HJB Equation and Merton's Portfolio Problem

Ashwin Rao
Ashwin RaoVice President, Data Science & Optimization at Target à Target
HJB Equation and Merton’s Portfolio Problem
Ashwin Rao
September 20, 2018
Ashwin Rao HJB and Merton Portfolio September 20, 2018 1 / 14
Overview
1 Problem Statement
2 HJB Equation as Optimal Discounted Value Function PDE
3 Reducing the PDE to an ODE
4 Optimal Consumption and Allocation
Ashwin Rao HJB and Merton Portfolio September 20, 2018 2 / 14
Informal Problem Statement
You will live for (deterministic) T more years
Current Wealth + PV of Future Income (less Debt) is W0 > 0.
You can invest in (allocate to) n risky assets and a riskless asset
Each asset has known normal distribution of returns
Allowed to long or short any fractional quantities of assets
Trading in continuous time 0 ≤ t < T, with no transaction costs
You can consume any fractional amount of wealth at any time
Dynamic Decision: Optimal Allocation and Consumption at each time
To maximize lifetime-aggregated utility of consumption
Consumption Utility assumed to have constant Relative Risk-Aversion
Ashwin Rao HJB and Merton Portfolio September 20, 2018 3 / 14
Problem Notation
For simplicity, we state and solve the problem for 1 risky asset but the
solution generalizes easily to n risky assets.
Riskless asset: dRt = r · Rt · dt
Risky asset: dSt = µ · St · dt + σ · St · dzt (i.e. Geometric Brownian)
µ > r > 0, σ > 0 (for n assets, we work with a covariance matrix)
Wealth at time t denoted by Wt > 0
Fraction of wealth allocated to risky asset denoted by π(t, Wt)
Fraction of wealth in riskless asset will then be 1 − π(t, Wt)
Wealth consumption denoted by c(t, Wt) ≥ 0
Utility of Consumption function U(x) = x1−γ
1−γ for 0 < γ = 1
Utility of Consumption function U(x) = log(x) for γ = 1
γ = (constant) Relative Risk-Aversion −x·U (x)
U (x)
Ashwin Rao HJB and Merton Portfolio September 20, 2018 4 / 14
Problem Statement
We write πt, ct instead of π(t, Wt), c(t, Wt) to lighten notation
Balance constraint implies the following process for Wealth Wt
dWt = ((πt · (µ − r) + r) · Wt − ct) · dt + πt · σ · Wt · dzt
At any time t, determine optimal [π(t, Wt), c(t, Wt)] to maximize:
E[
T
t
e−ρ(s−t) · c1−γ
s
1 − γ
· ds +
e−ρ(T−t) · B(T) · W 1−γ
T
1 − γ
| Wt]
where ρ ≥ 0 is the utility discount rate, B(T) is the bequest function
We can solve this problem for arbitrary bequest B(T) but for
simplicity, will consider B(T) = γ where 0 < 1, meaning “no
bequest” (we need this -formulation for technical reasons).
We will solve this problem for γ = 1 (γ = 1 is easier, hence omitted)
Ashwin Rao HJB and Merton Portfolio September 20, 2018 5 / 14
Continuous-Time Stochastic Control
Think of this as a continuous-time Stochastic Control problem
The State is (t, Wt)
The Action is [πt, ct]
The Reward per unit time is U(ct)
The Return is the usual accumulated discounted Reward
Find Policy : (t, Wt) → [πt, ct] that maximizes the Expected Return
Note: ct ≥ 0, but πt is unconstrained
Ashwin Rao HJB and Merton Portfolio September 20, 2018 6 / 14
Optimal Discounted Value Function
Instead of the usual Value Function (Expected Return from a given
State), we consider the Discounted Value Function
Discounted Value Function is simply the Value Function further
discounted to time 0
We focus on the Optimal Discounted Value Function V ∗(t, Wt)
V ∗
(t, Wt) = max
π,c
E[
T
t
e−ρs · c1−γ
s
1 − γ
· ds +
e−ρT · γ · W 1−γ
T
1 − γ
]
V ∗(t, Wt) satisfies a simple recursive formulation for 0 ≤ t < t1 < T.
V ∗
(t, Wt) = max
π,c
E[V ∗
(t1, Wt1 ) +
t1
t
e−ρs · c1−γ
s
1 − γ
· ds]
Ashwin Rao HJB and Merton Portfolio September 20, 2018 7 / 14
HJB Equation for Optimal Discounted Value Function
Rewriting in stochastic differential form, we have the HJB formulation
max
πt ,ct
E[dV ∗
(t, Wt) +
e−ρt · c1−γ
t
1 − γ
· dt] = 0
Use Ito’s Lemma on dV ∗, remove the dzt term since it’s a martingale, and
divide throughout by dt to produce the HJB Equation in PDE form:
max
πt ,ct
[
∂V ∗
∂t
+
∂V ∗
∂W
((πt(µ−r)+r)Wt −ct)+
∂2V ∗
∂W 2
π2
t σ2W 2
t
2
+
e−ρt · c1−γ
t
1 − γ
] = 0
Ashwin Rao HJB and Merton Portfolio September 20, 2018 8 / 14
Optimal Allocation and Consumption
Find optimal π∗
t , c∗
t by taking partial derivatives of above HJB expression
with respect to πt and ct, and equate to 0 (first-order conditions).
With respect to πt:
(µ − r) ·
∂V ∗
∂W
+
∂2V ∗
∂W 2
· πt · σ2
· Wt = 0
⇒ π∗
t =
−∂V ∗
∂W · (µ − r)
∂2V ∗
∂W 2 · σ2 · Wt
With respect to ct:
−
∂V ∗
∂W
+ e−ρt
· (c∗
t )−γ
= 0
⇒ c∗
t = (
∂V ∗
∂W
· eρt
)
−1
γ
Ashwin Rao HJB and Merton Portfolio September 20, 2018 9 / 14
Optimal Discounted Value Function PDE
Now substitute π∗
t and c∗
t in the maximizing expression of HJB to get the
Optimal Discounted Value Function PDE.
∂V ∗
∂t
−
(µ − r)2
2σ2
·
(∂V ∗
∂W )2
∂2V ∗
∂W 2
+
∂V ∗
∂W
· r · Wt +
γ
1 − γ
· e
−ρt
γ · (
∂V ∗
∂W
)
γ−1
γ = 0
The boundary condition is:
V ∗
(T, WT ) = e−ρT
· γ
·
W 1−γ
T
1 − γ
Don’t forget to check that the second-order conditions are satisfied.
Ashwin Rao HJB and Merton Portfolio September 20, 2018 10 / 14
Solving the PDE with a guess solution
Take as a guess solution
V ∗
(t, Wt) = f (t)γ
· e−ρt
·
W 1−γ
t
1 − γ
Then,
∂V ∗
∂t
= (γ · f (t)γ−1
· f (t) − ρ · f (t)γ
) · e−ρt
·
W 1−γ
t
1 − γ
∂V ∗
∂W
= f (t)γ
· e−ρt
· W −γ
t
∂2V ∗
∂W 2
= −f (t)γ
· e−ρt
· γ · W −γ−1
t
Ashwin Rao HJB and Merton Portfolio September 20, 2018 11 / 14
PDE reduced to an ODE
Substituting the guess solution in the PDE, we get the simple ODE:
f (t) = ν · f (t) − 1
where
ν =
ρ − (1 − γ) · ((µ−r)2
2σ2γ
+ r)
γ
with boundary condition f (T) = .
The solution to this ODE is:
f (t) =
1+(ν −1)·e−ν(T−t)
ν for ν = 0
T − t + for ν = 0
Ashwin Rao HJB and Merton Portfolio September 20, 2018 12 / 14
Optimal Consumption and Allocation
Putting it all together (substituting the solution for f (t)), we get:
π∗
(t, Wt) =
µ − r
σ2γ
c∗
(t, Wt) =
Wt
f (t)
=
ν·Wt
1+(ν −1)·e−ν(T−t) for ν = 0
Wt
T−t+ for ν = 0
V ∗
(t, Wt) =



