SlideShare une entreprise Scribd logo
1  sur  167
Télécharger pour lire hors ligne
© 2013 Utilities Telecom Council
May	
  5-­‐8,	
  2015	
  	
  |	
  	
  Atlanta,	
  GA	
  	
  |	
  	
  www.utctelecom.org
BATTERY	
  BACKUP	
  WORKSHOP
MAY	
  5,	
  2015
NO POWER=NO SERVICE
DAKX TURCOTTE
MULTITEL INC.
DISCLAIMER
From concept to more practical & technical content.
2
3
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
WHAT’S A BATTERY?
a container consisting of one or more cells,
in which chemical energy is converted into
electricity and used as a source of power.
bat·ter·y
/ˈbatərē/
noun
4
WHAT’S A BATTERY?
Electrolytes allow ions to move between the electrodes, which
allows current to flow out of the battery to perform work.
5
WHAT’S A BATTERY?
6
WHAT’S A BATTERY?
7
WHAT’S A BATTERY?
Lower specific energy than common fuels.
Only energy type that delivers their energy as electricity.
Meaning they are efficiently converted to mechanical work.
8
WHAT’S A BATTERY?
Wet cell (VLA) jar VRLA jar Battery string/bank
9
10
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
11
CHANCES ARE…
The stats from our commercial telecom
customers are, on average:
• Number of outages: 4 outages per site per year
• Length of each outage: 1.5 hours
• Direct cost of losing a telecom site: $250,0001
• Indirect cost of losing a telecom site: $150,0001
• Direct cost of losing a substation’s protection: TBD2
• Indirect cost of losing a substation’s protection: TBD2
Note:
1: Direct and indirect costs attributed to a battery-related outage when a site was lost in Miami, FL by a major US telecom operator
2: “We don’t even want to image it” is more likely the answer…
MOREOVER…
3 things we know with absolute certainty about batteries:
(1) limited CAPACITY
(2) finite and unpredictable LIFETIME
(3) always fail EXACTLY when you need them
12
What are your chances of running on batteries?
I would say: PRETTY HIGH.
13
14
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
TOP 10 #BATTERY_FAILS
10 - Prolonged period without being used
9 - Battery post corrosion, causing (dis)charge problems
8 - Excessive deep discharges
7 - Bad manufacturing process or material
6-Torquing: too much > break terminal seal, too little > short
15
TOP 10 #BATTERY_FAILS
5 -AC ripple (on UPS batteries)
4 - Lack of electrolyte (wet cell batteries)
3 - ↑25°C > corrosion > self discharge > thermal runaway
2 - Over-charging = creates heat = loss of water = sulfation
1 - Under-charging = electrolyte stratification
16
17
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
WHY DO YOU NEED IT?
18
WHY DO YOU NEED IT?
Because there can be up to 15 pieces of equipment making
for the “POWER-TRAIN”within a telecom site.
Because OUTAGES & EQUIPMENT MALFUNCTIONS happen.
Because it impacts you and your CUSTOMERS.
And because it’s EXPENSIVE.
20
28
29
WHY DO YOU NEED IT?
A few stats on availability or poor backup management:
• 99.9% (Three Nines) availability = 9 hrs/year of downtime.1
• 99.9999% (Six Nines) availability = 30 seconds/year of downtime.2
• 1 hour of downtime equates to $2.0M/hour in the telecom industry.3
• It’s terrible for your customers: $1.4 million/hour to financial institutions.3
• $80B: the amount of yearly losses due to power disturbances in the US.
66% of that caused by momentary disturbances, 34% caused by sustained
interruptions of more than 5 minutes.4
References:
1: GilderGroup
2: The dawn of on-site power: http://ecmweb.com/cee-news-archive/dawn-site-power
3: Overhead: The cost of downtime: http://itknowledgeexchange.techtarget.com/overheard/overhead-the-cost-of-downtime/
4: Berkeley Lab Study Estimates $80 Billion Annual Cost of Power Interruptions: http://www.lbl.gov/Science-Articles/Archive/EETD-power-interruptions.html
It’s clear, YOU NEED BATTERIES.
30
31
The questions you need to ask:
• How much time do you need?
• How much time do you really have?
• In what state of health is your backup?
• Can you consistently meet your average failure?
• What happens if your backup doesn’t work?
So, let’s see what the role of Field Operations
is when it comes to battery backup.
32
33
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
Field Maintenance and Operations teams are typically
responsible for two aspects of battery backup:
MAINTENANCE ROUTINES & OUTAGE INTERVENTION.
34
35
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
MAINTENANCE ROUTINES
The two reasons why you do battery preventative
maintenance routines are:
BATTERIES WILL FAIL & NERC COMPLIANCY.
36
NERC COMPLIANCY
What is NERC COMPLIANCY?
37
NERC COMPLIANCY
NERC has multiple RELIABILITY STANDARDS.
One of them is PRC-005-2, which will be enforced starting April
1, 2015, but should have been used starting February 24, 2014.
It covers the MAINTENANCE of all Protection Systems affecting
the reliability of the Bulk Electric System (BES) so that these
Protection Systems are kept in working order.
38
NERC COMPLIANCY
Basically, it tells you what tests & time intervals
to follow for your BATTERY MAINTENANCE.
It is applicable to both protection relays &
TELECOMMUNICATIONS SITES.
39
NERC COMPLIANCY
Maximum
Maintenance Interval
Maintenance Activity VLA (wet cell) VRLA
4 Calendar Months
Verify
• Station DC supply voltage
Inspect
• Electrolyte level
• For unintentional grounds
✓ ✓
6 Calendar Months
Inspect
• Measure battery cell internal ohmic
values for each battery cells
✓
18 Calendar Months
Verify
• Float voltage of battery charger
• Battery continuity
• Battery terminal connection resistance
• Battery intercell or unit-to-unit
connection resistance
Inspect
• Cell condition of all battery cells (visible
cells) or measure battery cell internal
ohmic values (not visible cells)
• Physical condition of battery rack
✓ ✓
18 Calendar Months
or
6 Calendar Years
Verify
• Internal ohmic values or float current
per cell compared to baseline
or
Verify
• Full or modified capacity (discharge,
load) test on the entire battery bank
✓
✓
But every 3 years for
the capacity test
40
NERC COMPLIANCY
If, like most companies, you have VRLAs, you need
to test your batteries EVERY 6 MONTHS using an
ohmic test (conductance, impedance).
And you have to demonstrate COMPLIANCY…
41
What’s a test procedure like?
42
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
43
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
Ticket
A technician will typically receive
an automated ticket to perform a
maintenance routine
44
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
Ticket
A technician will typically receive
an automated ticket to perform a
maintenance routine
Plan Workload
A technician will typically receive
an automated ticket to perform a
maintenance routine
45
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
Ticket
A technician will typically receive
an automated ticket to perform a
maintenance routine
Plan Workload
A technician will typically receive
an automated ticket to perform a
maintenance routine
Execute Routine
A technician will typically receive an
automated ticket to perform a
maintenance routine
46
ROUTINE EXECUTION
1
- Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear.
Test specific gravity of each wet cells’ jars
47
SPECIFIC GRAVITY
48
ROUTINE EXECUTION
1
2 Visual inspection of each battery jar and battery rack
- Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear.
Test specific gravity of each wet cells’ jars
- Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid
around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells…
49
50
51
52
53
54
55
56
57
58
59
ROUTINE EXECUTION
1
2 Visual inspection of each battery jar and battery rack
- Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear.
Test specific gravity of each wet cells’ jars
- Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid
around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells…
3 Full or modified capacity test (aka discharge/load)
- Get a load bank & volt meter. As the battery is discharging, you want to take voltage reading of each jar, and at the power
plant level, at specific time intervals. Your goal is to measure the time it will take to reach your end-voltage threshold.
60
CAPACITY TEST
Capacity test procedure for wet cell (VLA)
batteries is detailed in IEEE Standard 450-2010.
Capacity test procedure for VRLA batteries is
details in IEEE Standard 1188-2005.
61
CAPACITY TEST
PROS CONS
• Definitive test to measure
your battery reserve time
• Takes time & is relatively expensive
• Need a load bank
• It’s relatively technical and requires a high
level of security & training, dangerous for
people without proper training
• It damages the battery
• Two plates push electrons from one plate to the other.
• The more you do it, the more porous the plates become.
62
63
ROUTINE EXECUTION
1
2 Visual inspection of each battery jar and battery rack
- Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear.
Test specific gravity of each wet cells’ jars
- Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid
around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells…
3 Full or modified capacity test (aka discharge/load)
- Get a load bank & volt meter. As the battery is discharging, you want to take voltage reading of each jar, and at the power
plant level, at specific time intervals. Your goal is to measure the time it will take to reach your end-voltage threshold.
4 Manual or automated ohmic test
- Manual using a portable ohmic testing device, or automated using a battery monitoring system.
64
German physicist.
High school teacher.
Began his research with a recent
invention by Italian Count
Alessandro Volta.
Using equipment of his creation, he
determined that there is a:
direct proportionality between the
potential difference applied across a
conductor and the resultant electric
current.
66
Who is
Georg Simon Ohm
(17 March 1789 – 6 July 1854)
67
OHM’S LAW
Ohm's law states that the
current through a conductor
between two points is
directly proportional to the
potential difference across
the two points, and inversely
proportional to the
resistance between them.
68
CONDUCTANCE
Conductance is a measurement of the plate surfaces available for
chemical reaction. High relative conductance is a reliable indication of a
healthy battery. Conductance declines as the battery fails.
By applying an electrical voltage of a known frequency and amplitude
across the jar and measuring the current that flows in response to it.The
conductance (acceptance) is the ratio of the AC test current impressed on
the jar that is in-phase with the AC voltage, compared to the AC voltage
producing it.
DC Resistance: Short duration DC load on the cell/unit to measure step
change in current and voltage. By dividing the change in voltage by the
change in current, a DC resistance is calculated using Ohm's law.
69
IMPEDANCE
Performed by sending an electrical current of a known frequency and
amplitude, across the cell/unit/block and measuring the AC voltage drop.
Compute the resulting impedance using Ohm's law.
70
CONDUCTANCE VS. IMPEDANCE
Conductance - Decreases with battery age
Impedance - Increases with battery age
71
OHMIC TEST
Ohmic test procedure for wet cell (VLA) batteries
is detailed in IEEE Standard 450-2010.
Ohmic test procedure for VRLA batteries is
details in IEEE Standard 1188-2005.
72
73
BATTERY MONITOR
You can automate ohmic testing using a
battery monitoring system.
Even if the cost is high (~$2,500 per site), the ability
