bc
                                  2 .b f . t f      t f.ef .                              . t                  I eff = 2.341 . 10 mm
                                                                                                                              7        4
                I eff    Ig                                                                   w   t w.ef.b
                                                             2       2            3

                Second moment of area wiht respect to centre of effective gross section:

                                   e ef . A eff                                                                I eff = 2.341 . 10 mm
                                       2                                                                                      7        4
                I eff    I eff

                               I eff
                                                                                                               W eff = 2.926 . 10 mm
                                                                                                                                  5        3
                W eff
                           h
                                  e ef
                           2


 [1] Tab. 5.3   Shape factor α
                - for class 1 or 2 cross-sections:

                        W pl
                α 1.2.w                                                                                       α 1.2.w = 1.122
                        W el

                - for welded, class 3 cross-sections:




TALAT 2710                                                               33
[1] Tab. 5.3   Shape factor α
               - for class 1 or 2 cross-sections:

                       W pl
               α 1.2.w                                                                       α 1.2.w = 1.122
                       W el

               - for welded, class 3 cross-sections:

                                   β 3w     β w   W pl W el
[1] (5.16)     α 3.ww        1                  .                                            α 3.ww 1.245
                                                                                                   =
                                   β 3w    β 2w      W el

                                   β 3f    β f   W pl W el
[1] (5.16)     α 3.wf        1                 .                                             α 3.wf= 1.088
                                  β 3f    β 2f      W el

               β, β2, β3 are the slenderness parameter and the limiting values for the most critical
               element in the cross-section, so it is the smaller value of3.ww and α3.wf
                                                                        α

               α 3.w if α 3.ww α 3.wf , α 3.ww , α 3.wf                                      α 3.w 1.088
                                                                                                  =

                                                                   W eff
               - for class 4 cross-sections:                 α 4.w                           α 4.w = 1
                                                                   W el
               class y = 3

               α y if class y > 2 , if class y > 3 , α 4.w , α 3.w , α 1.2.w                 α y 1.088
                                                                                               =

                                                              M
               Design moment of resistance of the cross section c,Rd

                         f o . α .y el
                                  W
[1] (5.14)     M y.Rd                                                                        M y.Rd = 75.3 kNm
                                 γ M1


6.1.8          Design resistance, z-z-axis bending
               Cross section class                                                            class z = 3
                                                                         t f .b
                                                                                  3
                                                                    2.                        I z = 7.875 . 10 mm
                                                                                                                6        4
               Gross cross section:                        Iz
                                                                          12
                                                                            t f.ef . b
                                                                                         3
                                                                         2.                   I z.ef = 7.875 . 10 mm
                                                                                                                     6       4
               Effective cross section:                    I z.ef
                                                                                12
                                                                     I z.2                              I z.ef . 2
               Section moduli:                             Wz                                 W z.ef
                                                                         b                                  b
                                                                         Wz
               Shape factor:                               α z                                α z=1
                                                                 W z.ef
                                                                    f o . α .z z
                                                                             W
               Bending resistance:                         M z.Rd                             M z.Rd = 24.818 kNm
                                                                       γ M1




TALAT 2710                                            34
6.1.9           Axial force resistance, y-y buckling
 [1] 5.8.4       Cross section area of gross cross sectionAgr

                              b .h               tw . h           2 .t f                                                          A gr = 4.86 . 10 mm
                                                                                                                                               3        2
                 A gr                    b


                 Cross section area of effective cross sectionAef                                                                 t w.ef = 4.653 mm

                                     2 .b 2 . t f                              b w. t w                                           A ef = 4.818 . 10 mm
                                                                                                                                                3        2
                 A ef     A gr                                 t f.ef                              t w.ef

                 ( t f = 14 mm                   t w = 5 mm                    2 . b 2 = 135 mm                 t f.ef = 14 mm    t w.ef = 4.653 mm )

                                                                                                    A ef
                 Effective cross section factor                                               η                                   η = 0.991
                                                                                                    A gr

                 Second moment of area of gross cross sectionIy:
                                                                           2
                          2. . 3                           h         tf          1.
                                             2 .b .t f .                                          2 .t f .t w
                                                                                                         3
                 Iy         btf                                                     h
                         12                                      2              12

 [1] Table 5.7   Buckling length factor                          Ky            1.5                L1=3 m
 Case 5
                 l yc     K y .L 1                               l yc = 4.5 m


                                                                                π .E .I y
                                                                                 2

                 Buckling load                                   N cr
                                                                                          2
                                                                                 l yc

                                                                 N cr = 798.639 kN

                                                                                A gr . η . f o
 [1] 5.8.4.1     Slenderness parameter λ y                                                                                       λ y 1.252
                                                                                                                                   =
                                                                                      N cr

 [1] Table 5.6   α      if ( heat_treated 1 , 0.2 , 0.32 )                                                                       α = 0.2
                 λ o if ( heat_treated 1 , 0.1 , 0 )                                                                             λ o 0.1
                                                                                                                                   =

                        0.5 . 1      α . λ y
                                                                                      2
                 φ                                             λ o             λ y                                               φ = 1.399

                                         1
                 χ y                                                                                                             χ y = 0.494
                                             2             2
                          φ          φ            λ y

 [1] Table 5.5   Symmetric profile                                                                                               k1   1
 [1] Table 5.5   No longitudinal welds                                                                                           k2   1
                                                                                                                fo
                 Axial force resistance                          N y.Rd              χ .y . k 1 . k 2 .
                                                                                        η                            .A
                                                                                                                          gr     N y.Rd = 562.6 kN
                                                                                                            γ M1




TALAT 2710                                                                           35
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example
TALAT Lecture 2710: Static Design Example

More Related Content

What's hot

is 456 amendment 4
is 456 amendment 4is 456 amendment 4
is 456 amendment 4jemmabarsby
 
Technological Considerations and Constraints in the Manufacture of High Preci...
Technological Considerations and Constraints in the Manufacture of High Preci...Technological Considerations and Constraints in the Manufacture of High Preci...
Technological Considerations and Constraints in the Manufacture of High Preci...IJERA Editor
 
Analysis of R.C Deep Beam by Finite Element Method
Analysis of R.C Deep Beam by Finite Element MethodAnalysis of R.C Deep Beam by Finite Element Method
Analysis of R.C Deep Beam by Finite Element MethodIJMER
 
Simplified design of reinforced concrete buildings
Simplified design of reinforced concrete buildings Simplified design of reinforced concrete buildings
Simplified design of reinforced concrete buildings Sarmed Shukur
 
FINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDON
FINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDONFINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDON
FINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDONGirish Singh
 
Good report on Adders/Prefix adders
Good report on Adders/Prefix addersGood report on Adders/Prefix adders
Good report on Adders/Prefix addersPeeyush Pashine
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...
IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...
IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...IRJET Journal
 
Jonathan Jones Mae377 Project06 Final
Jonathan Jones Mae377 Project06 FinalJonathan Jones Mae377 Project06 Final
Jonathan Jones Mae377 Project06 Finalspiffyjj115
 

What's hot (15)

is 456 amendment 4
is 456 amendment 4is 456 amendment 4
is 456 amendment 4
 
Is 456 2000
Is 456 2000Is 456 2000
Is 456 2000
 
Technological Considerations and Constraints in the Manufacture of High Preci...
Technological Considerations and Constraints in the Manufacture of High Preci...Technological Considerations and Constraints in the Manufacture of High Preci...
Technological Considerations and Constraints in the Manufacture of High Preci...
 