e−ρt · (1+(ν −1)·e−ν(T−t))γ
νγ ·
W 1−γ
t
1−γ for ν = 0
e−ρt ·
(T−t+ )γ·W 1−γ
t
1−γ for ν = 0
Ashwin Rao HJB and Merton Portfolio September 20, 2018 13 / 14
Illuminating Observations
Optimal Allocation π∗(t, Wt) is constant (independent of t and Wt)
Optimal Fractional Consumption c∗(t,Wt )
Wt
depends only on t
Optimal Fractional Consumption as a function of time (= 1
f (t) )
depends on the key quantity ν
Under Optimal Allocation, Expected Portfolio Return = (µ−r)2
σ2γ
+ r
As T → ∞, Optimal Fractional Consumption is the constant ν
HJB Formulation was key and this solution approach provides a
template for similar continuous-time stochastic control problems
Analytical tractability was achieved due to assumptions of:
Normal distribution of asset returns
Constant Relative Risk-Aversion
Frictionless trading
Ashwin Rao HJB and Merton Portfolio September 20, 2018 14 / 14
1 sur 14

Recommandé

Presentation on stochastic control problem with financial applications (Merto... par
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Asma Ben Slimene
470 vues74 diapositives
Lecture set 6 par
Lecture set 6Lecture set 6
Lecture set 6Gopi Saiteja
3.2K vues101 diapositives
Moving avg &amp; method of least square par
Moving avg &amp; method of least squareMoving avg &amp; method of least square
Moving avg &amp; method of least squareHassan Jalil
3K vues24 diapositives
Uniform Distribution par
Uniform DistributionUniform Distribution
Uniform Distributionmathscontent
10.5K vues9 diapositives
Lecture_note2.pdf par
Lecture_note2.pdfLecture_note2.pdf
Lecture_note2.pdfEssaAlMadhagi
56 vues37 diapositives
Special Cases in Simplex Method par
Special Cases in Simplex MethodSpecial Cases in Simplex Method
Special Cases in Simplex MethodDivyansh Verma
68.5K vues14 diapositives

