Sawtooth Windows for Feature Aggregations

Databricks
DatabricksDeveloper Marketing and Relations at MuleSoft à Databricks
Sawtooth Windows
Zipline - Feature Engineering Framework
Nikhil Simha
nikhil.simha@airbnb.com
• Machine Learning
• Supervised
• Structured data – database records, event streams
• Not unstructured data – images, video, audio, text
• Not labels
Features in context
Exploration
Problem
Feature
Creation
Model
Training
Model
Serving
Feature
Serving
Application
Labeling
• Complex models > Simple models
• Can learn complicated relationships within data
Rules of thumb
• Good data >> Bad data
• Labels: True, Balanced
• Features:
• Consistent
• Real-time
• Stable
Rules of thumb
• Simple models + good data >> Complex models + Bad data
• Effort to better data >> Effort to better model
• Realtime features are hard
• Windowed Aggregations are unsupported/inefficient
• Training/Serving consistency
Rules of thumb
• Inadequate data sources
• Event sources: Don’t go back in history
• Database sources: Range scans are very expensive
• Skill gap
• ML vs system engineering
• Missing Backfills - Slow iteration
Hardness of Realtime features
• Features should be real-time
• Features are aggregations
• Most aggregations should be windowed
• Sawtooth windows
Goal
Example
● Restaurant recommendation
● Ratings of restaurant last year
● Check-ins of user by cuisine in the last month
● Latest cuisine check-in by user
Checkins
Ratings
1 1 1
3
Time
1
2 4
Label L
Prediction P1 P2
3
3
4
2.5
L L
Training
data set
Contract
● Serving
● User, Restaurant -> avg_restaurant_rating_1yr, cuisine_visits_30d
● Training
● Labeled Data: (User, Restaurant, timestamp, label)
● Enrich with features
Data sources
● Events
● Timestamped – user_txn stream
● Entities
● As served by microservices etc
● Based on DB
● User_balance table
● Or non-real-time : dim/fct tables
Service
Fleet
Production
Database
DB
Snapshot
Event log
Change
Capture
Stream
Event
Stream
Change
capture log
M
essage
Bus
D
a
t
a
L
a
k
e
Live
Derived
Data
Media
Feature Set Example
Feature Set Example
Feature Set Example
API – Philosophy
• SQL is two languages
• Keep Expression Language
• CAST(get_json_object(response, “$.age”) AS BIGINT)
• Control Structural language
• GROUPBY, JOIN, HAVING, SELECT, WHERE, FROM
API – Philosophy
Windows are first class
Source equivalence: topic ~ table ~ mutations
Data Models are first class
Entity (dim)
Events (fact, timestamped)
API – Internals
• Python -> Thrift-Json -> Spark + Scala
• Versioned
• Driven by airflow
Aggregation Math
Aggregations – SUM
• Commutative: a + b = b + a
• Order independent
• Associative: (a + b) + c = a + (b + c)
• Parallelizable
Aggregations – AVG
• One not-so-clever trick
• Operate on “Intermediate Representation” / IR
• Factors into (sum, count)
• Finalized by a division: (sum/count)
Aggregations
• Constant memory / Bounded IR
• Two classes of aggregations
• Sum, Avg, Count
• Min/Max, Approx Unique, percentiles, topK
• Mutations – updates, deletes etc.
Windows – Hopping
Windows – Hopping
• Staleness
• As stale as the hop size
• Memory Efficient
• One partial per hop
Windows – Sliding
• Freshness
• Memory intensive
Windows – Sawtooth
• Freshness
• Writes are taken into account immediately
• Memory
• Partial aggregates per hop
Windows – Sawtooth
Windows – Sawtooth
• Catch
• sum/count vs others
• Consistency
Model Server
Serving Architecture
Feature
Declaration
Streaming
aggregates
Batch
aggregates
Feature
Store
Model
Feature
Client
Application
Server
Windows – Lambda
• Points of change
Windows – Lambda
Choosing hops
• Automatically chosen
• Hop size < x% of window size
• Daily, hourly, 5minute
• X ~ 8.34%
• Caching – variety of window sizes can re-use the hop
• 90d, 30d
• Across windows & across queries
Questions
1 sur 34