Is code 456 2000
Is code 456 2000Is code 456 2000
Is code 456 2000
 
Steel code book
Steel code bookSteel code book
Steel code book
 
Analysis of R.C Deep Beam by Finite Element Method
Analysis of R.C Deep Beam by Finite Element MethodAnalysis of R.C Deep Beam by Finite Element Method
Analysis of R.C Deep Beam by Finite Element Method
 
Simplified design of reinforced concrete buildings
Simplified design of reinforced concrete buildings Simplified design of reinforced concrete buildings
Simplified design of reinforced concrete buildings
 
SET 1.doc
SET 1.docSET 1.doc
SET 1.doc
 
Final Report (Group 5)
Final Report (Group 5)Final Report (Group 5)
Final Report (Group 5)
 
FINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDON
FINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDONFINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDON
FINITE ELEMENT ANALYSIS OF A PRESTRESSED CONCRETE BEAM USING FRP TENDON
 
Spur gear
Spur gearSpur gear
Spur gear
 
Good report on Adders/Prefix adders
Good report on Adders/Prefix addersGood report on Adders/Prefix adders
Good report on Adders/Prefix adders
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...
IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...
IRJET- Comparison of Seismic Response of RCC Framed Structure with FPB & HDRB...
 
Jonathan Jones Mae377 Project06 Final
Jonathan Jones Mae377 Project06 FinalJonathan Jones Mae377 Project06 Final
Jonathan Jones Mae377 Project06 Final
 

Similar to TALAT Lecture 2710: Static Design Example

Steel vs. Other Building Materials: A Comparative Analysis Infographic
Steel vs. Other Building Materials: A Comparative Analysis Infographic Steel vs. Other Building Materials: A Comparative Analysis Infographic
Steel vs. Other Building Materials: A Comparative Analysis Infographic JSPLSaudi
 
Steel Structures Design Manual to AS 4100.pdf
Steel Structures Design Manual to AS 4100.pdfSteel Structures Design Manual to AS 4100.pdf
Steel Structures Design Manual to AS 4100.pdfSrinivasanReddy3
 
Reinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdf
Reinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdfReinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdf
Reinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdfRohitmishrachakarout
 
Superestructura de Acero
Superestructura de AceroSuperestructura de Acero
Superestructura de AceroRonaldPaucar
 
LRFD Design Example -Steel Girder Bridge (SI Unit).pdf
LRFD Design Example -Steel Girder Bridge (SI Unit).pdfLRFD Design Example -Steel Girder Bridge (SI Unit).pdf
LRFD Design Example -Steel Girder Bridge (SI Unit).pdfSaminSiraj1
 
Design of prestressed Concrete flat slabs.pdf
Design of prestressed Concrete flat slabs.pdfDesign of prestressed Concrete flat slabs.pdf
Design of prestressed Concrete flat slabs.pdfmistreselasiesentayr
 
At0023183 a471d706cae0c1257d3a0039ffa9
At0023183 a471d706cae0c1257d3a0039ffa9At0023183 a471d706cae0c1257d3a0039ffa9
At0023183 a471d706cae0c1257d3a0039ffa9hasanbas1960
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Hossam Shafiq II
 
Briscoe umn 0130_e_11103
Briscoe umn 0130_e_11103Briscoe umn 0130_e_11103
Briscoe umn 0130_e_11103Ahmed Awad
 
5_6271537827171795662.pdf
5_6271537827171795662.pdf5_6271537827171795662.pdf
5_6271537827171795662.pdfssuserd8a85b
 
Buildings with Base Isolation Techniques
Buildings with Base Isolation TechniquesBuildings with Base Isolation Techniques
Buildings with Base Isolation TechniquesMahmoud Sayed Ahmed
 
Analysis and design of reinforced concrete bridge structures copy
Analysis and design of reinforced concrete bridge structures copyAnalysis and design of reinforced concrete bridge structures copy
Analysis and design of reinforced concrete bridge structures copyimaduddin91
 
Analysis and Design of Reinforced Concrete Bridge Structures copy.pdf
Analysis and Design of Reinforced Concrete Bridge Structures copy.pdfAnalysis and Design of Reinforced Concrete Bridge Structures copy.pdf
Analysis and Design of Reinforced Concrete Bridge Structures copy.pdfSandipSarkar69
 
[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdf
[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdf[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdf
[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdfMd.Minhaz Uddin Bayezid
 

Similar to TALAT Lecture 2710: Static Design Example (20)

Building Code of Pakistan
Building Code of PakistanBuilding Code of Pakistan
Building Code of Pakistan
 
Steel vs. Other Building Materials: A Comparative Analysis Infographic
Steel vs. Other Building Materials: A Comparative Analysis Infographic Steel vs. Other Building Materials: A Comparative Analysis Infographic
Steel vs. Other Building Materials: A Comparative Analysis Infographic
 
Steel Structures Design Manual to AS 4100.pdf
Steel Structures Design Manual to AS 4100.pdfSteel Structures Design Manual to AS 4100.pdf
Steel Structures Design Manual to AS 4100.pdf
 
Reinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdf
Reinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdfReinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdf
Reinforced Concrete Design 2nd Edition ( PDFDrive.com ).pdf
 
Superestructura de Acero
Superestructura de AceroSuperestructura de Acero
Superestructura de Acero
 
LRFD Design Example -Steel Girder Bridge (SI Unit).pdf
LRFD Design Example -Steel Girder Bridge (SI Unit).pdfLRFD Design Example -Steel Girder Bridge (SI Unit).pdf
LRFD Design Example -Steel Girder Bridge (SI Unit).pdf
 
Design of prestressed Concrete flat slabs.pdf
Design of prestressed Concrete flat slabs.pdfDesign of prestressed Concrete flat slabs.pdf
Design of prestressed Concrete flat slabs.pdf
 
ISBN9783639665369
ISBN9783639665369ISBN9783639665369
ISBN9783639665369
 
255788330 asi-steel-connections
255788330 asi-steel-connections255788330 asi-steel-connections
255788330 asi-steel-connections
 
Safe pt design
Safe pt designSafe pt design
Safe pt design
 
At0023183 a471d706cae0c1257d3a0039ffa9
At0023183 a471d706cae0c1257d3a0039ffa9At0023183 a471d706cae0c1257d3a0039ffa9
At0023183 a471d706cae0c1257d3a0039ffa9
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
 
Briscoe umn 0130_e_11103
Briscoe umn 0130_e_11103Briscoe umn 0130_e_11103
Briscoe umn 0130_e_11103
 
merged_document
merged_documentmerged_document
merged_document
 
5_6271537827171795662.pdf
5_6271537827171795662.pdf5_6271537827171795662.pdf
5_6271537827171795662.pdf
 
Buildings with Base Isolation Techniques
Buildings with Base Isolation TechniquesBuildings with Base Isolation Techniques
Buildings with Base Isolation Techniques
 
Analysis and design of reinforced concrete bridge structures copy
Analysis and design of reinforced concrete bridge structures copyAnalysis and design of reinforced concrete bridge structures copy
Analysis and design of reinforced concrete bridge structures copy
 
Analysis and Design of Reinforced Concrete Bridge Structures copy.pdf
Analysis and Design of Reinforced Concrete Bridge Structures copy.pdfAnalysis and Design of Reinforced Concrete Bridge Structures copy.pdf
Analysis and Design of Reinforced Concrete Bridge Structures copy.pdf
 
[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdf
[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdf[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdf
[Liang,_Qing_Quan]_Analysis_and_Design_of_Steel_an(BookZZ.org).pdf
 
manual index
manual indexmanual index
manual index
 

More from CORE-Materials

Testing Techniques for Composite Materials
Testing Techniques for Composite MaterialsTesting Techniques for Composite Materials
Testing Techniques for Composite MaterialsCORE-Materials
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming TechniquesCORE-Materials
 
The role of technology in sporting performance
The role of technology in sporting performanceThe role of technology in sporting performance
The role of technology in sporting performanceCORE-Materials
 
Chemical analysis in the electron microscope
Chemical analysis in the electron microscopeChemical analysis in the electron microscope
Chemical analysis in the electron microscopeCORE-Materials
 
The scanning electron microscope
The scanning electron microscopeThe scanning electron microscope
The scanning electron microscopeCORE-Materials
 
The transmission electron microscope
The transmission electron microscopeThe transmission electron microscope
The transmission electron microscopeCORE-Materials
 
Electrons and their interaction with the specimen
Electrons and their interaction with the specimenElectrons and their interaction with the specimen
Electrons and their interaction with the specimenCORE-Materials
 
Electron microscopy and other techniques
Electron microscopy and other techniquesElectron microscopy and other techniques
Electron microscopy and other techniquesCORE-Materials
 