Contenu connexe

Tendances

7. logistics regression using spss par
7. logistics regression using spss7. logistics regression using spss
7. logistics regression using spssDr Nisha Arora
549 vues76 diapositives
Kuhn-Tucker Conditions with non-negativity constraints.pptx par
Kuhn-Tucker Conditions with non-negativity constraints.pptxKuhn-Tucker Conditions with non-negativity constraints.pptx
Kuhn-Tucker Conditions with non-negativity constraints.pptxssuserfecb3d
280 vues7 diapositives
Machine Learning lecture2(linear regression) par
Machine Learning lecture2(linear regression)Machine Learning lecture2(linear regression)
Machine Learning lecture2(linear regression)cairo university
138 vues46 diapositives
Linear programing par
Linear programingLinear programing
Linear programingAniruddh Tiwari
87.9K vues20 diapositives
Probability Theory for Data Scientists par
Probability Theory for Data ScientistsProbability Theory for Data Scientists
Probability Theory for Data ScientistsFerdin Joe John Joseph PhD
1.6K vues70 diapositives
Probability theory par
Probability theoryProbability theory
Probability theorywarwickmorsesociety
1.4K vues52 diapositives

Tendances(20)

7. logistics regression using spss par Dr Nisha Arora
7. logistics regression using spss7. logistics regression using spss
7. logistics regression using spss
Dr Nisha Arora549 vues
Kuhn-Tucker Conditions with non-negativity constraints.pptx par ssuserfecb3d
Kuhn-Tucker Conditions with non-negativity constraints.pptxKuhn-Tucker Conditions with non-negativity constraints.pptx
Kuhn-Tucker Conditions with non-negativity constraints.pptx
ssuserfecb3d280 vues
Machine Learning lecture2(linear regression) par cairo university
Machine Learning lecture2(linear regression)Machine Learning lecture2(linear regression)
Machine Learning lecture2(linear regression)
cairo university138 vues
Probability distribution par Punit Raut
Probability distributionProbability distribution
Probability distribution
Punit Raut2K vues
Decision Tree Analysis par Anand Arora
Decision Tree AnalysisDecision Tree Analysis
Decision Tree Analysis
Anand Arora23K vues
Maximum likelihood estimation par zihad164
Maximum likelihood estimationMaximum likelihood estimation
Maximum likelihood estimation
zihad164794 vues
Simplex Method par kzoe1996
Simplex MethodSimplex Method
Simplex Method
kzoe19965.6K vues
Stat 2153 Stochastic Process and Markov chain par Khulna University
Stat 2153 Stochastic Process and Markov chainStat 2153 Stochastic Process and Markov chain
Stat 2153 Stochastic Process and Markov chain
Khulna University2.2K vues
Lesson 35: Game Theory and Linear Programming par Matthew Leingang
Lesson 35: Game Theory and Linear ProgrammingLesson 35: Game Theory and Linear Programming
Lesson 35: Game Theory and Linear Programming
Matthew Leingang23.7K vues

Similaire à HJB Equation and Merton's Portfolio Problem

Ceske budevice par
Ceske budeviceCeske budevice
Ceske budeviceKjetil Haugen
311 vues18 diapositives
18 Machine Learning Radial Basis Function Networks Forward Heuristics par
18 Machine Learning Radial Basis Function Networks Forward Heuristics18 Machine Learning Radial Basis Function Networks Forward Heuristics
18 Machine Learning Radial Basis Function Networks Forward HeuristicsAndres Mendez-Vazquez
432 vues167 diapositives
Stochastic Control of Optimal Trade Order Execution par
Stochastic Control of Optimal Trade Order ExecutionStochastic Control of Optimal Trade Order Execution
Stochastic Control of Optimal Trade Order ExecutionAshwin Rao
759 vues16 diapositives
Planning Under Uncertainty With Markov Decision Processes par
Planning Under Uncertainty With Markov Decision ProcessesPlanning Under Uncertainty With Markov Decision Processes
Planning Under Uncertainty With Markov Decision Processesahmad bassiouny
708 vues92 diapositives
diff equation par
diff equationdiff equation
diff equationkajalrana18
89 vues26 diapositives

Similaire à HJB Equation and Merton's Portfolio Problem(20)