to catch a battery before it fails outpace its cost.
Selection and use of a battery monitoring system is
detailed in IEEE Standard 1491-2005.
74
OHMIC TEST
PROS CONS
• Non-intrusive
• No torquing required as you test the
intercell straps
• Quicker & safer than a capacity test
• Standardized w/ choice of equipment
out there
• Statistically-proven relationship
between ohmic & capacity as tested
by discharge
• Good way to test that a new battery is
good & creating a baseline
• Rapid way of tracking relative health
& identifying jars/batteries that fail
prematurely
• General agreement that it is not
as definitive as capacity test…
• % of negative-pass
• Some statistical anomalies that can cloud
results
• Make sure you have the right
reference value when analyzing
test results
75
ROUTINE EXECUTION
1
2 Visual inspection of each battery jar and battery rack
- Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear.
Test specific gravity of each wet cells’ jars
- Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid
around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells…
3 Full or modified capacity test (aka discharge/load)
- Get a load bank & volt meter. As the battery is discharging, you want to take voltage reading of each jar, and at the power
plant level, at specific time intervals. Your goal is to measure the time it will take to reach your end-voltage threshold.
4 Manual or automated ohmic test
- Manual using a portable ohmic testing device, or automated using a battery monitoring system.
76
A 5FT “TEST”…
If you didn’t upgrade your power plant to an intelligent
one, you should EQUALIZE your batteries, by making
sure float voltage is at the right value for each jar.
77
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
Ticket
A technician will typically receive
an automated ticket to perform a
maintenance routine
Plan Workload
A technician will typically receive
an automated ticket to perform a
maintenance routine
Execute Routine
A technician will typically receive an
automated ticket to perform a
maintenance routine
Continue Here
Review
Tech’s live review & analysis of
test data
78
TEST DATA REVIEW
79
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
Ticket
A technician will typically receive
an automated ticket to perform a
maintenance routine
Plan Workload
A technician will typically receive
an automated ticket to perform a
maintenance routine
Execute Routine
A technician will typically receive an
automated ticket to perform a
maintenance routine
Continue Here
Review
Tech’s live review & analysis of
test data
Close Routine
Complete & close PM ticket
80
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
Ticket
A technician will typically receive
an automated ticket to perform a
maintenance routine
Plan Workload
A technician will typically receive
an automated ticket to perform a
maintenance routine
Execute Routine
A technician will typically receive an
automated ticket to perform a
maintenance routine
Continue Here
Review
Tech’s live review & analysis of
test data
Close Routine
Complete & close PM ticket
Send to Eng.
Email test results to engineering
for further analysis & replacement
request form filled-out if need be
81
PSMP
Always refer to your
Protection System Maintenance Program
Start Here
Ticket
A technician will typically receive
an automated ticket to perform a
maintenance routine
Plan Workload
A technician will typically receive
an automated ticket to perform a
maintenance routine
Execute Routine
A technician will typically receive an
automated ticket to perform a
maintenance routine
Continue Here
Review
Tech’s live review & analysis of
test data
Close Routine
Complete & close PM ticket
Send to Eng.
Email test results to engineering
for further analysis & replacement
request form filled-out if need be
Engineering
Takes Over
• Approve/refuse replacement
• Crunch test data and load in
central repository
• Provide metrics for NERC’s
compliancy
82
83
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
OUTAGE INTERVENTION
Field technicians are the first people to be called/
dispatched in case of:
MAIN POWER OUTAGE & POWER EQUIPMENT FAILURE.
84
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
85
ALARM
There are typically 2 events that will trigger a BOD alarm:
AC FAIL & CHARGER FAIL.
86
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
Dispatch
NOC will dispatch closest
technician to site
87
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
Dispatch
NOC will dispatch closest
technician to site
Validate ETA
If not done by NOC, a tech will
validate the cause of outage, length
& ETA to restore
88
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
Dispatch
NOC will dispatch closest
technician to site
Validate ETA
If not done by NOC, a tech will
validate the cause of outage, length
& ETA to restore
Validate BRT
Based on outage information,
technician will validate the estimated
battery reserve time (BRT) on site
89
AS A RULE OF THUMB
Validated ETA - Validated BRT
= Time to get to a site & react/repair
90
VALIDATE BRT
A validated Battery Reserve Time (BRT) is a key metric
field technicians need to react in optimal fashion in
case of outage or equipment failure.
• Get there as soon as necessary
• Bring the right equipment (generator, generator
connector fitting plug and cable, replacement parts)
• Do as few truck rolls as possible
• Keep the site up
91
VALIDATE BRT
There are 4 steps needed to validate BRT:
(1) look for the last available LOAD reading
(2) look for records of exact battery MODEL installed on site
(3) find battery model’s DATASHEET with specific capacity
measurements at specific end-voltage value
(4) use rule of thumb or PEUKERT to estimate BRT
92
German scientist.
In 1897, presented his “law” that
expresses the capacity of a battery
in terms of the rate at which it is
discharged.
As the rate increases, the battery's
available capacity decreases.
94
Who is
Peukert
95
PEUKERT
Manufacturers rate the capacity of a battery with reference
to a discharge time.A battery might be rated at 100 Ah
when discharged at a rate that will fully discharge the
battery in 20 hours. In this example, the discharge current
would be 5 amperes. If the battery is discharged in a shorter
time, with a higher current, the delivered capacity is less.
96
PEUKERT
What you need to know:
(1) The law is not a law, it’s a recognized concept.
(2) Peukert determines a “k” factor to apply to a battery
technology. For telecom batteries: 1.2.
97
PEUKERT
The law:
98
PEUKERT
Use a form!!!
99
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
Dispatch
NOC will dispatch closest
technician to site
Validate ETA
If not done by NOC, a tech will
validate the cause of outage, length
& ETA to restore
Validate BRT
Based on outage information,
technician will validate the estimated
battery reserve time (BRT) on site
Continue Here
Truck Roll
Get all you need and get to the
site
100
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
Dispatch
NOC will dispatch closest
technician to site
Validate ETA
If not done by NOC, a tech will
validate the cause of outage, length
& ETA to restore
Validate BRT
Based on outage information,
technician will validate the estimated
battery reserve time (BRT) on site
Continue Here
Truck Roll
Get all you need and get to the
site
Repair
Proceed with repair or hook-up
generator
101
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
Dispatch
NOC will dispatch closest
technician to site
Validate ETA
If not done by NOC, a tech will
validate the cause of outage, length
& ETA to restore
Validate BRT
Based on outage information,
technician will validate the estimated
battery reserve time (BRT) on site
Continue Here
Truck Roll
Get all you need and get to the
site
Repair
Proceed with repair or hook-up
generator
Turn On Power
Once repaired, or AC is back on,
switch off generator and go back to
commercial power
102
Alarm to NOC
NOC received “Battery On
Discharge” & other alarms
Start Here
Dispatch
NOC will dispatch closest
technician to site
Validate ETA
If not done by NOC, a tech will
validate the cause of outage, length
& ETA to restore
Validate BRT
Based on outage information,
technician will validate the estimated
battery reserve time (BRT) on site
Continue Here
Truck Roll
Get all you need and get to the
site
Repair
Proceed with repair or hook-up
generator
Turn On Power
Once repaired, or AC is back on,
switch off generator and go back to
commercial power
Wait!!!!!
• Make sure you have enough
charger capacity to manage:
• in-rush current
• recharge batteries
• carry the DC load
• hope the batteries are recharged
before power goes out again…
• … all at the same time
103
You’ve just glanced at what a technicians needs
to know when it comes to battery backup…
And you thought engineers had it hard!?
104
105
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
Engineering teams are typically responsible
for two aspects of battery backup:
PLANNING/SIZING & REPLACING.
106
107
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
PLANNING
When planning new projects in new or existing sites,
engineering needs to RIGHT-SIZE the batteries to be deployed.
Let’s see what that means.
108
Project Issued
Once strategic engineering is
done & funding approved
Start Here
109
Project Issued
Once strategic engineering is
done & funding approved
Start Here
Estimate Load
Look for the THEORETICAL DC
load of new equipment
110
Project Issued
Once strategic engineering is
done & funding approved
Start Here
Estimate Load
Look for the THEORETICAL DC
load of new equipment
Challenge That
Theoretical loads will always vary,
typically they are inflated. Agree on
a maximum load
111
Project Issued
Once strategic engineering is
done & funding approved
Start Here
Estimate Load
Look for the THEORETICAL DC
load of new equipment
Challenge That
Theoretical loads will always vary,
typically they are inflated. Agree on
a maximum load
Pick Site Type
The type of site you pick with have a
huge influence on the battery
solution you end up with
112
PICK SITE TYPE
Two important aspects to site type:
(1) Available FLOOR SPACE (2) FLOOR LOADING capacity
Large site Small site
Wet cell VRLA
300 lbs/sq.ft 125 lbs/sq.ft
Wet cell VRLA
113
Project Issued
Once strategic engineering is
done & funding approved
Start Here
Estimate Load
Look for the THEORETICAL DC
load of new equipment
Challenge That
Theoretical loads will always vary,
typically they are inflated. Agree on
a maximum load
Pick Site Type
The type of site you pick with have a
huge influence on the battery
solution you end up with
Continue Here
Pick Battery
Pick the battery solution &
model you want in your site
114
PICK BATTERY
There are two battery technologies to pick from:
WET CELL (VLA) & VRLA.
115
PICK BATTERY
WET CELL (VLA) VRLA
• Proven since…
>100 years
• Robust
• Reliable
• Recover well
• Long lifetime
Pros Cons
• Acid!!!
• Lead!!
• Takes space
• Heavy
• Requires “maintenance”
• Produces hydrogen gas
during charging
• Needs hydrogen sensor,
proper ventilation &
equipment in battery
room
• Small & portable
• Easier to install
• Can fit anywhere
• Lighter
• Requires no “dangerous”
maintenance
• Shorter lifetime
• Smaller value
over the long run
• Higher risks of
thermal runaway
ConsPros
116
PICK BATTERY
Before picking a battery manufacturer & model, check
with your STANDARDS group or TECHNOLOGY ADVISOR,
they typically have a few selections they want you to use.
117
Project Issued