Microscopy with light and electrons
Microscopy with light and electronsMicroscopy with light and electrons
Microscopy with light and electronsCORE-Materials
 
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumTALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumCORE-Materials
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumCORE-Materials
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumCORE-Materials
 
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsTALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsCORE-Materials
 
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumTALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumCORE-Materials
 
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumTALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumCORE-Materials
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...CORE-Materials
 
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsTALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsCORE-Materials
 

More from CORE-Materials (20)

Drawing Processes
Drawing ProcessesDrawing Processes
Drawing Processes
 
Testing Techniques for Composite Materials
Testing Techniques for Composite MaterialsTesting Techniques for Composite Materials
Testing Techniques for Composite Materials
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming Techniques
 
The role of technology in sporting performance
The role of technology in sporting performanceThe role of technology in sporting performance
The role of technology in sporting performance
 
Chemical analysis in the electron microscope
Chemical analysis in the electron microscopeChemical analysis in the electron microscope
Chemical analysis in the electron microscope
 
The scanning electron microscope
The scanning electron microscopeThe scanning electron microscope
The scanning electron microscope
 
The transmission electron microscope
The transmission electron microscopeThe transmission electron microscope
The transmission electron microscope
 
Electron diffraction
Electron diffractionElectron diffraction
Electron diffraction
 
Electrons and their interaction with the specimen
Electrons and their interaction with the specimenElectrons and their interaction with the specimen
Electrons and their interaction with the specimen
 
Electron microscopy and other techniques
Electron microscopy and other techniquesElectron microscopy and other techniques
Electron microscopy and other techniques
 
Microscopy with light and electrons
Microscopy with light and electronsMicroscopy with light and electrons
Microscopy with light and electrons
 
Durability of Materials
Durability of MaterialsDurability of Materials
Durability of Materials
 
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumTALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on Aluminium
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of Aluminium
 
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsTALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion Coatings
 
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumTALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of Aluminium
 
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumTALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
 
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsTALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
 

Recently uploaded

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...anjaliyadav012327
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 

Recently uploaded (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
JAPAN: ORGANISATION OF PMDA, PHARMACEUTICAL LAWS & REGULATIONS, TYPES OF REGI...
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 