Recommandé

Data profiling in Apache Calcite par
Data profiling in Apache CalciteData profiling in Apache Calcite
Data profiling in Apache CalciteDataWorks Summit
595 vues21 diapositives
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S... par
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark Summit
9.4K vues76 diapositives
SOS: Optimizing Shuffle I/O with Brian Cho and Ergin Seyfe par
SOS: Optimizing Shuffle I/O with Brian Cho and Ergin SeyfeSOS: Optimizing Shuffle I/O with Brian Cho and Ergin Seyfe
SOS: Optimizing Shuffle I/O with Brian Cho and Ergin SeyfeDatabricks
1.6K vues32 diapositives
Cassandra Introduction & Features par
Cassandra Introduction & FeaturesCassandra Introduction & Features
Cassandra Introduction & FeaturesDataStax Academy
31.9K vues21 diapositives
HBaseCon 2015: HBase Performance Tuning @ Salesforce par
HBaseCon 2015: HBase Performance Tuning @ SalesforceHBaseCon 2015: HBase Performance Tuning @ Salesforce
HBaseCon 2015: HBase Performance Tuning @ SalesforceHBaseCon
6.1K vues54 diapositives
Magnet Shuffle Service: Push-based Shuffle at LinkedIn par
Magnet Shuffle Service: Push-based Shuffle at LinkedInMagnet Shuffle Service: Push-based Shuffle at LinkedIn
Magnet Shuffle Service: Push-based Shuffle at LinkedInDatabricks
487 vues22 diapositives

Contenu connexe

Tendances

Getting The Best Performance With PySpark par
Getting The Best Performance With PySparkGetting The Best Performance With PySpark
Getting The Best Performance With PySparkSpark Summit
27.2K vues49 diapositives
Apache Spark overview par
Apache Spark overviewApache Spark overview
Apache Spark overviewDataArt
1.2K vues41 diapositives
Intro to HBase par
Intro to HBaseIntro to HBase
Intro to HBasealexbaranau
42.7K vues27 diapositives
Building robust CDC pipeline with Apache Hudi and Debezium par
Building robust CDC pipeline with Apache Hudi and DebeziumBuilding robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and DebeziumTathastu.ai
2.7K vues17 diapositives
A Thorough Comparison of Delta Lake, Iceberg and Hudi par
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and HudiDatabricks
11.1K vues27 diapositives
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ... par
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Flink Forward
578 vues34 diapositives

Tendances(20)