Once strategic engineering is
done & funding approved
Start Here
Estimate Load
Look for the THEORETICAL DC
load of new equipment
Challenge That
Theoretical loads will always vary,
typically they are inflated. Agree on
a maximum load
Pick Site Type
The type of site you pick with have a
huge influence on the battery
solution you end up with
Continue Here
Pick Battery
Pick the battery solution &
model you want in your site
Find Specs
Use the battery manufacturer
spec sheet to decide which
capacity version you need
118
FIND SPECS
Each battery model has a specific capacity value for
specific end-voltage designs. It’s the engineer’s job to
make sure he designs with the right specs.
119
FIND SPECS
Each battery model has a specific NOMINAL CAPACITY
rating (in Ah) for specific END-VOLTAGE designs, for a
REQUIRED RESERVE TIME duration.
It’s the engineer’s job to make sure he designs with
the right specs.
120
FIND SPECS
121
FIND SPECS
122
FIND SPECS
123
Project Issued
Once strategic engineering is
done & funding approved
Start Here
Estimate Load
Look for the THEORETICAL DC
load of new equipment
Challenge That
Theoretical loads will always vary,
typically they are inflated. Agree on
a maximum load
Pick Site Type
The type of site you pick with have a
huge influence on the battery
solution you end up with
Continue Here
Pick Battery
Pick the battery solution &
model you want in your site
Find Specs
Use the battery manufacturer
spec sheet to decide which
capacity version you need
Size
After picking a model, you now
need to decide on the quantity
needed to support your load
124
SIZE
You’re almost there. You know which model
you want to pick & you know your load. BUT…
125
SIZE
BUT…
You need to provision for growth @ battery end of life.
The reality of telecom facilities is that they change.
New technologies get added, load will vary. You need to
provision for that from day one.
126
SIZE
Total Projected Load ➗ Nominal Capacity Specs of chosen model
= THE NUMBER OF STRINGS NEEDED OF THAT MODEL
127
SIZE - EXAMPLE
Projected Load (A) 100
Battery Model Specs (Ah)
(Enersys SBS170F @ 1.75Vpc @ 8hours)
21.6
Number of Strings Needed 4.6
Note: Some people add an aging factor, like 1.25, to the
number of strings needed. You don’t have to, but you can if you
feel you have the money or your projected load is not relevant.
128
Project Issued
Once strategic engineering is
done & funding approved
Start Here
Estimate Load
Look for the THEORETICAL DC
load of new equipment
Challenge That
Theoretical loads will always vary,
typically they are inflated. Agree on
a maximum load
Pick Site Type
The type of site you pick with have a
huge influence on the battery
solution you end up with
Continue Here
Pick Battery
Pick the battery solution &
model you want in your site
Find Specs
Use the battery manufacturer
spec sheet to decide which
capacity version you need
Size
After picking a model, you now
need to decide on the quantity
needed to support your load
Issue Install &
Project Request
• Once the project is sent out:
• make sure you wait until the project
is completed before updating records,
in case of outage
• don’t forget to update records with
new battery model & information
• make sure technicians know the
ohmic reference value for that model
129
130
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
REPLACING
Based on Murphy’s law, if you have bad
batteries, even if you did everything else
right, for sure,THAT ONE SITE WILL FAIL.
Replacing a battery is as important as installing a new one.
131
Get Data
Get test data from field
technicians at regular intervals
Start Here
132
Get Data
Get test data from field
technicians at regular intervals
Start Here
Analyze Data
Look for the THEORETICAL DC
load of new equipment
133
ANALYZE DATA
The data you’ll receive from field technicians is the only &
best metric you have to make a decision to maximize
uptime. It’s important, don’t just file it without looking at it.
134
ANALYZE DATA
Things to look for:
(1) Has the load reading changed since last time?
(2) Was the temperature in the site constant at 25°C?
(3) Is the float voltage of the jars and strings at the right value?
> Remotely connect to the controller to make sure. <
(4) Where are the ohmic test results compared to the reference?
135
OHMIC REFERENCE
The ohmic reference value is a hot topic:
(1) Do not trust the reference value the tech was using.
(2) Ideally, have each new string benchmarked at 6 months.
(3) Get the reference from the battery manufacturer.
Don’t use it just yet.
(4) Get reference value from Midtronics or other equipment
vendors. Use this one if it’s slightly lower than the mfg’s.
(5) Repeat for each of your sites.
136
OHMIC REFERENCE
At which reference value should you REPLACE?
Status
Conductance
Reference
Impedance
Reference
Jars are GOOD when > = 80% < = 70%
Jars are WARNING when < 80% and > = 60% > 70% and < = 90%
Jars are BAD when < 60% > 90%
137
Get Data
Get test data from field
technicians at regular intervals
Start Here
Analyze Data
Look for the THEORETICAL DC
load of new equipment
No Data = Age
For the sites for which you didn’t
get data in the past 24 months, use
age as your replacement trigger
138
NO DATA
What do you do if you do not have data?
(1) Don’t even try hiding it from NERC.
(2) Use age as your replacement trigger.
(3) Send a tech as fast as you can to inspect & measure.
139
Get Data
Get test data from field
technicians at regular intervals
Start Here
Analyze Data
Look for the THEORETICAL DC
load of new equipment
No Data = Age
For the sites for which you didn’t
get data in the past 24 months, use
age as your replacement trigger
Replacement List
Build a replacement list based on all
the data files you received.
140
REPLACEMENT LIST
What do you do if you do not have data?
(1) Don’t even try hiding it from NERC.
(2) Use age as your replacement trigger.
(3) Send a tech as fast as you can to inspect & measure.
141
Get Data
Get test data from field
technicians at regular intervals
Start Here
Analyze Data
Look for the THEORETICAL DC
load of new equipment
No Data = Age
For the sites for which you didn’t
get data in the past 24 months, use
age as your replacement trigger
Replacement List
Build a replacement list based on all
the data files you received.
Continue Here
Recalculate BRT
When you received your test results,
you also go a new DC load reading
142
RECALCULATE BRT
Ohmic test results can be
represented a % of your reference.
Can you use that % as a de-rating
factor to reduce battery capacity?
143
RECALCULATE BRT
Yes.
144
RECALCULATE BRT
145
RECALCULATE BRT
146
RECALCULATE BRT
When you got your test data back from field
operations, you also got an updated DC load reading.
If it changed, use the new value to recalculate your
updated Battery Reserve Time (BRT).
147
Get Data
Get test data from field
technicians at regular intervals
Start Here
Analyze Data
Look for the THEORETICAL DC
load of new equipment
No Data = Age
For the sites for which you didn’t
get data in the past 24 months, use
age as your replacement trigger
Replacement List
Build a replacement list based on SOH
& age
Continue Here
Recalculate BRT
When you received your test results,
you also go a new DC load reading
Repeat
Don’t forget to repeat this for
each site in your network
148
Get Data
Get test data from field
technicians at regular intervals
Start Here
Analyze Data
Look for the THEORETICAL DC
load of new equipment
No Data = Age
For the sites for which you didn’t
get data in the past 24 months, use
age as your replacement trigger
Replacement List
Build a replacement list based on SOH
& age
Continue Here
Recalculate BRT
When you received your test results,
you also go a new DC load reading
Repeat
Don’t forget to repeat this for
each site in your network
BRT List
For any site lacking BRT, create a
list to add battery capacity
149
BRT LIST
Build a list of all the sites that require added
batteries to support:
(1) De-rated capacity based on ohmic test results
(2) Updated DC load reading
150
Get Data
Get test data from field
technicians at regular intervals
Start Here
Analyze Data
Look for the THEORETICAL DC
load of new equipment
No Data = Age
For the sites for which you didn’t
get data in the past 24 months, use
age as your replacement trigger
Replacement List
Build a replacement list based on SOH
& age
Continue Here
Recalculate BRT
When you received your test results,
you also go a new DC load reading
Repeat
Don’t forget to repeat this for
each site in your network
BRT List
For any site lacking BRT, create a
list to add battery capacity
Cross Reference
Both Lists to
Create Projects
• You end up with two
replacement lists, based on:
• Ohmic state-of-health (SOH) & age
• De-rated capacity & updated load
• Cross-reference to:
• Prioritize replacement needs
• Preventing mistakes such as adding
capacity when you should install new
model
151
So, who has the toughest job?
FIELD TECHNICIANS or ENGINEERS?
152
My point: to maximize battery backup & uptime,
you need both teams to work in full cooperation.
It’s a question of COMMUNICATION & CULTURE.
Promoting this should be a high priority…
Everything else is a process.
153
154
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
EXTEND LIFETIME
My conclusion today: what can you do to help
extend the lifetime of your batteries?
(4) Top wet cells up in the spring.
(3) Never discharge them… hahaha!
(2) 25°C all the time
(1) Float them at the right voltage
155
➡ DISCLAIMER
➡ INTRODUCTION
➡ WHAT IS A BATTERY?
➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES?
➡ WHY DO BATTERIES FAIL?
➡ WHY DO YOU NEED IT?
➡ BATTERY BACKUP: FIELD OPERATIONS
➡ PREVENTIVE MAINTENANCE
➡ OUTAGE INTERVENTION
➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE
➡ PLANNING NEW PROJECTS
➡ REPLACING OLD OR EXISTING PROJECTS
➡ CONCLUSION
➡ SHAMELESS PLUG & FREEBIE
We’re at > 150 slides. It’s a little overwhelming.
KEEP CALM
AND
HAVE ENOUGH
BACKUP
At Multitel, we’ve developed a tool that’s AUTOMATING
most of the processes & steps you’ve seen here today.
FIRM Battery Management
It’s the first enterprise software that gives snapshot &
detailed views of your at risk sites when it comes to batteries.
1
2
4 6
3
5
1. # of routines completed for the network, per
region, per technician
2. # of cells failed or failing based on impedance
3. # of cells failed or failing based on conductance
From the Dashboard, you have access to:
4. List of sites with problems that need escalation
5. List of routines w/ problem or warnings needing approval
6. List of sites for which technicians did an inventory change
requiring approval before being updated in FIRM
160
Through a simple interface, it helps field
technicians quickly upload test data.
And crunches it automatically to
generate prioritized replacement lists.
Saving engineers valuable time.
Complete battery replacement program.
And automatically updates Battery Reserve Time (BRT).
No matter who you are in the company, no matter the event, no
matter where you are: always know the updated reserve time
in each site within the network.
FREEBIE
Come see us at booth #308 to learn more about FIRM
Battery Management and we’ll show you the Top 10 Best
& Worst battery models for both Wet Cells & VRLAs.
Data analytics - always know which batteries are best or worst
performing within your network, drill to understand more.
Worst 10 models Worst failures rates Worst production years
May	
  5-­‐8,	
  2015	
  	