18 Machine Learning Radial Basis Function Networks Forward Heuristics par Andres Mendez-Vazquez
18 Machine Learning Radial Basis Function Networks Forward Heuristics18 Machine Learning Radial Basis Function Networks Forward Heuristics
18 Machine Learning Radial Basis Function Networks Forward Heuristics
Stochastic Control of Optimal Trade Order Execution par Ashwin Rao
Stochastic Control of Optimal Trade Order ExecutionStochastic Control of Optimal Trade Order Execution
Stochastic Control of Optimal Trade Order Execution
Ashwin Rao759 vues
Planning Under Uncertainty With Markov Decision Processes par ahmad bassiouny
Planning Under Uncertainty With Markov Decision ProcessesPlanning Under Uncertainty With Markov Decision Processes
Planning Under Uncertainty With Markov Decision Processes
ahmad bassiouny708 vues
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti... par asahiushio1
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...
2017-07, Research Seminar at Keio University, Metric Perspective of Stochasti...
asahiushio1122 vues
Stable_pool_optimal_allocation.pdf par Stefan Duprey
Stable_pool_optimal_allocation.pdfStable_pool_optimal_allocation.pdf
Stable_pool_optimal_allocation.pdf
Stefan Duprey34 vues
Macroeconometrics of Investment and the User Cost of Capital Presentation Sample par Thethach Chuaprapaisilp
Macroeconometrics of Investment and the User Cost of Capital Presentation SampleMacroeconometrics of Investment and the User Cost of Capital Presentation Sample
Macroeconometrics of Investment and the User Cost of Capital Presentation Sample
Stochastic Control/Reinforcement Learning for Optimal Market Making par Ashwin Rao
Stochastic Control/Reinforcement Learning for Optimal Market MakingStochastic Control/Reinforcement Learning for Optimal Market Making
Stochastic Control/Reinforcement Learning for Optimal Market Making
Ashwin Rao1.5K vues
Option Pricing under non constant volatilityEcon 643 Fina.docx par jacksnathalie
Option Pricing under non constant volatilityEcon 643 Fina.docxOption Pricing under non constant volatilityEcon 643 Fina.docx
Option Pricing under non constant volatilityEcon 643 Fina.docx
jacksnathalie5 vues
Volatility derivatives and default risk par Volatility
Volatility derivatives and default riskVolatility derivatives and default risk
Volatility derivatives and default risk
Volatility404 vues
Asset Supply in HANK par GRAPE
Asset Supply in HANKAsset Supply in HANK
Asset Supply in HANK
GRAPE26 vues
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms par Sean Meyn
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Sean Meyn672 vues
Optimal debt maturity management par ADEMU_Project
Optimal debt maturity managementOptimal debt maturity management
Optimal debt maturity management
ADEMU_Project203 vues
State Space Model par Cdiscount
State Space ModelState Space Model
State Space Model
Cdiscount2.9K vues
Paris2012 session4 par Cdiscount
Paris2012 session4Paris2012 session4
Paris2012 session4
Cdiscount1.6K vues
1- (Simple model- rational expectations) Consider an economy that is d.docx par pandoragardner78605
1- (Simple model- rational expectations) Consider an economy that is d.docx1- (Simple model- rational expectations) Consider an economy that is d.docx
1- (Simple model- rational expectations) Consider an economy that is d.docx
100 things I know par r-uribe
100 things I know100 things I know
100 things I know
r-uribe217 vues

Plus de Ashwin Rao

Adaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree Search par
Adaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree SearchAdaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree Search
Adaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree SearchAshwin Rao
220 vues7 diapositives
Fundamental Theorems of Asset Pricing par
Fundamental Theorems of Asset PricingFundamental Theorems of Asset Pricing
Fundamental Theorems of Asset PricingAshwin Rao
2K vues38 diapositives
Evolutionary Strategies as an alternative to Reinforcement Learning par
Evolutionary Strategies as an alternative to Reinforcement LearningEvolutionary Strategies as an alternative to Reinforcement Learning
Evolutionary Strategies as an alternative to Reinforcement LearningAshwin Rao
327 vues7 diapositives
Principles of Mathematical Economics applied to a Physical-Stores Retail Busi... par
Principles of Mathematical Economics applied to a Physical-Stores Retail Busi...Principles of Mathematical Economics applied to a Physical-Stores Retail Busi...
Principles of Mathematical Economics applied to a Physical-Stores Retail Busi...Ashwin Rao
890 vues24 diapositives
Understanding Dynamic Programming through Bellman Operators par
Understanding Dynamic Programming through Bellman OperatorsUnderstanding Dynamic Programming through Bellman Operators
Understanding Dynamic Programming through Bellman OperatorsAshwin Rao
636 vues11 diapositives
A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re... par
A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re...A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re...
A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re...Ashwin Rao
1.2K vues35 diapositives

Plus de Ashwin Rao(20)

Adaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree Search par Ashwin Rao
Adaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree SearchAdaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree Search
Adaptive Multistage Sampling Algorithm: The Origins of Monte Carlo Tree Search
Ashwin Rao220 vues
Fundamental Theorems of Asset Pricing par Ashwin Rao
Fundamental Theorems of Asset PricingFundamental Theorems of Asset Pricing
Fundamental Theorems of Asset Pricing
Ashwin Rao2K vues
Evolutionary Strategies as an alternative to Reinforcement Learning par Ashwin Rao
Evolutionary Strategies as an alternative to Reinforcement LearningEvolutionary Strategies as an alternative to Reinforcement Learning
Evolutionary Strategies as an alternative to Reinforcement Learning
Ashwin Rao327 vues
Principles of Mathematical Economics applied to a Physical-Stores Retail Busi... par Ashwin Rao
Principles of Mathematical Economics applied to a Physical-Stores Retail Busi...Principles of Mathematical Economics applied to a Physical-Stores Retail Busi...
Principles of Mathematical Economics applied to a Physical-Stores Retail Busi...
Ashwin Rao890 vues
Understanding Dynamic Programming through Bellman Operators par Ashwin Rao
Understanding Dynamic Programming through Bellman OperatorsUnderstanding Dynamic Programming through Bellman Operators
Understanding Dynamic Programming through Bellman Operators
Ashwin Rao636 vues
A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re... par Ashwin Rao
A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re...A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re...
A.I. for Dynamic Decisioning under Uncertainty (for real-world problems in Re...
Ashwin Rao1.2K vues
Overview of Stochastic Calculus Foundations par Ashwin Rao
Overview of Stochastic Calculus FoundationsOverview of Stochastic Calculus Foundations
Overview of Stochastic Calculus Foundations
Ashwin Rao375 vues
Risk-Aversion, Risk-Premium and Utility Theory par Ashwin Rao
Risk-Aversion, Risk-Premium and Utility TheoryRisk-Aversion, Risk-Premium and Utility Theory
Risk-Aversion, Risk-Premium and Utility Theory
Ashwin Rao3.4K vues
Value Function Geometry and Gradient TD par Ashwin Rao
Value Function Geometry and Gradient TDValue Function Geometry and Gradient TD
Value Function Geometry and Gradient TD
Ashwin Rao579 vues
Stanford CME 241 - Reinforcement Learning for Stochastic Control Problems in ... par Ashwin Rao
Stanford CME 241 - Reinforcement Learning for Stochastic Control Problems in ...Stanford CME 241 - Reinforcement Learning for Stochastic Control Problems in ...
Stanford CME 241 - Reinforcement Learning for Stochastic Control Problems in ...
Ashwin Rao863 vues
Policy Gradient Theorem par Ashwin Rao
Policy Gradient TheoremPolicy Gradient Theorem
Policy Gradient Theorem
Ashwin Rao2.9K vues
A Quick and Terse Introduction to Efficient Frontier Mathematics par Ashwin Rao
A Quick and Terse Introduction to Efficient Frontier MathematicsA Quick and Terse Introduction to Efficient Frontier Mathematics
A Quick and Terse Introduction to Efficient Frontier Mathematics
Ashwin Rao831 vues
Towards Improved Pricing and Hedging of Agency Mortgage-backed Securities par Ashwin Rao
Towards Improved Pricing and Hedging of Agency Mortgage-backed SecuritiesTowards Improved Pricing and Hedging of Agency Mortgage-backed Securities
Towards Improved Pricing and Hedging of Agency Mortgage-backed Securities
Ashwin Rao1.2K vues
Recursive Formulation of Gradient in a Dense Feed-Forward Deep Neural Network par Ashwin Rao
Recursive Formulation of Gradient in a Dense Feed-Forward Deep Neural NetworkRecursive Formulation of Gradient in a Dense Feed-Forward Deep Neural Network
Recursive Formulation of Gradient in a Dense Feed-Forward Deep Neural Network
Ashwin Rao560 vues
Demystifying the Bias-Variance Tradeoff par Ashwin Rao
Demystifying the Bias-Variance TradeoffDemystifying the Bias-Variance Tradeoff
Demystifying the Bias-Variance Tradeoff
Ashwin Rao2.4K vues
Category Theory made easy with (ugly) pictures par Ashwin Rao
Category Theory made easy with (ugly) picturesCategory Theory made easy with (ugly) pictures
Category Theory made easy with (ugly) pictures
Ashwin Rao1.6K vues
Risk Pooling sensitivity to Correlation par Ashwin Rao
Risk Pooling sensitivity to CorrelationRisk Pooling sensitivity to Correlation
Risk Pooling sensitivity to Correlation
Ashwin Rao349 vues
Abstract Algebra in 3 Hours par Ashwin Rao
Abstract Algebra in 3 HoursAbstract Algebra in 3 Hours
Abstract Algebra in 3 Hours
Ashwin Rao1.6K vues
OmniChannelNewsvendor par Ashwin Rao
OmniChannelNewsvendorOmniChannelNewsvendor
OmniChannelNewsvendor
Ashwin Rao490 vues
The Newsvendor meets the Options Trader par Ashwin Rao
The Newsvendor meets the Options TraderThe Newsvendor meets the Options Trader
The Newsvendor meets the Options Trader
Ashwin Rao1.1K vues