TALAT Lecture 2710: Static Design Example

  • 1. TALAT Lectures 2710 Static Design Example 82 pages Advanced Level prepared during the TAS project: TAS Leonardo da Vinci Training in Aluminium Alloy Structural Design Example developed with the “Mathcad” Software Date of Issue: 1999  EAA - European Aluminium Association
  • 2. 2710 Static Design example Table of Contents (Active) 2710 Static Design example........................................................................................... 2 1. Introduction.......................................................................................................................6 2. Materials ............................................................................................................................7 3. Loads ..................................................................................................................................7 4. Load Combinations........................................................................................................... 9 5. Loads Effects ...................................................................................................................11 5.1. Loads per unit length and concentrated loads...........................................................................11 5.2 Finite element calculations ........................................................................................................12 5.3. Section forces for characteristic loads ......................................................................................14 5.4. Design moments, shear forces and deflections .........................................................................16 6. Code Checking.................................................................................................................28 6.1 Column A ..................................................................................................................................28 6.2 Column B ..................................................................................................................................42 6.3 Column C ..................................................................................................................................55 6.4 Floor Beam D ............................................................................................................................56 6.5 Roof Beam E .............................................................................................................................64 6.6 Roof Beam F .............................................................................................................................65 6.7 Welded Connections..................................................................................................................74 Table of Contents (Complete) 1 INTRODUCTION 1.1 Description 1.2 Sketches 1.3 References 1.4 S.I. units 2 MATERIALS 2.1 Aluminium 2.2 Other materials 3 LOADS 3.1 Permanent loads 3.2 Imposed loads 3.3 Environmental loads 3.3.1 Snow loads 3.3.2 Wind loads TALAT 2710 2
  • 3. 4 LOAD COMBINATIONS 4.1 Ultimate limit state 4.2 Serviceability limit state 5 LOAD EFFECTS 5.1 Loads per unit length and concentrated loads 5.1.1 Permanent loads 5.1.2 Imposed loads, uniform distributed 5.1.3 Imposed loads, concentrated 5.1.4 Snow loads 5.1.5 Wind loads 5.2 Finite element calculations 5.2.0 Nodes and elements 5.2.1 Permanent loads 5.2.2 Imposed loads, uniformly distributed 5.2.3 Imposed loads, concentrated 5.2.4 Snow loads 5.2.4 Wind loads 5.3 Section forces for characteristic loads 5.3.1 Column A 5.3.2 Column B 5.3.3 Column C 5.3.4 Floor beam D 5.3.5 Floor beam E 5.3.5 Floor beam F 5.4 Design moments, shear forces and deflections 5.4.1 Column A 5.4.2 Column B 5.4.3 Column C 5.4.4 Floor beam D 5.4.5 Floor beam E 5.4.6 Floor beam F 5.4.7 Joint A-D 5.4.8 Joint B-D 5.4.9 Joint A-E 5.4.10 Joint B-E 5.4.11 Joint B-F 5.4.12 Joint F-C 5.4.13 Column base TALAT 2710 3
  • 4. 6 CODE CHECKING 6.1 Column A 6.1.1 Dimensions and material properties 6.1.2 Internal moments and forces 6.1.3 Classification of the cross section in y-y-axis bending 6.1.4 Classification of the cross section in z-z-axis bending 6.1,5 Classification of the cross section in axial compression 6.1.6 Welds 6.1.7 Design resistance, y-y-axis bending 6.1.8 Design resistance, z-z-axis bending 6.1.9 Axial force resistance, y-y buckling 6.1.10 Axial force resistance, z-z axis buckling 6.1.11 Flexural buckling of beam-column 6.1.12 Lateral-torsional buckling between purlins 6.1.13 Design moment at column base 6.1.14 Deflections 6.1.15 Summary 6.2 Column B 6.2.1 Dimensions and material properties 6.2.2 Internal moments and forces 6.2.3 Classification of the cross section in y-y-axis bending 6.2.4 Classification of the cross section in z-z-axis bending 6.2,5 Classification of the cross section in axial compression 6.2.6 Welds 6.2.7 Design resistance, y-y-axis bending 6.2.8 Design resistance, z-z-axis bending 6.2.9 Axial force resistance, y-y buckling 6.2.10 Axial force resistance, z-z axis buckling 6.2.11 Flexural buckling of beam-column 6.2.12 Lateral-torsional buckling between purlins 6.2.13 Design moment at column base 6.2.14 Deflections 6.2.14 Summary 6.3 Column C 6.4 Floor Beam D 6.4.1 Dimensions and material properties 6.4.2 Internal moments and forces 6.4.3 Classification of the cross section 6.4.4 Welds 6.4.5 Bending moment resistance 6.4.6 Bending resistance in a section with holes 6.4.7 Shear force resistance 6.4.8 Deflections 6.4.8 Summary TALAT 2710 4
  • 5. 6.5 Roof Beam E 6.6 Roof Beam F 6.6.1 Dimensions and material properties 6.6.2 Internal moments and forces 6.6.3 Classification of the cross section 6.6.4 Welds 6.6.5 Bending moment resistance 6.6.6 Lateral-torsional buckling between purlins 6.6.7 Bending resistance in a section with holes 6.6.8 Shear force resistance 6.6.9 Concentrated transverse force 6.6.10 Deflections 6.6.11 Summary 6.7 Welded connections 6.7.1 Weld properties 6.7.2 Longitudinal weld of floor beam D 6.7.3 Base of column B 6.7.4 Connection between floor beam D and column B Software The example is worked out using the MathCad software in which some symbols have special meanin according to the following x 50.6 . mm Assign value y 2.5 . mm Global assignment x y = 53.1 mm Evaluate expression a b Boolean equals 0.5 Decimal point c (1 3 2 ) Vector d (2 4 3 ) Vector a ( c .d ) Vectorize (multiply the elements in vector c with corresponding elements in d) a = ( 2 12 6 ) Result Structure The structure was proposed by Steinar Lundberg, who also contributed with valuable suggestions. Part 1 to 6.6 was worked out by Torsten Höglund and 6.7 by Myriam Bouet-Griffon. TALAT 2710 5