  |	
  	
  Atlanta,	
  GA	
  	
  |	
  	
  www.utctelecom.org
Dakx Turcotte
Mobile: +1-418-262-0575
Email: dakx.turcotte@multitel.com
Booth # 903

Contenu connexe

En vedette

Energy conservation 2015
Energy  conservation 2015Energy  conservation 2015
Energy conservation 2015BHAGWAN PRASAD
 
Supercapacitor Typical Applications
Supercapacitor Typical ApplicationsSupercapacitor Typical Applications
Supercapacitor Typical ApplicationsMatrix Electrónica
 
Samsung Summer Training
Samsung   Summer TrainingSamsung   Summer Training
Samsung Summer Trainingmanymbaboy
 
Preventive maintenance
Preventive maintenancePreventive maintenance
Preventive maintenancePramod A
 
METHODS OF ENERGY CONSERVATION
METHODS OF ENERGY CONSERVATIONMETHODS OF ENERGY CONSERVATION
METHODS OF ENERGY CONSERVATIONriyaraic2
 
Address resolution protocol
Address resolution protocolAddress resolution protocol
Address resolution protocolasimnawaz54
 
Presentation of NSN training
Presentation of NSN trainingPresentation of NSN training
Presentation of NSN trainingBhavin_Halani
 

En vedette (13)

Energy conservation 2015
Energy  conservation 2015Energy  conservation 2015
Energy conservation 2015
 
Supercapacitor Typical Applications
Supercapacitor Typical ApplicationsSupercapacitor Typical Applications
Supercapacitor Typical Applications
 
360 dgree
360 dgree 360 dgree
360 dgree
 
Protection of power
Protection of powerProtection of power
Protection of power
 
Battery
BatteryBattery
Battery
 
Samsung Summer Training
Samsung   Summer TrainingSamsung   Summer Training
Samsung Summer Training
 
Protection basic
Protection basicProtection basic
Protection basic
 
Study of circuit breakers
Study of circuit breakersStudy of circuit breakers
Study of circuit breakers
 
Preventive maintenance
Preventive maintenancePreventive maintenance
Preventive maintenance
 
Circuit breakers
Circuit breakersCircuit breakers
Circuit breakers
 
METHODS OF ENERGY CONSERVATION
METHODS OF ENERGY CONSERVATIONMETHODS OF ENERGY CONSERVATION
METHODS OF ENERGY CONSERVATION
 
Address resolution protocol
Address resolution protocolAddress resolution protocol
Address resolution protocol
 
Presentation of NSN training
Presentation of NSN trainingPresentation of NSN training
Presentation of NSN training
 

Similaire à Battery Backup Workshop Provides Insights

Factors to Consider When Perfroming Maint - IEEE Transactions
Factors to Consider When Perfroming Maint - IEEE TransactionsFactors to Consider When Perfroming Maint - IEEE Transactions
Factors to Consider When Perfroming Maint - IEEE TransactionsJim White
 
IRJET-Investigation on Solar Power System for Residential Building
IRJET-Investigation on Solar Power System for Residential BuildingIRJET-Investigation on Solar Power System for Residential Building
IRJET-Investigation on Solar Power System for Residential BuildingIRJET Journal
 
minor project_binay.pptx
minor project_binay.pptxminor project_binay.pptx
minor project_binay.pptxbinaykumarshah
 
Importance of the NERC PRC-005 Standard - Challenges and Audit Tips
Importance of the NERC PRC-005 Standard - Challenges and Audit TipsImportance of the NERC PRC-005 Standard - Challenges and Audit Tips
Importance of the NERC PRC-005 Standard - Challenges and Audit TipsCertrec
 
Weeks 16 17 pe 3231 maintenance and fault finding
Weeks 16 17  pe 3231 maintenance and fault findingWeeks 16 17  pe 3231 maintenance and fault finding
Weeks 16 17 pe 3231 maintenance and fault findingCharlton Inao
 
Maintenance and Test Equipment Cyber Security
Maintenance and Test Equipment Cyber Security Maintenance and Test Equipment Cyber Security
Maintenance and Test Equipment Cyber Security Michael Toecker
 
Estimating Reliability of Power Factor Correction Circuits: A Comparative Study
Estimating Reliability of Power Factor Correction Circuits: A Comparative StudyEstimating Reliability of Power Factor Correction Circuits: A Comparative Study
Estimating Reliability of Power Factor Correction Circuits: A Comparative StudyIJERA Editor
 
The case for remote telecom battery monitoring
The case for remote telecom battery monitoringThe case for remote telecom battery monitoring
The case for remote telecom battery monitoringTom Shannon
 
The case for remote telecom battery monitoring
The case for remote telecom battery monitoringThe case for remote telecom battery monitoring
The case for remote telecom battery monitoringTom Shannon
 
Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Living Online
 
Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Living Online
 
Mantenimiento en los sistemas Eléctricos de distribución
Mantenimiento en los sistemas Eléctricos de distribución Mantenimiento en los sistemas Eléctricos de distribución
Mantenimiento en los sistemas Eléctricos de distribución JOe Torres Palomino
 