Dernier

Debt Watch | ICICI Prudential Mutual Fund par
Debt Watch | ICICI Prudential Mutual FundDebt Watch | ICICI Prudential Mutual Fund
Debt Watch | ICICI Prudential Mutual Fundiciciprumf
8 vues2 diapositives
Bajaj Four Pager.pdf par
Bajaj Four Pager.pdfBajaj Four Pager.pdf
Bajaj Four Pager.pdfmultigainfinancial
40 vues4 diapositives
PPI - the role of CDC in decumulation par
PPI - the role of CDC in decumulationPPI - the role of CDC in decumulation
PPI - the role of CDC in decumulationHenry Tapper
211 vues40 diapositives
QNBFS Daily Market Report November 29, 2023 par
QNBFS Daily Market Report November 29, 2023QNBFS Daily Market Report November 29, 2023
QNBFS Daily Market Report November 29, 2023QNB Group
10 vues9 diapositives
Rob Tolley London - Financial Strategy par
Rob Tolley London - Financial StrategyRob Tolley London - Financial Strategy
Rob Tolley London - Financial StrategyRob Tolley
6 vues4 diapositives
Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam... par
Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam...Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam...
Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam...Amil baba
7 vues1 diapositive

Dernier(20)

Debt Watch | ICICI Prudential Mutual Fund par iciciprumf
Debt Watch | ICICI Prudential Mutual FundDebt Watch | ICICI Prudential Mutual Fund
Debt Watch | ICICI Prudential Mutual Fund
iciciprumf8 vues
PPI - the role of CDC in decumulation par Henry Tapper
PPI - the role of CDC in decumulationPPI - the role of CDC in decumulation
PPI - the role of CDC in decumulation
Henry Tapper211 vues
QNBFS Daily Market Report November 29, 2023 par QNB Group
QNBFS Daily Market Report November 29, 2023QNBFS Daily Market Report November 29, 2023
QNBFS Daily Market Report November 29, 2023
QNB Group10 vues
Rob Tolley London - Financial Strategy par Rob Tolley
Rob Tolley London - Financial StrategyRob Tolley London - Financial Strategy
Rob Tolley London - Financial Strategy
Rob Tolley6 vues
Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam... par Amil baba
Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam...Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam...
Pandit No2 Black Magic Specialist In Lahore Black magic In Pakistan Kala Ilam...
Amil baba7 vues
The implementation of government subsidies and tax incentives to enhance the ... par Fardeen Ahmed
The implementation of government subsidies and tax incentives to enhance the ...The implementation of government subsidies and tax incentives to enhance the ...
The implementation of government subsidies and tax incentives to enhance the ...
Fardeen Ahmed6 vues
Digital4Climate-Leveraging Digital innovations & data for climate action par Soren Gigler
Digital4Climate-Leveraging Digital innovations & data for climate action Digital4Climate-Leveraging Digital innovations & data for climate action
Digital4Climate-Leveraging Digital innovations & data for climate action
Soren Gigler67 vues
Indias Sparkling Future : Lab-Grown Diamonds in Focus par anujadeodhar4
Indias Sparkling Future : Lab-Grown Diamonds in FocusIndias Sparkling Future : Lab-Grown Diamonds in Focus
Indias Sparkling Future : Lab-Grown Diamonds in Focus
anujadeodhar49 vues
Embracing the eFarming Challenge.pdf par ramadhan04116
Embracing the eFarming Challenge.pdfEmbracing the eFarming Challenge.pdf
Embracing the eFarming Challenge.pdf
ramadhan041169 vues
The breath of the investment grade and the unpredictability of inflation - Eu... par Antonis Zairis
The breath of the investment grade and the unpredictability of inflation - Eu...The breath of the investment grade and the unpredictability of inflation - Eu...
The breath of the investment grade and the unpredictability of inflation - Eu...
Antonis Zairis12 vues
1_updated_Axis India Manufacturing Fund-NFO One pager.pdf par multigainfinancial
1_updated_Axis India Manufacturing Fund-NFO One pager.pdf1_updated_Axis India Manufacturing Fund-NFO One pager.pdf
1_updated_Axis India Manufacturing Fund-NFO One pager.pdf
Amalgamation, Absorption, External Reconstruction and Internal Reconstruction... par Dr.G. KARTHIKEYAN
Amalgamation, Absorption, External Reconstruction and Internal Reconstruction...Amalgamation, Absorption, External Reconstruction and Internal Reconstruction...
Amalgamation, Absorption, External Reconstruction and Internal Reconstruction...
Practices of corporate governance in Commercial Banks of Bangladesh par Ariful Saimon
Practices of corporate governance in Commercial Banks of BangladeshPractices of corporate governance in Commercial Banks of Bangladesh
Practices of corporate governance in Commercial Banks of Bangladesh
Ariful Saimon12 vues
Product Listing Optimization.pdf par AllenSingson
Product Listing Optimization.pdfProduct Listing Optimization.pdf
Product Listing Optimization.pdf
AllenSingson21 vues
Topic 37 copy.pptx par saleh176
Topic 37 copy.pptxTopic 37 copy.pptx
Topic 37 copy.pptx
saleh1765 vues
Blockchain, AI & Metaverse for Football Clubs - 2023.pdf par kelroyjames1
Blockchain, AI & Metaverse for Football Clubs - 2023.pdfBlockchain, AI & Metaverse for Football Clubs - 2023.pdf
Blockchain, AI & Metaverse for Football Clubs - 2023.pdf
kelroyjames112 vues