  • 6. 1. Introduction 1.1 Description The industrial building contains an administration part with offices, wardrobe, meeting rooms etc. and a fabrication hall. The load bearing system consist of frames standing at a distance of 5000 m In the serviceability limit state max. allowable deflection is 1/250 of span. 1.2 Sketches 1.3 References [1] ENV 1999-1-1. Eurocode 9 - Design of aluminium structures - Part 1-1: General rules. 1997 [2] ENV 1991-2-1. Eurocode 1 - Basis of design and actions on structures - Part 2-1: Action on structures - Densities, self-weight and imposed loads. 1995 [3] ENV 1991-2-3. Eurocode 1 - Basis of design and actions on structures - Part 2-3: Action on structures - Snow loads. 1995 [4] ENV 1991-2-4. Eurocode 1 - Basis of design and actions on structures - Part 2-4: Action on structures - Wind loads. 1995 [5] ENV 1991-1. Eurocode 1 - Basis of design and actions on structures - Part 1: Basis of design. 1994 1.4 S.I. units N kN 1000 . N MPa 1000000 . Pa kNm kN . m MPa = 1 2 mm TALAT 2710 6
  • 7. 2. Materials 2.1 Aluminium [1], 3.2.2 The extrusions are alloy EN AW-6082, temper T6 The plates are EN AW-5083 temper H24 Strength of aluminium alloys EN AW-6082 T6 fo 260 . MPa fu 310 . MPa EN AW-5083 H24 fo 250 . MPa fu 340 . MPa [1], 5.1.1 The partial safety factor for the members γ M1 1.10 γ M2 1.25 [1], 6.1.1 The partial safety factor for welded connections γ Mw 1.25 Design values of material coefficients Modulus of elasticity E 700000 . MPa Shear modulus G 27000 . MPa Poisson´s ratio ν 0.3 α T 23 . 10 6 Coefficient of linear thermal expansion ρ 2700 . kg . m 3 Density 2.2 Other materials Comment: Properties of any other materials to be filled in 3. Loads 3.1 Permanent loads [3], ?? Permanent loads are self-weight of structure, insulation, surface materials and fixed equipment 0.5 . kN . m 2 Permanent load on roof q´ p.roof 0.7 . kN . m Permanent load on floor 2 q´ p.floor 3.2 Imposed loads [2], 6.3.1 Office area => Category B 3 . kN . m 2 q´ k.floor Uniform distributed load Q k.floor 2 . kN Concentrated load [2], 6.3.4 Roofs not accessible except for normal maintenance etc. => Category H => 0.75 . kN . m 2 Uniform distributed load q´ k.roof Concentrated load Q k.roof 1.5 . kN TALAT 2710 7
  • 8. [?], ?? Load from crane, the crane located in the middle of the roof beam in the production hall Concentrated load Q crane 50 . kN 3.3 Environmental loads 3.3.1 Snow loads [3] Comment: The characteristic values of the snow loads vary from nation to nation. For simplicity for this design example, a snow load is chosen including shape coefficient, exposure coefficient and thermal coefficient. In a design report the calculation of the snow loads have to be shown. 2 kN . m 2 Snow load q´ snow 3.3.2 Wind loads [3] Comment: The characteristic values of the wind loads vary from nation to nation. For simplicity, for this design example, a wind load is chosen including all coefficients. In a design report the calculation of the wind loads including all coefficients have to be shown. 0.70 kN . m 2 Maximum wind load on the external walls q´ w.wall 0.27 kN . m Wind suction on leeward side of walls 2 q´ w.lee 0.70 kN . m Wind suction on the roof 2 q´ w.roof Max. wind suction at the lower edge of the 1.0 kN . m 2 roof and 1.6 m upwards q´ w.edge TALAT 2710 8
  • 9. 4. Load Combinations 4.1 Ultimate limit state [3] To decide the section forces on the different members, the following load combinations to . be calculated in the ultimate limit state LC 1: Permanent + imposed + crane + snow loads imposed load dominant LC 2: Permanent + imposed + crane + snow loads crane load dominant LC 3: Permanent + imposed + crane + snow loads snow load dominant LC 4: Reduced permanent + wind loads wind load dominant LC 5: Permanent + imposed + crane + snow + wind imposed load dominant LC 6: Permanent + imposed + crane + snow + wind wind load dominant [3] Comment: All possible load combinations to be calculated [5], 9.4 ultimate limit state Partial load factors for different load combinations in the [5] Table 9.2 Partial factor for permanent action, unfavourable γ Gsup 1.35 Partial factor for permanent action, favourable γ Ginf 1.0 Partial factor for variable action, unfavourable γ Q 1.5 [5] Table 9.3 ψ factor for imposed loads ψ 0i 0.7 ψ factor for snow loads ψ 0s 0.6 ψ factor for wind loads ψ 0w 0.6 [5] Eq In load combinations where the imposed load is (9.10b) dominating ξ in Eq (9.10b) is less than 1.0, say ξ 0.9 Load combinations ξ . γ Gsup ξ . γ Gsup ξ . γ Gsup γ Ginf ξ . γ Gsup ξ . γ Gsup Load case 1 permanent loads γ Q ψ 0i . γ Q ψ 0i . γ Q 0 γ Q ψ 0i . γ Q 2 distributed loads ψ u ψ 0i . γ Q γ Q ψ 0i . γ Q 0 ψ 0i . γ Q ψ 0i . γ Q 3 crane load ψ 0s . γ Q ψ 0s . γ Q γ Q 0 ψ 0s . γ Q ψ 0s . γ Q4 snow loads 0 0 0 γ Q ψ 0w . γ Q γ Q 5 wind loads Resulting load factors in the ultimate limit state 1.215 1.215 1.215 1 1.215 1.215 1.5 1.05 1.05 0 1.5 1.05 ψ u = 1.05 1.5 1.05 0 1.05 1.05 0.9 0.9 1.5 0 0.9 0.9 0 0 0 1.5 0.9 1.5 TALAT 2710 9
  • 10. 4.2 Serviceability limit state [5], 9.5.2 Partial load factors forfrequent load combinations in the serviceability limit state and 9.5.5 LC 1: imposed load dominant LC 2: crane load dominant LC 3: snow load dominant LC 4: wind load dominant LC 5: wind load only (for comparison) LC 6: simplified, [5] (9.20) (for comparison) [5] Table 9.3 ψ factor for imposed loads ψ 1i 0.5 ψ 2i 0.3 ( = 0 for roof) ψ factor for crane loads ψ 1c 0.5 ψ 2c 0.3 ψ factor for snow loads ψ 1s 0.2 ψ 2s 0 ψ factor for wind loads ψ 1w 0.5 ψ 2w 0 Load combination 1 2 3 4 5 6 Load case 1 1 1 1 0 1 permanent loads ψ 1i 0 0 0 0 0.9 imposed distributed loads ψ s ψ 2c ψ 1c ψ 2c 0 0 0.9 imposed crane load ψ 2s ψ 2s ψ 1s ψ 2s 0 0.9 snow loads ψ 2w ψ 2w ψ 2w ψ 1w 1 0 wind loads Resulting partial load factors in theserviceability limit state Load combination 1 2 3 4 5 6 1 1 1 1 0 1 0.5 0 0 0 0 0.9 ψ s = 0.3 0.5 0.3 0 0 0.9 0 0 0.2 0 0 0.9 0 0 0 0.5 1 0 For the floor, the load combination 1 is valid For roofs, the load combinations 2, 3 and 4 are valid Comment: Load combinations 5 and 6 for comparison only TALAT 2710 10
  • 11. 5. Loads Effects 5.1. Loads per unit length and concentrated loads Distance between all frames c frame 5000 . mm Because of continuous purlins and secondary floor beams the load on a beam in a frame is mo than the distance between the beam times the load per area. Therefore, for the second frame, t load is increased with a factor ofkf where k f 1.1 5.1.1 Permanent loads k f . c frame . q´ p.floor q p.floor = 3.85 kN . m 1 Permanent load on floor q p.floor k f . c frame . q´ p.roof q p.roof = 2.75 kN . m 1 Permanent load on roof q p.roof 5.1.2 Imposed loads, uniform distributed k f . c frame . q´ k.floor q k.floor = 16.5 kN . m 1 Distributed load on floor q k.floor k f . c frame . q´ k.roof q k.roof = 4.125 kN . m 1 Distributed load on roof q k.roof 5.1.3 Imposed loads, concentrated Concentrated load on floor Q k.floor 2 . kN Concentrated load on roof Q k.roof 1.5 . kN Concentrated load from crane P crane 50 . kN 5.1.4 Snow loads k f . c frame . q´ snow q snow = 11 kN . m 1 Snow load on roof q snow TALAT 2710 11
  • 12. 5.1.5 Wind loads k f . c frame . q´ w.wall q w.wall = 3.85 kN . m 1 Maximum wind load on the q w.wall external walls k f . c frame . q´ w.lee q w.lee = 1.485 kN . m 1 Wind suction on leeward q w.lee side of walls k f . c frame . q´ w.roof q w.roof = 3.85 kN . m 1 Wind suction on the roof q w.roof Max. wind suction at the k f . c frame . q´ w.edge q w.edge = 5.5 kN . m 1 q w.edge lower edge of the roof and 1.6 m upwards 5.2 Finite element calculations Nodes and elements TALAT 2710 12