Powering-Up the Industrial Network
Powering-Up the Industrial NetworkPowering-Up the Industrial Network
Powering-Up the Industrial NetworkPanduit
 
Understanding type 2 coordinated protection in motor branch circuit
Understanding type 2 coordinated protection in motor branch circuitUnderstanding type 2 coordinated protection in motor branch circuit
Understanding type 2 coordinated protection in motor branch circuitBassam Gomaa
 
Health Monitoring of Industrial and Electrical Equipment
Health Monitoring of Industrial and Electrical EquipmentHealth Monitoring of Industrial and Electrical Equipment
Health Monitoring of Industrial and Electrical EquipmentMAJAHARUL IMAM
 
Major_project_b.tech_sem8_may_2018
Major_project_b.tech_sem8_may_2018Major_project_b.tech_sem8_may_2018
Major_project_b.tech_sem8_may_2018Dipen Kantariya
 
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...Pradeep Avanigadda
 
A-ConMonIntro.ppt
A-ConMonIntro.pptA-ConMonIntro.ppt
A-ConMonIntro.pptveeruyadav9
 

Similaire à Battery Backup Workshop Provides Insights (20)

Factors to Consider When Perfroming Maint - IEEE Transactions
Factors to Consider When Perfroming Maint - IEEE TransactionsFactors to Consider When Perfroming Maint - IEEE Transactions
Factors to Consider When Perfroming Maint - IEEE Transactions
 
IRJET-Investigation on Solar Power System for Residential Building
IRJET-Investigation on Solar Power System for Residential BuildingIRJET-Investigation on Solar Power System for Residential Building
IRJET-Investigation on Solar Power System for Residential Building
 
minor project_binay.pptx
minor project_binay.pptxminor project_binay.pptx
minor project_binay.pptx
 
Importance of the NERC PRC-005 Standard - Challenges and Audit Tips
Importance of the NERC PRC-005 Standard - Challenges and Audit TipsImportance of the NERC PRC-005 Standard - Challenges and Audit Tips
Importance of the NERC PRC-005 Standard - Challenges and Audit Tips
 
Weeks 16 17 pe 3231 maintenance and fault finding
Weeks 16 17  pe 3231 maintenance and fault findingWeeks 16 17  pe 3231 maintenance and fault finding
Weeks 16 17 pe 3231 maintenance and fault finding
 
Maintenance and Test Equipment Cyber Security
Maintenance and Test Equipment Cyber Security Maintenance and Test Equipment Cyber Security
Maintenance and Test Equipment Cyber Security
 
Estimating Reliability of Power Factor Correction Circuits: A Comparative Study
Estimating Reliability of Power Factor Correction Circuits: A Comparative StudyEstimating Reliability of Power Factor Correction Circuits: A Comparative Study
Estimating Reliability of Power Factor Correction Circuits: A Comparative Study
 
The case for remote telecom battery monitoring
The case for remote telecom battery monitoringThe case for remote telecom battery monitoring
The case for remote telecom battery monitoring
 
The case for remote telecom battery monitoring
The case for remote telecom battery monitoringThe case for remote telecom battery monitoring
The case for remote telecom battery monitoring
 
High voltagebooklet ug_en_v01
High voltagebooklet ug_en_v01High voltagebooklet ug_en_v01
High voltagebooklet ug_en_v01
 
Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...
 
Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...Installing, Programming & Commissioning of Power System Protection Relays and...
Installing, Programming & Commissioning of Power System Protection Relays and...
 
Mantenimiento en los sistemas Eléctricos de distribución
Mantenimiento en los sistemas Eléctricos de distribución Mantenimiento en los sistemas Eléctricos de distribución
Mantenimiento en los sistemas Eléctricos de distribución
 
Powering-Up the Industrial Network
Powering-Up the Industrial NetworkPowering-Up the Industrial Network
Powering-Up the Industrial Network
 
Understanding type 2 coordinated protection in motor branch circuit
Understanding type 2 coordinated protection in motor branch circuitUnderstanding type 2 coordinated protection in motor branch circuit
Understanding type 2 coordinated protection in motor branch circuit
 
Health Monitoring of Industrial and Electrical Equipment
Health Monitoring of Industrial and Electrical EquipmentHealth Monitoring of Industrial and Electrical Equipment
Health Monitoring of Industrial and Electrical Equipment
 
Major_project_b.tech_sem8_may_2018
Major_project_b.tech_sem8_may_2018Major_project_b.tech_sem8_may_2018
Major_project_b.tech_sem8_may_2018
 
TouchED
TouchEDTouchED
TouchED
 
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
DETECTING POWER GRID SYNCHRONISATION FAILURE ON SENSING BAD VOLTAGE OR FREQUE...
 
A-ConMonIntro.ppt
A-ConMonIntro.pptA-ConMonIntro.ppt
A-ConMonIntro.ppt
 

Dernier

Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 

Dernier (20)

Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 

Battery Backup Workshop Provides Insights

  • 1. © 2013 Utilities Telecom Council May  5-­‐8,  2015    |    Atlanta,  GA    |    www.utctelecom.org BATTERY  BACKUP  WORKSHOP MAY  5,  2015 NO POWER=NO SERVICE DAKX TURCOTTE MULTITEL INC.
  • 2. DISCLAIMER From concept to more practical & technical content. 2
  • 3. 3 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 4. WHAT’S A BATTERY? a container consisting of one or more cells, in which chemical energy is converted into electricity and used as a source of power. bat·ter·y /ˈbatərē/ noun 4
  • 5. WHAT’S A BATTERY? Electrolytes allow ions to move between the electrodes, which allows current to flow out of the battery to perform work. 5
  • 8. WHAT’S A BATTERY? Lower specific energy than common fuels. Only energy type that delivers their energy as electricity. Meaning they are efficiently converted to mechanical work. 8
  • 9. WHAT’S A BATTERY? Wet cell (VLA) jar VRLA jar Battery string/bank 9
  • 10. 10 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 11. 11 CHANCES ARE… The stats from our commercial telecom customers are, on average: • Number of outages: 4 outages per site per year • Length of each outage: 1.5 hours • Direct cost of losing a telecom site: $250,0001 • Indirect cost of losing a telecom site: $150,0001 • Direct cost of losing a substation’s protection: TBD2 • Indirect cost of losing a substation’s protection: TBD2 Note: 1: Direct and indirect costs attributed to a battery-related outage when a site was lost in Miami, FL by a major US telecom operator 2: “We don’t even want to image it” is more likely the answer…
  • 12. MOREOVER… 3 things we know with absolute certainty about batteries: (1) limited CAPACITY (2) finite and unpredictable LIFETIME (3) always fail EXACTLY when you need them 12
  • 13. What are your chances of running on batteries? I would say: PRETTY HIGH. 13
  • 14. 14 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 15. TOP 10 #BATTERY_FAILS 10 - Prolonged period without being used 9 - Battery post corrosion, causing (dis)charge problems 8 - Excessive deep discharges 7 - Bad manufacturing process or material 6-Torquing: too much > break terminal seal, too little > short 15
  • 16. TOP 10 #BATTERY_FAILS 5 -AC ripple (on UPS batteries) 4 - Lack of electrolyte (wet cell batteries) 3 - ↑25°C > corrosion > self discharge > thermal runaway 2 - Over-charging = creates heat = loss of water = sulfation 1 - Under-charging = electrolyte stratification 16
  • 17. 17 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 18. WHY DO YOU NEED IT? 18
  • 19.
  • 20. WHY DO YOU NEED IT? Because there can be up to 15 pieces of equipment making for the “POWER-TRAIN”within a telecom site. Because OUTAGES & EQUIPMENT MALFUNCTIONS happen. Because it impacts you and your CUSTOMERS. And because it’s EXPENSIVE. 20
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28. 28
  • 29. 29 WHY DO YOU NEED IT? A few stats on availability or poor backup management: • 99.9% (Three Nines) availability = 9 hrs/year of downtime.1 • 99.9999% (Six Nines) availability = 30 seconds/year of downtime.2 • 1 hour of downtime equates to $2.0M/hour in the telecom industry.3 • It’s terrible for your customers: $1.4 million/hour to financial institutions.3 • $80B: the amount of yearly losses due to power disturbances in the US. 66% of that caused by momentary disturbances, 34% caused by sustained interruptions of more than 5 minutes.4 References: 1: GilderGroup 2: The dawn of on-site power: http://ecmweb.com/cee-news-archive/dawn-site-power 3: Overhead: The cost of downtime: http://itknowledgeexchange.techtarget.com/overheard/overhead-the-cost-of-downtime/ 4: Berkeley Lab Study Estimates $80 Billion Annual Cost of Power Interruptions: http://www.lbl.gov/Science-Articles/Archive/EETD-power-interruptions.html
  • 30. It’s clear, YOU NEED BATTERIES. 30
  • 31. 31 The questions you need to ask: • How much time do you need? • How much time do you really have? • In what state of health is your backup? • Can you consistently meet your average failure? • What happens if your backup doesn’t work?
  • 32. So, let’s see what the role of Field Operations is when it comes to battery backup. 32
  • 33. 33 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 34. Field Maintenance and Operations teams are typically responsible for two aspects of battery backup: MAINTENANCE ROUTINES & OUTAGE INTERVENTION. 34
  • 35. 35 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 36. MAINTENANCE ROUTINES The two reasons why you do battery preventative maintenance routines are: BATTERIES WILL FAIL & NERC COMPLIANCY. 36
  • 37. NERC COMPLIANCY What is NERC COMPLIANCY? 37
  • 38. NERC COMPLIANCY NERC has multiple RELIABILITY STANDARDS. One of them is PRC-005-2, which will be enforced starting April 1, 2015, but should have been used starting February 24, 2014. It covers the MAINTENANCE of all Protection Systems affecting the reliability of the Bulk Electric System (BES) so that these Protection Systems are kept in working order. 38
  • 39. NERC COMPLIANCY Basically, it tells you what tests & time intervals to follow for your BATTERY MAINTENANCE. It is applicable to both protection relays & TELECOMMUNICATIONS SITES. 39
  • 40. NERC COMPLIANCY Maximum Maintenance Interval Maintenance Activity VLA (wet cell) VRLA 4 Calendar Months Verify • Station DC supply voltage Inspect • Electrolyte level • For unintentional grounds ✓ ✓ 6 Calendar Months Inspect • Measure battery cell internal ohmic values for each battery cells ✓ 18 Calendar Months Verify • Float voltage of battery charger • Battery continuity • Battery terminal connection resistance • Battery intercell or unit-to-unit connection resistance Inspect • Cell condition of all battery cells (visible cells) or measure battery cell internal ohmic values (not visible cells) • Physical condition of battery rack ✓ ✓ 18 Calendar Months or 6 Calendar Years Verify • Internal ohmic values or float current per cell compared to baseline or Verify • Full or modified capacity (discharge, load) test on the entire battery bank ✓ ✓ But every 3 years for the capacity test 40
  • 41. NERC COMPLIANCY If, like most companies, you have VRLAs, you need to test your batteries EVERY 6 MONTHS using an ohmic test (conductance, impedance). And you have to demonstrate COMPLIANCY… 41
  • 42. What’s a test procedure like? 42
  • 43. PSMP Always refer to your Protection System Maintenance Program Start Here 43
  • 44. PSMP Always refer to your Protection System Maintenance Program Start Here Ticket A technician will typically receive an automated ticket to perform a maintenance routine 44
  • 45. PSMP Always refer to your Protection System Maintenance Program Start Here Ticket A technician will typically receive an automated ticket to perform a maintenance routine Plan Workload A technician will typically receive an automated ticket to perform a maintenance routine 45
  • 46. PSMP Always refer to your Protection System Maintenance Program Start Here Ticket A technician will typically receive an automated ticket to perform a maintenance routine Plan Workload A technician will typically receive an automated ticket to perform a maintenance routine Execute Routine A technician will typically receive an automated ticket to perform a maintenance routine 46
  • 47. ROUTINE EXECUTION 1 - Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear. Test specific gravity of each wet cells’ jars 47
  • 49. ROUTINE EXECUTION 1 2 Visual inspection of each battery jar and battery rack - Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear. Test specific gravity of each wet cells’ jars - Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells… 49
  • 50. 50
  • 51. 51
  • 52. 52
  • 53. 53
  • 54. 54
  • 55. 55
  • 56. 56
  • 57. 57
  • 58. 58
  • 59. 59
  • 60. ROUTINE EXECUTION 1 2 Visual inspection of each battery jar and battery rack - Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear. Test specific gravity of each wet cells’ jars - Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells… 3 Full or modified capacity test (aka discharge/load) - Get a load bank & volt meter. As the battery is discharging, you want to take voltage reading of each jar, and at the power plant level, at specific time intervals. Your goal is to measure the time it will take to reach your end-voltage threshold. 60
  • 61. CAPACITY TEST Capacity test procedure for wet cell (VLA) batteries is detailed in IEEE Standard 450-2010. Capacity test procedure for VRLA batteries is details in IEEE Standard 1188-2005. 61
  • 62. CAPACITY TEST PROS CONS • Definitive test to measure your battery reserve time • Takes time & is relatively expensive • Need a load bank • It’s relatively technical and requires a high level of security & training, dangerous for people without proper training • It damages the battery • Two plates push electrons from one plate to the other. • The more you do it, the more porous the plates become. 62
  • 63. 63
  • 64. ROUTINE EXECUTION 1 2 Visual inspection of each battery jar and battery rack - Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear. Test specific gravity of each wet cells’ jars - Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells… 3 Full or modified capacity test (aka discharge/load) - Get a load bank & volt meter. As the battery is discharging, you want to take voltage reading of each jar, and at the power plant level, at specific time intervals. Your goal is to measure the time it will take to reach your end-voltage threshold. 4 Manual or automated ohmic test - Manual using a portable ohmic testing device, or automated using a battery monitoring system. 64
  • 65.
  • 66. German physicist. High school teacher. Began his research with a recent invention by Italian Count Alessandro Volta. Using equipment of his creation, he determined that there is a: direct proportionality between the potential difference applied across a conductor and the resultant electric current. 66
  • 67. Who is Georg Simon Ohm (17 March 1789 – 6 July 1854) 67
  • 68. OHM’S LAW Ohm's law states that the current through a conductor between two points is directly proportional to the potential difference across the two points, and inversely proportional to the resistance between them. 68
  • 69. CONDUCTANCE Conductance is a measurement of the plate surfaces available for chemical reaction. High relative conductance is a reliable indication of a healthy battery. Conductance declines as the battery fails. By applying an electrical voltage of a known frequency and amplitude across the jar and measuring the current that flows in response to it.The conductance (acceptance) is the ratio of the AC test current impressed on the jar that is in-phase with the AC voltage, compared to the AC voltage producing it. DC Resistance: Short duration DC load on the cell/unit to measure step change in current and voltage. By dividing the change in voltage by the change in current, a DC resistance is calculated using Ohm's law. 69
  • 70. IMPEDANCE Performed by sending an electrical current of a known frequency and amplitude, across the cell/unit/block and measuring the AC voltage drop. Compute the resulting impedance using Ohm's law. 70
  • 71. CONDUCTANCE VS. IMPEDANCE Conductance - Decreases with battery age Impedance - Increases with battery age 71
  • 72. OHMIC TEST Ohmic test procedure for wet cell (VLA) batteries is detailed in IEEE Standard 450-2010. Ohmic test procedure for VRLA batteries is details in IEEE Standard 1188-2005. 72
  • 73. 73
  • 74. BATTERY MONITOR You can automate ohmic testing using a battery monitoring system. Even if the cost is high (~$2,500 per site), the ability to catch a battery before it fails outpace its cost. Selection and use of a battery monitoring system is detailed in IEEE Standard 1491-2005. 74