HJB Equation and Merton's Portfolio Problem

  • 1. HJB Equation and Merton’s Portfolio Problem Ashwin Rao September 20, 2018 Ashwin Rao HJB and Merton Portfolio September 20, 2018 1 / 14
  • 2. Overview 1 Problem Statement 2 HJB Equation as Optimal Discounted Value Function PDE 3 Reducing the PDE to an ODE 4 Optimal Consumption and Allocation Ashwin Rao HJB and Merton Portfolio September 20, 2018 2 / 14
  • 3. Informal Problem Statement You will live for (deterministic) T more years Current Wealth + PV of Future Income (less Debt) is W0 > 0. You can invest in (allocate to) n risky assets and a riskless asset Each asset has known normal distribution of returns Allowed to long or short any fractional quantities of assets Trading in continuous time 0 ≤ t < T, with no transaction costs You can consume any fractional amount of wealth at any time Dynamic Decision: Optimal Allocation and Consumption at each time To maximize lifetime-aggregated utility of consumption Consumption Utility assumed to have constant Relative Risk-Aversion Ashwin Rao HJB and Merton Portfolio September 20, 2018 3 / 14
  • 4. Problem Notation For simplicity, we state and solve the problem for 1 risky asset but the solution generalizes easily to n risky assets. Riskless asset: dRt = r · Rt · dt Risky asset: dSt = µ · St · dt + σ · St · dzt (i.e. Geometric Brownian) µ > r > 0, σ > 0 (for n assets, we work with a covariance matrix) Wealth at time t denoted by Wt > 0 Fraction of wealth allocated to risky asset denoted by π(t, Wt) Fraction of wealth in riskless asset will then be 1 − π(t, Wt) Wealth consumption denoted by c(t, Wt) ≥ 0 Utility of Consumption function U(x) = x1−γ 1−γ for 0 < γ = 1 Utility of Consumption function U(x) = log(x) for γ = 1 γ = (constant) Relative Risk-Aversion −x·U (x) U (x) Ashwin Rao HJB and Merton Portfolio September 20, 2018 4 / 14
  • 5. Problem Statement We write πt, ct instead of π(t, Wt), c(t, Wt) to lighten notation Balance constraint implies the following process for Wealth Wt dWt = ((πt · (µ − r) + r) · Wt − ct) · dt + πt · σ · Wt · dzt At any time t, determine optimal [π(t, Wt), c(t, Wt)] to maximize: E[ T t e−ρ(s−t) · c1−γ s 1 − γ · ds + e−ρ(T−t) · B(T) · W 1−γ T 1 − γ | Wt] where ρ ≥ 0 is the utility discount rate, B(T) is the bequest function We can solve this problem for arbitrary bequest B(T) but for simplicity, will consider B(T) = γ where 0 < 1, meaning “no bequest” (we need this -formulation for technical reasons). We will solve this problem for γ = 1 (γ = 1 is easier, hence omitted) Ashwin Rao HJB and Merton Portfolio September 20, 2018 5 / 14
  • 6. Continuous-Time Stochastic Control Think of this as a continuous-time Stochastic Control problem The State is (t, Wt) The Action is [πt, ct] The Reward per unit time is U(ct) The Return is the usual accumulated discounted Reward Find Policy : (t, Wt) → [πt, ct] that maximizes the Expected Return Note: ct ≥ 0, but πt is unconstrained Ashwin Rao HJB and Merton Portfolio September 20, 2018 6 / 14
  • 7. Optimal Discounted Value Function Instead of the usual Value Function (Expected Return from a given State), we consider the Discounted Value Function Discounted Value Function is simply the Value Function further discounted to time 0 We focus on the Optimal Discounted Value Function V ∗(t, Wt) V ∗ (t, Wt) = max π,c E[ T t e−ρs · c1−γ s 1 − γ · ds + e−ρT · γ · W 1−γ T 1 − γ ] V ∗(t, Wt) satisfies a simple recursive formulation for 0 ≤ t < t1 < T. V ∗ (t, Wt) = max π,c E[V ∗ (t1, Wt1 ) + t1 t e−ρs · c1−γ s 1 − γ · ds] Ashwin Rao HJB and Merton Portfolio September 20, 2018 7 / 14