  • 13. Moment diagrams 5.2.1 Permanent loads Values of moments and shear forces for separate columns and beams are given in 5.3 5.2.2 Imposed loads, uniformly distributed 5.2.3 Imposed loads, concentrated 5.2.4 Snow loads 5.2.5 Wind loads TALAT 2710 13
  • 14. 5.3. Section forces for characteristic loads 5.3.1 Column A (FE-cal- Bending moments, section 1, 2, 3 and 4 2.90 4.40 2.14 1.88 culation) Sections in columns, load cases in rows 9.43 15.6 12.1 5.96 row 1, permanent loads MA 3.65 4.60 5.22 5.81 . kNm row 2, distributed loads row 3, crane load 4.28 4.63 4.22 3.04 row 4, snow loads 12.8 6.45 2.52 1.95 row 5, wind loads 18.8 7.32 Axial force, part 1-2 and 3-4 60.5 12.0 Parts in columns, load cases in rows NA 1.42 2.84 . kN 0.56 28.5 27.8 0.50 15.6 12.0 Deflection in section 4 δ A 2.48 . mm 4.19 8.36 5.3.2 Column B (FE-cal- Bending moments, section 1, 2, 3, 4,5 and 6 0.07 2.73 4.51 4.35 7.46 9.07 culation) 4.26 15.4 18.2 4.69 8.29 15.5 Sections in columns, load cases in rows MB 3.27 0.96 2.15 19.27 15.7 11.2 . kNm row 1, permanent loads row 2, distributed loads 6.57 5.24 1.59 20.0 34.6 33.5 row 3, crane load row 4, snow loads 17.0 13.5 0.49 10.95 11.4 12.7 row 5, wind loads 35.1 23.5 9.18 Sections in columns, load cases in rows 84.4 33.9 12.8 Axial force, parts 1-2, 3-4 and 5-6 NB 31.7 31.1 4.34 kN 0.57 95.0 95.7 38.2 0.53 31.2 34.8 13.8 Deflection in section 6 δ B 2.57 . mm 4.30 8.32 TALAT 2710 14
  • 15. 5.3.3 Column C Comment: To reduce the extent of this example, this column is left out. It can be given, conservatively the same section as column B 5.3.4 Floor beam D (FE-cal- Bending moments, section 1, 2 and 3 6.56 10.4 7.25 culation) 27.8 43.6 33.6 Sections in columns, load cases in rows MD 0.62 4.86 3.11 . kNm row 1, permanent loads row 2, distributed loads 0.40 1.62 3.65 row 3, crane load row 4, snow loads 8.97 2.00 13.0 row 5, wind loads 11.7 11.4 Sections in columns, load cases in rows 48.5 50.5 Shear force, section 1 and 3 VD 1.4 0.6 . kN 3.21 0.67 0.67 13.1 3.66 3.66 Deflection in section 2 δ D 1.63 . mm 0.92 0.91 5.3.5 Roof beam E Comment: To reduce the extent of this example, this column is left out 5.3.6 Roof beam F (FE-cal- Bending moments, section 1, 2 and 3 11.8 26.4 4.08 culation) 13.0 42.4 5.28 Sections in columns, load cases in rows MF 35.0 102.0 10.94 kNm row 1, permanent loads row 2, distributed loads 54.1 101.7 17.5 row 3, crane load row 4, snow loads 22.4 38.0 0.26 row 5, wind loads TALAT 2710 15
  • 16. Shear force, section 1 and 3 14.3 13.2 Sections in columns, load cases in rows 21.1 20.1 VF 43.4 23.3 . kN 7.71 57.6 52.5 12.6 21.1 17.4 Deflection in section 2 δ F 22.2 . mm 29.3 11.1 5.4. Design moments, shear forces and deflections 5.4.1 Column A Bending moments For the load cases 1 - 5 the bending moment in section 1 of column B is: 2.9 9.43 <1> (5.3.1) MA = 3.65 kNm 4.28 12.8 The load factor matrix is 1.215 1.215 1.215 1 1.215 1.215 1.5 1.05 1.05 0 1.5 1.05 (4.1) ψ u 1.05 = 1.5 1.05 0 1.05 1.05 0.9 0.9 1.5 0 0.9 0.9 0 0 0 1.5 0.9 1.5 TALAT 2710 16
  • 17. The values in the moment vector shall be multiplied with the corresponding load factor for every lo combination i 1 .. cols ψ u (cols (ψu) is the number of columns in the matrix ψu) <i > <1> . <i > M MA ψ u 3.524 3.524 3.524 2.9 3.524 3.524 14.145 9.901 9.901 0 14.145 9.901 M = 3.832 5.475 3.832 0 3.832 3.832 kNm 3.852 3.852 6.42 0 3.852 3.852 0 0 0 19.2 11.52 19.2 M The moments in the columns of the matrix (= load combination) are added <i > M sum M i T M sum = ( 25.353 22.752 23.677 16.3 13.833 1.909 ) kNm Maximum and minimum of moment are M Amax max M sum M Amax = 25.353 kNm 1 1 M Amin min M sum M Amin = 16.3 kNm 1 1 <i > <s> . <i > <i > (5.3.1) Moments in section 2 s 2 M MA ψ u M sum M i T M sum = ( 37.743 32.793 33.501 5.275 31.938 21.048 ) kNm M Amax max M sum s M Amin min M sum s <i > <s> . <i > <i > (5.3.1) Moments in section 3 s 3 M MA ψ u M sum M i T M sum = ( 11.471 3.677 3.494 1.64 9.203 2.246 ) kNm M Amax max M sum s M Amin min M sum s <i > <s> . <i > <i > (5.3.1) Moments in section 4 s 4 M MA ψ u M sum M i T M sum = ( 7.86 2.563 7.002 1.045 6.105 2.253 ) kNm M Amax max M sum s M Amin min M sum s TALAT 2710 17
  • 18. Resulting maximum moments and minimum moments in section 1 to 4 are T M Amax = ( 25.353 5.275 11.471 1.045 ) kNm T M Amin = ( 16.3 37.743 1.64 7.86 ) kNm Axial force Axial force in part 1-2 s 1 18.8 60.5 <s> (5.3.1) NA = 1.42 kN <i > <s> . <i > <i > N NA ψ u N sum N 28.5 i 15.6 N Amax max N sum s T N sum = ( 137.751 109.887 127.626 4.6 123.711 87.126 ) kN N Amin min N sum s <i > <s> . <i > <i > (5.3.1) Axial force in part 3-4 s 2 N NA ψ u N sum N i T N sum = ( 48.932 42.254 60.212 10.68 38.132 25.532 ) kN N Amax max N sum s N Amin min N sum s Resulting maximum and minimum axial forces in part 1, 2 and 3 are: T T N Amax = ( 4.6 10.68 ) kN N Amin = ( 137.8 60.2 ) kN Deflection Deflection in section 6 s 1 0.56 0.5 <s> <i > <s> . <i > <i > (5.3.1) δ A = 2.48 mm δ δ A ψ s δ sum δ i 4.19 δ Amax max δ sum δ Amin min δ sum 8.36 s s T δ sum = ( 1.054 1.8 2.142 4.74 8.36 6.113 ) mm Resulting maximum and minimum deflection in section 6 δ Amax= ( 8.36 ) mm δ Amin ( 1.054 ) mm = TALAT 2710 18
  • 19. 5.4.2 Column B Bending moments For the load cases 1 - 5 the bending moment in section 1 of column B is: 0.07 4.26 <1> (5.3.2) MB = 3.27 kNm 6.57 17 The load factor matrix is 1.215 1.215 1.215 1 1.215 1.215 1.5 1.05 1.05 0 1.5 1.05 (4.1) ψ u 1.05 = 1.5 1.05 0 1.05 1.05 0.9 0.9 1.5 0 0.9 0.9 0 0 0 1.5 0.9 1.5 The values in the moment vector shall be multiplied with the corresponding load factor for every l combination i 1 .. cols ψ u (cols (ψu) is the number of columns in the matrix ψu) <i > <1> . <i > M MB ψ u 0.085 0.085 0.085 0.07 0.085 0.085 6.39 4.473 4.473 0 6.39 4.473 M= 3.433 4.905 3.433 0 3.433 3.433 kNm 5.913 5.913 9.855 0 5.913 5.913 0 0 0 25.5 15.3 25.5 M The moments in the columns of the matrix (= load combination) are added <i > M sum M i T M sum = ( 3.042 6.43 8.901 25.43 12.258 20.541 ) kNm Maximum and minimum of moment are M Bmax max M sum M Bmax = 25.43 kNm 1 1 M Bmin min M sum M Bmin = 8.901 kNm 1 1 TALAT 2710 19
  • 20. <i > <s> . <i > <i > (5.3.2) Moments in section 2 s 2 M MB ψ u M sum M i T M sum = ( 20.693 13.331 10.619 22.98 32.843 34.013 ) kNm M Bmax max M sum s M Bmin min M sum s <i > <s> . <i > <i > (5.3.2) Moments in section 3 s 3 M MB ψ u M sum M i T M sum = ( 31.953 22.796 24.717 5.245 32.394 24.498 ) kNm M Bmax max M sum s M Bmin min M sum s <i > <s> . <i > <i > (5.3.2) Moments in section 4 s 4 M MB ψ u M sum M i T M sum = ( 36.484 47.266 50.594 12.075 26.629 22.169 ) kNm M Bmax max M sum s M Bmin min M sum s <i > <s> . <i > <i > (5.3.2) Moments in section 5 s 5 M MB ψ u M sum M i T M sum = ( 69.124 72.458 86.153 9.64 58.864 48.293 ) kNm M Bmax max M sum s M Bmin min M sum s <i > <s> . <i > <i > (5.3.2) Moments in section 6 s 6 M MB ψ u M sum M i T M sum = ( 76.18 74.245 89.305 9.98 64.75 50.155 ) kNm M Bmax max M sum s M Bmin min M sum s Resulting maximum moments and minimum moments in section 1 to 6 are T M Bmax = ( 25.43 10.619 32.394 50.594 9.64 9.98 ) kNm T M Bmin = ( 8.901 34.013 5.245 12.075 86.153 89.305 ) kNm Axial force Axial force in part 1-2 s 1 35.1 84.4 <s> (5.3.2) NB = 31.7 kN <i > <s> . <i > <i > N NB ψ u N sum N 95 i 31.2 N Bmax max N sum s T N sum = ( 288.031 264.317 307.051 11.7 259.951 203.251 ) kN N Bmin min N sum s TALAT 2710 20