  • 75. OHMIC TEST PROS CONS • Non-intrusive • No torquing required as you test the intercell straps • Quicker & safer than a capacity test • Standardized w/ choice of equipment out there • Statistically-proven relationship between ohmic & capacity as tested by discharge • Good way to test that a new battery is good & creating a baseline • Rapid way of tracking relative health & identifying jars/batteries that fail prematurely • General agreement that it is not as definitive as capacity test… • % of negative-pass • Some statistical anomalies that can cloud results • Make sure you have the right reference value when analyzing test results 75
  • 76. ROUTINE EXECUTION 1 2 Visual inspection of each battery jar and battery rack - Use the turkey baster to measure the specific gravity of each cell. There’s a big drawback: you need protective gear. Test specific gravity of each wet cells’ jars - Get a flashlight and look for bottom jar’s sediment, warping of place, cracked or broken plates, seeping of acid around the posts, acid leakage at the bottom of the rack, installation issues, electrolyte level for wet cells… 3 Full or modified capacity test (aka discharge/load) - Get a load bank & volt meter. As the battery is discharging, you want to take voltage reading of each jar, and at the power plant level, at specific time intervals. Your goal is to measure the time it will take to reach your end-voltage threshold. 4 Manual or automated ohmic test - Manual using a portable ohmic testing device, or automated using a battery monitoring system. 76
  • 77. A 5FT “TEST”… If you didn’t upgrade your power plant to an intelligent one, you should EQUALIZE your batteries, by making sure float voltage is at the right value for each jar. 77
  • 78. PSMP Always refer to your Protection System Maintenance Program Start Here Ticket A technician will typically receive an automated ticket to perform a maintenance routine Plan Workload A technician will typically receive an automated ticket to perform a maintenance routine Execute Routine A technician will typically receive an automated ticket to perform a maintenance routine Continue Here Review Tech’s live review & analysis of test data 78
  • 80. PSMP Always refer to your Protection System Maintenance Program Start Here Ticket A technician will typically receive an automated ticket to perform a maintenance routine Plan Workload A technician will typically receive an automated ticket to perform a maintenance routine Execute Routine A technician will typically receive an automated ticket to perform a maintenance routine Continue Here Review Tech’s live review & analysis of test data Close Routine Complete & close PM ticket 80
  • 81. PSMP Always refer to your Protection System Maintenance Program Start Here Ticket A technician will typically receive an automated ticket to perform a maintenance routine Plan Workload A technician will typically receive an automated ticket to perform a maintenance routine Execute Routine A technician will typically receive an automated ticket to perform a maintenance routine Continue Here Review Tech’s live review & analysis of test data Close Routine Complete & close PM ticket Send to Eng. Email test results to engineering for further analysis & replacement request form filled-out if need be 81
  • 82. PSMP Always refer to your Protection System Maintenance Program Start Here Ticket A technician will typically receive an automated ticket to perform a maintenance routine Plan Workload A technician will typically receive an automated ticket to perform a maintenance routine Execute Routine A technician will typically receive an automated ticket to perform a maintenance routine Continue Here Review Tech’s live review & analysis of test data Close Routine Complete & close PM ticket Send to Eng. Email test results to engineering for further analysis & replacement request form filled-out if need be Engineering Takes Over • Approve/refuse replacement • Crunch test data and load in central repository • Provide metrics for NERC’s compliancy 82
  • 83. 83 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 84. OUTAGE INTERVENTION Field technicians are the first people to be called/ dispatched in case of: MAIN POWER OUTAGE & POWER EQUIPMENT FAILURE. 84
  • 85. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here 85
  • 86. ALARM There are typically 2 events that will trigger a BOD alarm: AC FAIL & CHARGER FAIL. 86
  • 87. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here Dispatch NOC will dispatch closest technician to site 87
  • 88. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here Dispatch NOC will dispatch closest technician to site Validate ETA If not done by NOC, a tech will validate the cause of outage, length & ETA to restore 88
  • 89. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here Dispatch NOC will dispatch closest technician to site Validate ETA If not done by NOC, a tech will validate the cause of outage, length & ETA to restore Validate BRT Based on outage information, technician will validate the estimated battery reserve time (BRT) on site 89
  • 90. AS A RULE OF THUMB Validated ETA - Validated BRT = Time to get to a site & react/repair 90
  • 91. VALIDATE BRT A validated Battery Reserve Time (BRT) is a key metric field technicians need to react in optimal fashion in case of outage or equipment failure. • Get there as soon as necessary • Bring the right equipment (generator, generator connector fitting plug and cable, replacement parts) • Do as few truck rolls as possible • Keep the site up 91
  • 92. VALIDATE BRT There are 4 steps needed to validate BRT: (1) look for the last available LOAD reading (2) look for records of exact battery MODEL installed on site (3) find battery model’s DATASHEET with specific capacity measurements at specific end-voltage value (4) use rule of thumb or PEUKERT to estimate BRT 92
  • 93.
  • 94. German scientist. In 1897, presented his “law” that expresses the capacity of a battery in terms of the rate at which it is discharged. As the rate increases, the battery's available capacity decreases. 94
  • 96. PEUKERT Manufacturers rate the capacity of a battery with reference to a discharge time.A battery might be rated at 100 Ah when discharged at a rate that will fully discharge the battery in 20 hours. In this example, the discharge current would be 5 amperes. If the battery is discharged in a shorter time, with a higher current, the delivered capacity is less. 96
  • 97. PEUKERT What you need to know: (1) The law is not a law, it’s a recognized concept. (2) Peukert determines a “k” factor to apply to a battery technology. For telecom batteries: 1.2. 97
  • 100. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here Dispatch NOC will dispatch closest technician to site Validate ETA If not done by NOC, a tech will validate the cause of outage, length & ETA to restore Validate BRT Based on outage information, technician will validate the estimated battery reserve time (BRT) on site Continue Here Truck Roll Get all you need and get to the site 100
  • 101. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here Dispatch NOC will dispatch closest technician to site Validate ETA If not done by NOC, a tech will validate the cause of outage, length & ETA to restore Validate BRT Based on outage information, technician will validate the estimated battery reserve time (BRT) on site Continue Here Truck Roll Get all you need and get to the site Repair Proceed with repair or hook-up generator 101
  • 102. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here Dispatch NOC will dispatch closest technician to site Validate ETA If not done by NOC, a tech will validate the cause of outage, length & ETA to restore Validate BRT Based on outage information, technician will validate the estimated battery reserve time (BRT) on site Continue Here Truck Roll Get all you need and get to the site Repair Proceed with repair or hook-up generator Turn On Power Once repaired, or AC is back on, switch off generator and go back to commercial power 102
  • 103. Alarm to NOC NOC received “Battery On Discharge” & other alarms Start Here Dispatch NOC will dispatch closest technician to site Validate ETA If not done by NOC, a tech will validate the cause of outage, length & ETA to restore Validate BRT Based on outage information, technician will validate the estimated battery reserve time (BRT) on site Continue Here Truck Roll Get all you need and get to the site Repair Proceed with repair or hook-up generator Turn On Power Once repaired, or AC is back on, switch off generator and go back to commercial power Wait!!!!! • Make sure you have enough charger capacity to manage: • in-rush current • recharge batteries • carry the DC load • hope the batteries are recharged before power goes out again… • … all at the same time 103
  • 104. You’ve just glanced at what a technicians needs to know when it comes to battery backup… And you thought engineers had it hard!? 104
  • 105. 105 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 106. Engineering teams are typically responsible for two aspects of battery backup: PLANNING/SIZING & REPLACING. 106
  • 107. 107 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 108. PLANNING When planning new projects in new or existing sites, engineering needs to RIGHT-SIZE the batteries to be deployed. Let’s see what that means. 108
  • 109. Project Issued Once strategic engineering is done & funding approved Start Here 109
  • 110. Project Issued Once strategic engineering is done & funding approved Start Here Estimate Load Look for the THEORETICAL DC load of new equipment 110
  • 111. Project Issued Once strategic engineering is done & funding approved Start Here Estimate Load Look for the THEORETICAL DC load of new equipment Challenge That Theoretical loads will always vary, typically they are inflated. Agree on a maximum load 111
  • 112. Project Issued Once strategic engineering is done & funding approved Start Here Estimate Load Look for the THEORETICAL DC load of new equipment Challenge That Theoretical loads will always vary, typically they are inflated. Agree on a maximum load Pick Site Type The type of site you pick with have a huge influence on the battery solution you end up with 112
  • 113. PICK SITE TYPE Two important aspects to site type: (1) Available FLOOR SPACE (2) FLOOR LOADING capacity Large site Small site Wet cell VRLA 300 lbs/sq.ft 125 lbs/sq.ft Wet cell VRLA 113
  • 114. Project Issued Once strategic engineering is done & funding approved Start Here Estimate Load Look for the THEORETICAL DC load of new equipment Challenge That Theoretical loads will always vary, typically they are inflated. Agree on a maximum load Pick Site Type The type of site you pick with have a huge influence on the battery solution you end up with Continue Here Pick Battery Pick the battery solution & model you want in your site 114
  • 115. PICK BATTERY There are two battery technologies to pick from: WET CELL (VLA) & VRLA. 115
  • 116. PICK BATTERY WET CELL (VLA) VRLA • Proven since… >100 years • Robust • Reliable • Recover well • Long lifetime Pros Cons • Acid!!! • Lead!! • Takes space • Heavy • Requires “maintenance” • Produces hydrogen gas during charging • Needs hydrogen sensor, proper ventilation & equipment in battery room • Small & portable • Easier to install • Can fit anywhere • Lighter • Requires no “dangerous” maintenance • Shorter lifetime • Smaller value over the long run • Higher risks of thermal runaway ConsPros 116
  • 117. PICK BATTERY Before picking a battery manufacturer & model, check with your STANDARDS group or TECHNOLOGY ADVISOR, they typically have a few selections they want you to use. 117