  • 8. HJB Equation for Optimal Discounted Value Function Rewriting in stochastic differential form, we have the HJB formulation max πt ,ct E[dV ∗ (t, Wt) + e−ρt · c1−γ t 1 − γ · dt] = 0 Use Ito’s Lemma on dV ∗, remove the dzt term since it’s a martingale, and divide throughout by dt to produce the HJB Equation in PDE form: max πt ,ct [ ∂V ∗ ∂t + ∂V ∗ ∂W ((πt(µ−r)+r)Wt −ct)+ ∂2V ∗ ∂W 2 π2 t σ2W 2 t 2 + e−ρt · c1−γ t 1 − γ ] = 0 Ashwin Rao HJB and Merton Portfolio September 20, 2018 8 / 14
  • 9. Optimal Allocation and Consumption Find optimal π∗ t , c∗ t by taking partial derivatives of above HJB expression with respect to πt and ct, and equate to 0 (first-order conditions). With respect to πt: (µ − r) · ∂V ∗ ∂W + ∂2V ∗ ∂W 2 · πt · σ2 · Wt = 0 ⇒ π∗ t = −∂V ∗ ∂W · (µ − r) ∂2V ∗ ∂W 2 · σ2 · Wt With respect to ct: − ∂V ∗ ∂W + e−ρt · (c∗ t )−γ = 0 ⇒ c∗ t = ( ∂V ∗ ∂W · eρt ) −1 γ Ashwin Rao HJB and Merton Portfolio September 20, 2018 9 / 14
  • 10. Optimal Discounted Value Function PDE Now substitute π∗ t and c∗ t in the maximizing expression of HJB to get the Optimal Discounted Value Function PDE. ∂V ∗ ∂t − (µ − r)2 2σ2 · (∂V ∗ ∂W )2 ∂2V ∗ ∂W 2 + ∂V ∗ ∂W · r · Wt + γ 1 − γ · e −ρt γ · ( ∂V ∗ ∂W ) γ−1 γ = 0 The boundary condition is: V ∗ (T, WT ) = e−ρT · γ · W 1−γ T 1 − γ Don’t forget to check that the second-order conditions are satisfied. Ashwin Rao HJB and Merton Portfolio September 20, 2018 10 / 14
  • 11. Solving the PDE with a guess solution Take as a guess solution V ∗ (t, Wt) = f (t)γ · e−ρt · W 1−γ t 1 − γ Then, ∂V ∗ ∂t = (γ · f (t)γ−1 · f (t) − ρ · f (t)γ ) · e−ρt · W 1−γ t 1 − γ ∂V ∗ ∂W = f (t)γ · e−ρt · W −γ t ∂2V ∗ ∂W 2 = −f (t)γ · e−ρt · γ · W −γ−1 t Ashwin Rao HJB and Merton Portfolio September 20, 2018 11 / 14
  • 12. PDE reduced to an ODE Substituting the guess solution in the PDE, we get the simple ODE: f (t) = ν · f (t) − 1 where ν = ρ − (1 − γ) · ((µ−r)2 2σ2γ + r) γ with boundary condition f (T) = . The solution to this ODE is: f (t) = 1+(ν −1)·e−ν(T−t) ν for ν = 0 T − t + for ν = 0 Ashwin Rao HJB and Merton Portfolio September 20, 2018 12 / 14
  • 13. Optimal Consumption and Allocation Putting it all together (substituting the solution for f (t)), we get: π∗ (t, Wt) = µ − r σ2γ c∗ (t, Wt) = Wt f (t) = ν·Wt 1+(ν −1)·e−ν(T−t) for ν = 0 Wt T−t+ for ν = 0 V ∗ (t, Wt) =    e−ρt · (1+(ν −1)·e−ν(T−t))γ νγ · W 1−γ t 1−γ for ν = 0 e−ρt · (T−t+ )γ·W 1−γ t 1−γ for ν = 0 Ashwin Rao HJB and Merton Portfolio September 20, 2018 13 / 14
  • 14. Illuminating Observations Optimal Allocation π∗(t, Wt) is constant (independent of t and Wt) Optimal Fractional Consumption c∗(t,Wt ) Wt depends only on t Optimal Fractional Consumption as a function of time (= 1 f (t) ) depends on the key quantity ν Under Optimal Allocation, Expected Portfolio Return = (µ−r)2 σ2γ + r As T → ∞, Optimal Fractional Consumption is the constant ν HJB Formulation was key and this solution approach provides a template for similar continuous-time stochastic control problems Analytical tractability was achieved due to assumptions of: Normal distribution of asset returns Constant Relative Risk-Aversion Frictionless trading Ashwin Rao HJB and Merton Portfolio September 20, 2018 14 / 14