  • 21. <i > <s> . <i > <i > (5.3.2) Axial force in part 3-4 s 2 N NB ψ u N sum N i T N sum = ( 198.187 196.927 240.352 28.7 166.868 130.732 ) kN N Bmax max N sum s N Bmin min N sum s <i > <s> . <i > <i > (5.3.2) Axial force in part 5-6 s 3 N NB ψ u N sum N i T N sum = ( 69.291 65.484 86.451 11.52 56.871 42.831 ) kN N Bmin min N sum s N Bmax max N sum s Resulting maximum and minimum axial forces in part 1, 2 and 3 are: T T N Bmax = ( 11.7 28.7 11.52 ) kN N Bmin = ( 307.1 240.4 86.5 ) kN Deflection Deflection in section 6 s 1 0.57 0.53 <s> <i > <s> . <i > <i > (5.3.2) δ B = 2.57 mm δ δ B ψ s δ sum δ i 4.3 δ Bmax max δ sum δ Bmin min δ sum 8.32 s s T δ sum = ( 1.076 1.855 2.201 4.73 8.32 6.276 ) mm Resulting maximum and minimum deflection in section 6 δ Bmax ( 8.32 ) mm = δ Bmin ( 1.076 ) mm = 5.4.3 Column C Comment: To reduce the extent of this example, calculation of this column is left out. It can, conservatively, be given the same dimensions as column B TALAT 2710 21
  • 22. 5.4.4 Floor beam D Bending moments For the load cases 1 - 5 the bending moment in section 1 of beam D is: 6.56 27.8 <1> (5.3.4) MD = 0.62 kNm 0.4 8.97 The load factor matrix is 1.215 1.215 1.215 1 1.215 1.215 1.5 1.05 1.05 0 1.5 1.05 (4.1) ψ u 1.05 = 1.5 1.05 0 1.05 1.05 0.9 0.9 1.5 0 0.9 0.9 0 0 0 1.5 0.9 1.5 The values in the moment vector shall be multiplied with the corresponding load factor for every l combination i 1 .. cols ψ u (cols (ψu) is the number of columns in the matrix ψu) <i > <1> . <i > M MD ψ u 7.97 7.97 7.97 6.56 7.97 7.97 41.7 29.19 29.19 0 41.7 29.19 M = 0.651 0.93 0.651 0 0.651 0.651 kNm 0.36 0.36 0.6 0 0.36 0.36 0 0 0 13.455 8.073 13.455 M The moments in the columns of the matrix (= load combination) are added <i > M sum M i T M sum = ( 49.379 36.59 37.109 6.895 41.306 23.414 ) kNm Maximum and minimum of moment are M Dmax max M sum M Dmax = 6.895 kNm 1 1 M Dmin min M sum M Dmin = 49.379 kNm 1 1 TALAT 2710 22
  • 23. <i > <s> . <i > <i > (5.3.4) Moments in section 2 s 2 M MD ψ u M sum M i T M sum = ( 84.597 67.164 65.949 13.4 86.397 67.977 ) m kN M Dmin min M sum s M Dmax max M sum s <i > <s> . <i > <i > (5.3.4) Moments in section 3 s 3 M MD ψ u M sum M i T M sum = ( 52.658 36.139 35.348 26.75 64.358 57.038 ) m kN M Dmin min M sum s M Dmax max M sum s Resulting maximum moments and minimum moments in section 1 to 3 are 6.895 49.379 M Dmax = 86.397 kNm M Dmin = 13.4 kNm 26.75 64.358 Shear force Shear force in section 1 s 1 11.7 48.5 <s> (5.3.4) VD = 1.4 kN <i > <s> . <i > <i > V VD ψ u V sum V 0.67 i 3.66 V Dmax max V sum V Dmin min V sum s s T V sum = ( 89.038 67.844 67.615 6.21 85.745 61.723 ) kN Shear force in section 2 s 2 11.4 50.5 <s> (5.3.4) VD = 0.6 kN <i > <s> . <i > <i > V VD ψ u V sum V 0.67 i 3.66 V Dmax max V sum V Dmin min V sum s s T V sum = ( 88.368 65.373 65.241 16.89 91.662 71.133 ) kN Resulting maximum and minimum shear forces in section 1 and 3 are 89.038 6.21 V Dmax = kN V Dmin = kN 91.662 16.89 Deflection TALAT 2710 23
  • 24. 89.038 6.21 V Dmax = kN V Dmin = kN 91.662 16.89 Deflection Deflection in section 2 s 1 3.21 13.1 <s> (5.3.4) δ D = 1.63 mm <i > <s> . <i > <i > δ δ D ψ s δ sum δ 0.92 i 0.91 δ Dmax max δ sum δ Dmin min δ sum s s T δ sum = ( 10.249 4.025 3.883 2.755 0.91 17.295 ) mm Resulting maximum and minimum deflection in section 2 δ Dmax= ( 17.295 ) mm δ Dmin ( 0.91 ) mm = 5.4.5 Roof beam E Comment: To reduce the extent of this example, calculation of this beam is left out. It can be given the same dimensions as floor beam D 5.4.6 Roof beam F Moment For the load cases 1 - 5 the bending moments in section 1 to 3 of the beam F are <i > <s> . <i > <i > (5.3.6) Moments in section 1 s 1 M MF ψ u M sum M i T M sum = ( 119.277 129.177 145.887 21.8 99.117 79.827 ) m kN M Fmin min M sum s M Fmax max M sum s <i > <s> . <i > <i > (5.3.6) Moments in section 2 s 2 M MF ψ u M sum M i T M sum = ( 294.306 321.126 336.246 30.6 260.106 218.226 ) m kN M Fmin min M sum s M Fmax max M sum s <i > <s> . <i > <i > (5.3.6) Moments in section 3 s 3 M MF ψ u M sum M i T M sum = ( 40.114 42.661 48.238 3.69 39.88 37.348 ) m kN M Fmin min M sum s M Fmax max M sum s TALAT 2710 24
  • 25. Resulting maximum moments and minimum moments in section 1 to 3 are 21.8 145.887 M Fmax = 336.246 kNm M Fmin = 30.6 kNm 3.69 48.238 Shear force Shear force in section 1 s 1 14.3 21.1 <s> (5.3.4) VF = 43.4 kN <i > <s> . <i > <i > V VF ψ u V sum V 57.6 i 21.1 V Fmax max V sum V Fmin min V sum s s T V sum = ( 146.435 156.47 171.5 17.35 127.444 105.289 ) kN Shear force in section 3 s 2 13.2 20.1 <s> (5.3.4) VF = 23.3 kN <i > <s> . <i > <i > V VF ψ u V sum V 52.5 i 17.4 V Fmax max V sum V Fmin min V sum s s T V sum = ( 117.903 119.343 140.358 12.9 102.243 82.758 ) kN Resulting maximum and minimum shear force in section 1 and 3 are 171.5 17.35 V Fmax = kN V Fmin = kN 140.358 12.9 Deflection Deflection in section 2 s 1 <s>T <i > <s> . <i > <i > (5.3.4) δ F = ( 7.71 12.6 22.2 29.3 11.1 ) mm δ δ F ψ s δ sum δ i δ Fmin min δ sum s T δ sum = ( 20.67 18.81 20.23 2.16 11.1 65.4 ) mm δ Fmax max δ sum s [5] (9.20) Simplified verification δ Fmax = ( 65.4 ) mm δ Fmin ( 11.1 ) mm = [5] (9.16) Load combination 3 δ sum = 20.2 mm 3 TALAT 2710 25
  • 26. 5.4.7 Joint A-D (5.4.1) and Moment M Amax = 11.5 kNm (5.5.4) 3 M Dmin = 49.4 kNm 1 M Amin = 37.7 kNm 2 Shear V Dmax = 89 kN 1 Check: M Amax M Dmin M Amin = 0.17 kNm 3 1 2 5.4.8 Joint B-D (5.4.2) and Moment M Bmax = 32.4 kNm M Bmin = 34 kNm (5.5.4) 3 2 M Dmin = 64.4 kNm V 3 Check: M Bmax M Dmin M Bmin = 2.05 kNm V 3 3 2 Shear V Dmax = 91.7 kN 2 N V B3 = 2.306 kN V B2 = 18.184 kN Axial N B3 = 240.4 kN N B2 = 307.1 kN 5.4.9 Joint A-E and joint B-E 5.4.10 Comment: To reduce the extent of this example, calculation of this joint is left out 5.4.11 Joint B-F (5.4.2) and Moment M Bmin = 86.153 kNm (5.5.6) 5 M Fmin = 145.9 kNm 1 M Bmax = 50.6 kNm 4 Shear V Fmax = 171.5 kN 1 Check: M Bmin M Fmin M Bmax = 9.14 kNm 5 1 4 (The reason why the sum of the moments is not = 0 is the fact that all the moments does not belong to the same load combination) TALAT 2710 26
  • 27. 5.4.12 Joint F-C (5.4.6) Moment M Fmin = 48.238 kNm 3 M Fmax = 3.7 kNm 3 Shear V Fmin = 12.9 kN 2 V Fmax = 140.4 kN 2 5.4.13 Column bases See 6.1.13 and 6.2.13 TALAT 2710 27
  • 28. 6. Code Checking 6.1 Column A 6.1.1 Dimensions and material properties Section height: h 160 . mm Flange depth: b 150 . mm Web thickness: tw 5 . mm Flange thickness: tf 14 . mm Overall length: L1 3 .m Distance between purlins: cp 1 .m [1] Table 3.2b Alloy: EN AW-6082 T6 EP/O t > 5 mm newton newton f 0.2 260 . fu 310 . 2 2 mm mm heat_treated 1 (if heat-treated then 1 else 0) [1] (5.4), (5.5) f o f 0.2 fa fu fo newton newton newton [1] (5.6) fv f v = 150 E 70000 . G 27000 . 2 2 2 3 mm mm mm Partial safety factors: γ M11.10 γ M2 1.25 Inner radius: r 5 . mm Web height: bw h 2 .t f 2 .r b w = 122 mm S.I. units: kN 1000 . newton kNm kN . m MPa 1000000 . Pa TALAT 2710 28