  • 118. Project Issued Once strategic engineering is done & funding approved Start Here Estimate Load Look for the THEORETICAL DC load of new equipment Challenge That Theoretical loads will always vary, typically they are inflated. Agree on a maximum load Pick Site Type The type of site you pick with have a huge influence on the battery solution you end up with Continue Here Pick Battery Pick the battery solution & model you want in your site Find Specs Use the battery manufacturer spec sheet to decide which capacity version you need 118
  • 119. FIND SPECS Each battery model has a specific capacity value for specific end-voltage designs. It’s the engineer’s job to make sure he designs with the right specs. 119
  • 120. FIND SPECS Each battery model has a specific NOMINAL CAPACITY rating (in Ah) for specific END-VOLTAGE designs, for a REQUIRED RESERVE TIME duration. It’s the engineer’s job to make sure he designs with the right specs. 120
  • 124. Project Issued Once strategic engineering is done & funding approved Start Here Estimate Load Look for the THEORETICAL DC load of new equipment Challenge That Theoretical loads will always vary, typically they are inflated. Agree on a maximum load Pick Site Type The type of site you pick with have a huge influence on the battery solution you end up with Continue Here Pick Battery Pick the battery solution & model you want in your site Find Specs Use the battery manufacturer spec sheet to decide which capacity version you need Size After picking a model, you now need to decide on the quantity needed to support your load 124
  • 125. SIZE You’re almost there. You know which model you want to pick & you know your load. BUT… 125
  • 126. SIZE BUT… You need to provision for growth @ battery end of life. The reality of telecom facilities is that they change. New technologies get added, load will vary. You need to provision for that from day one. 126
  • 127. SIZE Total Projected Load ➗ Nominal Capacity Specs of chosen model = THE NUMBER OF STRINGS NEEDED OF THAT MODEL 127
  • 128. SIZE - EXAMPLE Projected Load (A) 100 Battery Model Specs (Ah) (Enersys SBS170F @ 1.75Vpc @ 8hours) 21.6 Number of Strings Needed 4.6 Note: Some people add an aging factor, like 1.25, to the number of strings needed. You don’t have to, but you can if you feel you have the money or your projected load is not relevant. 128
  • 129. Project Issued Once strategic engineering is done & funding approved Start Here Estimate Load Look for the THEORETICAL DC load of new equipment Challenge That Theoretical loads will always vary, typically they are inflated. Agree on a maximum load Pick Site Type The type of site you pick with have a huge influence on the battery solution you end up with Continue Here Pick Battery Pick the battery solution & model you want in your site Find Specs Use the battery manufacturer spec sheet to decide which capacity version you need Size After picking a model, you now need to decide on the quantity needed to support your load Issue Install & Project Request • Once the project is sent out: • make sure you wait until the project is completed before updating records, in case of outage • don’t forget to update records with new battery model & information • make sure technicians know the ohmic reference value for that model 129
  • 130. 130 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 131. REPLACING Based on Murphy’s law, if you have bad batteries, even if you did everything else right, for sure,THAT ONE SITE WILL FAIL. Replacing a battery is as important as installing a new one. 131
  • 132. Get Data Get test data from field technicians at regular intervals Start Here 132
  • 133. Get Data Get test data from field technicians at regular intervals Start Here Analyze Data Look for the THEORETICAL DC load of new equipment 133
  • 134. ANALYZE DATA The data you’ll receive from field technicians is the only & best metric you have to make a decision to maximize uptime. It’s important, don’t just file it without looking at it. 134
  • 135. ANALYZE DATA Things to look for: (1) Has the load reading changed since last time? (2) Was the temperature in the site constant at 25°C? (3) Is the float voltage of the jars and strings at the right value? > Remotely connect to the controller to make sure. < (4) Where are the ohmic test results compared to the reference? 135
  • 136. OHMIC REFERENCE The ohmic reference value is a hot topic: (1) Do not trust the reference value the tech was using. (2) Ideally, have each new string benchmarked at 6 months. (3) Get the reference from the battery manufacturer. Don’t use it just yet. (4) Get reference value from Midtronics or other equipment vendors. Use this one if it’s slightly lower than the mfg’s. (5) Repeat for each of your sites. 136
  • 137. OHMIC REFERENCE At which reference value should you REPLACE? Status Conductance Reference Impedance Reference Jars are GOOD when > = 80% < = 70% Jars are WARNING when < 80% and > = 60% > 70% and < = 90% Jars are BAD when < 60% > 90% 137
  • 138. Get Data Get test data from field technicians at regular intervals Start Here Analyze Data Look for the THEORETICAL DC load of new equipment No Data = Age For the sites for which you didn’t get data in the past 24 months, use age as your replacement trigger 138
  • 139. NO DATA What do you do if you do not have data? (1) Don’t even try hiding it from NERC. (2) Use age as your replacement trigger. (3) Send a tech as fast as you can to inspect & measure. 139
  • 140. Get Data Get test data from field technicians at regular intervals Start Here Analyze Data Look for the THEORETICAL DC load of new equipment No Data = Age For the sites for which you didn’t get data in the past 24 months, use age as your replacement trigger Replacement List Build a replacement list based on all the data files you received. 140
  • 141. REPLACEMENT LIST What do you do if you do not have data? (1) Don’t even try hiding it from NERC. (2) Use age as your replacement trigger. (3) Send a tech as fast as you can to inspect & measure. 141
  • 142. Get Data Get test data from field technicians at regular intervals Start Here Analyze Data Look for the THEORETICAL DC load of new equipment No Data = Age For the sites for which you didn’t get data in the past 24 months, use age as your replacement trigger Replacement List Build a replacement list based on all the data files you received. Continue Here Recalculate BRT When you received your test results, you also go a new DC load reading 142
  • 143. RECALCULATE BRT Ohmic test results can be represented a % of your reference. Can you use that % as a de-rating factor to reduce battery capacity? 143
  • 147. RECALCULATE BRT When you got your test data back from field operations, you also got an updated DC load reading. If it changed, use the new value to recalculate your updated Battery Reserve Time (BRT). 147
  • 148. Get Data Get test data from field technicians at regular intervals Start Here Analyze Data Look for the THEORETICAL DC load of new equipment No Data = Age For the sites for which you didn’t get data in the past 24 months, use age as your replacement trigger Replacement List Build a replacement list based on SOH & age Continue Here Recalculate BRT When you received your test results, you also go a new DC load reading Repeat Don’t forget to repeat this for each site in your network 148
  • 149. Get Data Get test data from field technicians at regular intervals Start Here Analyze Data Look for the THEORETICAL DC load of new equipment No Data = Age For the sites for which you didn’t get data in the past 24 months, use age as your replacement trigger Replacement List Build a replacement list based on SOH & age Continue Here Recalculate BRT When you received your test results, you also go a new DC load reading Repeat Don’t forget to repeat this for each site in your network BRT List For any site lacking BRT, create a list to add battery capacity 149
  • 150. BRT LIST Build a list of all the sites that require added batteries to support: (1) De-rated capacity based on ohmic test results (2) Updated DC load reading 150
  • 151. Get Data Get test data from field technicians at regular intervals Start Here Analyze Data Look for the THEORETICAL DC load of new equipment No Data = Age For the sites for which you didn’t get data in the past 24 months, use age as your replacement trigger Replacement List Build a replacement list based on SOH & age Continue Here Recalculate BRT When you received your test results, you also go a new DC load reading Repeat Don’t forget to repeat this for each site in your network BRT List For any site lacking BRT, create a list to add battery capacity Cross Reference Both Lists to Create Projects • You end up with two replacement lists, based on: • Ohmic state-of-health (SOH) & age • De-rated capacity & updated load • Cross-reference to: • Prioritize replacement needs • Preventing mistakes such as adding capacity when you should install new model 151
  • 152. So, who has the toughest job? FIELD TECHNICIANS or ENGINEERS? 152
  • 153. My point: to maximize battery backup & uptime, you need both teams to work in full cooperation. It’s a question of COMMUNICATION & CULTURE. Promoting this should be a high priority… Everything else is a process. 153
  • 154. 154 ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 155. EXTEND LIFETIME My conclusion today: what can you do to help extend the lifetime of your batteries? (4) Top wet cells up in the spring. (3) Never discharge them… hahaha! (2) 25°C all the time (1) Float them at the right voltage 155
  • 156. ➡ DISCLAIMER ➡ INTRODUCTION ➡ WHAT IS A BATTERY? ➡ WHAT ARE YOUR CHANCES OF RUNNING ON BATTERIES? ➡ WHY DO BATTERIES FAIL? ➡ WHY DO YOU NEED IT? ➡ BATTERY BACKUP: FIELD OPERATIONS ➡ PREVENTIVE MAINTENANCE ➡ OUTAGE INTERVENTION ➡ BATTERY BACKUP: ENGINEERING PERSPECTIVE ➡ PLANNING NEW PROJECTS ➡ REPLACING OLD OR EXISTING PROJECTS ➡ CONCLUSION ➡ SHAMELESS PLUG & FREEBIE
  • 157. We’re at > 150 slides. It’s a little overwhelming.
  • 159. At Multitel, we’ve developed a tool that’s AUTOMATING most of the processes & steps you’ve seen here today. FIRM Battery Management It’s the first enterprise software that gives snapshot & detailed views of your at risk sites when it comes to batteries.
  • 160. 1 2 4 6 3 5 1. # of routines completed for the network, per region, per technician 2. # of cells failed or failing based on impedance 3. # of cells failed or failing based on conductance From the Dashboard, you have access to: 4. List of sites with problems that need escalation 5. List of routines w/ problem or warnings needing approval 6. List of sites for which technicians did an inventory change requiring approval before being updated in FIRM 160
  • 161. Through a simple interface, it helps field technicians quickly upload test data. And crunches it automatically to generate prioritized replacement lists. Saving engineers valuable time.
  • 163. And automatically updates Battery Reserve Time (BRT).
  • 164. No matter who you are in the company, no matter the event, no matter where you are: always know the updated reserve time in each site within the network.
  • 165. FREEBIE Come see us at booth #308 to learn more about FIRM Battery Management and we’ll show you the Top 10 Best & Worst battery models for both Wet Cells & VRLAs.
  • 166. Data analytics - always know which batteries are best or worst performing within your network, drill to understand more. Worst 10 models Worst failures rates Worst production years
  • 167. May  5-­‐8,  2015    |    Atlanta,  GA    |    www.utctelecom.org Dakx Turcotte Mobile: +1-418-262-0575 Email: dakx.turcotte@multitel.com Booth # 903