  • 29. 6.1.2 Internal moments and forces (5.4.2) Bending moments and axial forces for load case LC1, LC3 and LC6 in section 1, 2, 3 and 4 0 25.4 23.8 1.91 3.0 37.7 33.5 21.1 x M LC1 . kNm M LC3 . kNm M LC6 . kNm 3.1 11.5 3.49 2.24 5.5 7.86 7.00 2.25 138 127 87 138 127 87 N LC1 . kN N LC3 . kN N LC6 . kN 49 60 26 49 60 26 Bending moment kNm Axial force kN 4 4 2 2 0 0 40 20 0 20 40 0 50 100 150 Load case 1 Load case 1 Load case 3 Load case 3 Load case 6 Load case 6 Load case 1 Load case 3 Load case 6 Moment in section 2 M LC1 = 37.7 kNm M LC3 = 33.5 kNm M LC6 = 21.1 kNm 2 2 2 Moment at column base 1 M LC1 = 25.4 kNm M LC3 = 23.8 kNm M LC6 = 1.91 kNm 1 1 1 Axial force in part 1-2 N LC1 = 138 kN N LC3 = 127 kN N LC6 = 87 kN 1 1 1 Preliminary calculations show that load case 1 is governing. Study part 1-2 from column base to floor beam. Moment in top of part 1-2 (section 2) is larger than at column base (section 1) why M 1.Ed (below) correspond to section 2 andM 2.Ed to section 1 of the column. TALAT 2710 29
  • 30. Load case 1 Bending moment in section 2 M 1.Ed M LC1 M 1.Ed = 37.7 kNm 2 Bending moment at column base (1) M 2.Ed M LC1 M 2.Ed = 25.4 kNm 1 Axial force in part 1-2 (compression) N Ed N LC1 N Ed = 138 kN 1 6.1.3 Classification of the cross section in y-y-axis bending β w bending a) Web b1 [1] 5.4.3 b1 bw t1 tw β w 0.40 . β w 9.76 = t1 250 . newton [1] Tab. 5.1 ε β 1w 11 . ε β 1w 10.786 = fo 2 mm Heat treated, unwelded = no β 2w 16 . ε β 2w 15.689 = longitudinal weld β 3w 22 . ε β 3w 21.573 = class w if β w β 1w , if β w > β 2w , if β w > β 3w , 4 , 3 , 2 , 1 > class w = 1 [1] 5.4.5 Local buckling β w 32 220 ρ cw if 22 , 1.0 , ρ cw 1 = ε β w β w 2 ε ε t w.ef.b if class w 4 , t w . ρ cwt w , ( b = bending) t w.ef.b = 5.0 mm b) Flanges [1] 5.4.3 ψ 1 0.8 [1] (5.7.),(5.8.) g if ψ > 1 , 0.7 0.3 . ψ , g=1 1 ψ b tw 2 .r b2 b2 t2 tf β f g. β f 4.821 = 2 t2 [1] Tab. 5.1 ε = 0.981 β 1f 3 . ε β 1f 2.942 = β 2f 4.5 . ε β 2f 4.413 = β 3f 6 . ε β 3f 5.883 = class f if β > β 1f , if β f > β 2f , if β f > β 3f , 4 , 3 , 2 , 1 f class f = 3 TALAT 2710 30
  • 31. [1] 5.4.5 Local buckling: β f 10 24 ρ cf if 6 , 1.0 , ρ cf 1 = ε β f β f 2 ε ε t f.ef if class f 4 , t f . ρ cft f , t f.ef = 14.0 mm Classification of the cross-section in y-y axis bending class y if class f > class w , class f , class w class y = 3 6.1.4 Classification of the cross section in z-z-axis bending Cross section class of web: No bending stresses class w 1 Cross section class for flanges: According to above class f = 3 class z if class f > class w , class f , class w class z = 3 6.1.5 Classification of the cross section in axial compression β wc compression a) Web b1 b1 bw t1 tw β wc β wc = 24.4 t1 [1] Tab. 5.1 β 1w 10.786 = β 2w 15.689 = β 3w 21.573 = class wc if β wc β 1w , if β wc > β 2w , if β wc > β 3w , 4 , 3 , 2 , 1 > class wc = 4 [1] 5.4.5 Local buckling β wc 32 220 ρ cw if 22 , 1.0 , ρ cw 0.931 = ε β wc β wc 2 ε ε t w.ef if class wc 4 , t w . ρ cwt w , t w = 5 mm t w.ef = 4.7 mm b) Flanges Same as in bending t f.ef = 14.0 mm class f = 3 Classification of the total cross-section in axial compression class c if class f > class wc , class f , class wc class c = 4 TALAT 2710 31
  • 32. 6.1.6. Welds [1] 5.5 HAZ softening at column ends [1] Tab.5.2 ρ haz 0.65 [1] Fig.5.6 Extent of HAZ (MIG-weld) t1 tf b haz if t 1 > 6 . mm , if t 1 > 12 . mm , if t 1 > 25 . mm , 40 . mm , 35 . mm , 30 . mm , 20 . mm b haz = 35 mm 6.1.7 Design resistance, y-y-axis bending [1] 5.6.1 W Elastic modulus of the gross cross section el: 2 .b .t f 2 .t f .t w A g = 4.86 . 10 mm 3 2 Ag h 1. . 3 tw . h 2 .t f 3 Ig bh b 12 I g = 2.341 . 10 mm 7 4 I g .2 W el = 2.926 . 10 mm 5 3 W el h W Plastic modulus of the gross cross section pl: 1. b .h tw . h 2 .t f W pl = 3.284 . 10 mm 2 2 5 3 W pl b 4 TALAT 2710 32
  • 33. W Elastic modulus of the effective cross section effe: t f = 14 mm t f.ef = 14 mm bw As tf.ef = tf then bc b c = 61 mm 2 t w = 5 mm t w.ef.b = 5 mm bf 0.5 . b tw 2 .r b f = 67.5 mm 2 .b f . t f b c. t w A eff = 4.86 . 10 mm 3 2 A eff Ag t f.ef t w.ef.b Shift of gravity centre: 2 h tf bc 1 e ef 2 .b f . t f t f.ef . . t w t w.ef.b . e ef = 0 mm 2 2 2 A eff Second moment of area wiht respect to centre of gross cross section: 2 3 h tf bc 2 .b f . t f t f.ef . . t I eff = 2.341 . 10 mm 7 4 I eff Ig w t w.ef.b 2 2 3 Second moment of area wiht respect to centre of effective gross section: e ef . A eff I eff = 2.341 . 10 mm 2 7 4 I eff I eff I eff W eff = 2.926 . 10 mm 5 3 W eff h e ef 2 [1] Tab. 5.3 Shape factor α - for class 1 or 2 cross-sections: W pl α 1.2.w α 1.2.w = 1.122 W el - for welded, class 3 cross-sections: TALAT 2710 33
  • 34. [1] Tab. 5.3 Shape factor α - for class 1 or 2 cross-sections: W pl α 1.2.w α 1.2.w = 1.122 W el - for welded, class 3 cross-sections: β 3w β w W pl W el [1] (5.16) α 3.ww 1 . α 3.ww 1.245 = β 3w β 2w W el β 3f β f W pl W el [1] (5.16) α 3.wf 1 . α 3.wf= 1.088 β 3f β 2f W el β, β2, β3 are the slenderness parameter and the limiting values for the most critical element in the cross-section, so it is the smaller value of3.ww and α3.wf α α 3.w if α 3.ww α 3.wf , α 3.ww , α 3.wf α 3.w 1.088 = W eff - for class 4 cross-sections: α 4.w α 4.w = 1 W el class y = 3 α y if class y > 2 , if class y > 3 , α 4.w , α 3.w , α 1.2.w α y 1.088 = M Design moment of resistance of the cross section c,Rd f o . α .y el W [1] (5.14) M y.Rd M y.Rd = 75.3 kNm γ M1 6.1.8 Design resistance, z-z-axis bending Cross section class class z = 3 t f .b 3 2. I z = 7.875 . 10 mm 6 4 Gross cross section: Iz 12 t f.ef . b 3 2. I z.ef = 7.875 . 10 mm 6 4 Effective cross section: I z.ef 12 I z.2 I z.ef . 2 Section moduli: Wz W z.ef b b Wz Shape factor: α z α z=1 W z.ef f o . α .z z W Bending resistance: M z.Rd M z.Rd = 24.818 kNm γ M1 TALAT 2710 34
  • 35. 6.1.9 Axial force resistance, y-y buckling [1] 5.8.4 Cross section area of gross cross sectionAgr b .h tw . h 2 .t f A gr = 4.86 . 10 mm 3 2 A gr b Cross section area of effective cross sectionAef t w.ef = 4.653 mm 2 .b 2 . t f b w. t w A ef = 4.818 . 10 mm 3 2 A ef A gr t f.ef t w.ef ( t f = 14 mm t w = 5 mm 2 . b 2 = 135 mm t f.ef = 14 mm t w.ef = 4.653 mm ) A ef Effective cross section factor η η = 0.991 A gr Second moment of area of gross cross sectionIy: 2 2. . 3 h tf 1. 2 .b .t f . 2 .t f .t w 3 Iy btf h 12 2 12 [1] Table 5.7 Buckling length factor Ky 1.5 L1=3 m Case 5 l yc K y .L 1 l yc = 4.5 m π .E .I y 2 Buckling load N cr 2 l yc N cr = 798.639 kN A gr . η . f o [1] 5.8.4.1 Slenderness parameter λ y λ y 1.252 = N cr [1] Table 5.6 α if ( heat_treated 1 , 0.2 , 0.32 ) α = 0.2 λ o if ( heat_treated 1 , 0.1 , 0 ) λ o 0.1 = 0.5 . 1 α . λ y 2 φ λ o λ y φ = 1.399 1 χ y χ y = 0.494 2 2 φ φ λ y [1] Table 5.5 Symmetric profile k1 1 [1] Table 5.5 No longitudinal welds k2 1 fo Axial force resistance N y.Rd χ .y . k 1 . k 2 . η .A gr N y.Rd = 562.6 kN γ M1 TALAT 2710 35