Getting The Best Performance With PySpark par Spark Summit
Getting The Best Performance With PySparkGetting The Best Performance With PySpark
Getting The Best Performance With PySpark
Spark Summit27.2K vues
Apache Spark overview par DataArt
Apache Spark overviewApache Spark overview
Apache Spark overview
DataArt1.2K vues
Building robust CDC pipeline with Apache Hudi and Debezium par Tathastu.ai
Building robust CDC pipeline with Apache Hudi and DebeziumBuilding robust CDC pipeline with Apache Hudi and Debezium
Building robust CDC pipeline with Apache Hudi and Debezium
Tathastu.ai2.7K vues
A Thorough Comparison of Delta Lake, Iceberg and Hudi par Databricks
A Thorough Comparison of Delta Lake, Iceberg and HudiA Thorough Comparison of Delta Lake, Iceberg and Hudi
A Thorough Comparison of Delta Lake, Iceberg and Hudi
Databricks11.1K vues
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ... par Flink Forward
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Flink Forward578 vues
Apache Spark in Depth: Core Concepts, Architecture & Internals par Anton Kirillov
Apache Spark in Depth: Core Concepts, Architecture & InternalsApache Spark in Depth: Core Concepts, Architecture & Internals
Apache Spark in Depth: Core Concepts, Architecture & Internals
Anton Kirillov9.6K vues
One sink to rule them all: Introducing the new Async Sink par Flink Forward
One sink to rule them all: Introducing the new Async SinkOne sink to rule them all: Introducing the new Async Sink
One sink to rule them all: Introducing the new Async Sink
Flink Forward314 vues
High-speed Database Throughput Using Apache Arrow Flight SQL par ScyllaDB
High-speed Database Throughput Using Apache Arrow Flight SQLHigh-speed Database Throughput Using Apache Arrow Flight SQL
High-speed Database Throughput Using Apache Arrow Flight SQL
ScyllaDB1.2K vues
Performance Optimizations in Apache Impala par Cloudera, Inc.
Performance Optimizations in Apache ImpalaPerformance Optimizations in Apache Impala
Performance Optimizations in Apache Impala
Cloudera, Inc.10.7K vues
Spark and S3 with Ryan Blue par Databricks
Spark and S3 with Ryan BlueSpark and S3 with Ryan Blue
Spark and S3 with Ryan Blue
Databricks3.9K vues
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in... par InfluxData
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxDB IOx Tech Talks: Query Engine Design and the Rust-Based DataFusion in...
InfluxData3.6K vues
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D... par Databricks
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
The Future of Data Science and Machine Learning at Scale: A Look at MLflow, D...
Databricks1.5K vues

Similaire à Sawtooth Windows for Feature Aggregations

Making Session Stores More Intelligent par
Making Session Stores More IntelligentMaking Session Stores More Intelligent
Making Session Stores More IntelligentKyle Davis
101 vues40 diapositives
A Production Quality Sketching Library for the Analysis of Big Data par
A Production Quality Sketching Library for the Analysis of Big DataA Production Quality Sketching Library for the Analysis of Big Data
A Production Quality Sketching Library for the Analysis of Big DataDatabricks
369 vues25 diapositives
Algorithmic techniques-for-big-data-analysis par
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysisHiye Biniam
500 vues46 diapositives
Algorithmic techniques-for-big-data-analysis par
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysisAtner Yegorov
6K vues46 diapositives
Zipline - A Declarative Feature Engineering Framework par
Zipline - A Declarative Feature Engineering FrameworkZipline - A Declarative Feature Engineering Framework
Zipline - A Declarative Feature Engineering FrameworkDatabricks
635 vues40 diapositives
Make Life Suck Less (Building Scalable Systems) par
Make Life Suck Less (Building Scalable Systems)Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)guest0f8e278
354 vues34 diapositives

Similaire à Sawtooth Windows for Feature Aggregations(20)

Making Session Stores More Intelligent par Kyle Davis
Making Session Stores More IntelligentMaking Session Stores More Intelligent
Making Session Stores More Intelligent
Kyle Davis101 vues
A Production Quality Sketching Library for the Analysis of Big Data par Databricks
A Production Quality Sketching Library for the Analysis of Big DataA Production Quality Sketching Library for the Analysis of Big Data
A Production Quality Sketching Library for the Analysis of Big Data
Databricks369 vues
Algorithmic techniques-for-big-data-analysis par Hiye Biniam
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysis
Hiye Biniam500 vues
Algorithmic techniques-for-big-data-analysis par Atner Yegorov
Algorithmic techniques-for-big-data-analysisAlgorithmic techniques-for-big-data-analysis
Algorithmic techniques-for-big-data-analysis
Atner Yegorov6K vues
Zipline - A Declarative Feature Engineering Framework par Databricks
Zipline - A Declarative Feature Engineering FrameworkZipline - A Declarative Feature Engineering Framework
Zipline - A Declarative Feature Engineering Framework
Databricks635 vues
Make Life Suck Less (Building Scalable Systems) par guest0f8e278
Make Life Suck Less (Building Scalable Systems)Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)
guest0f8e278354 vues
Make Life Suck Less (Building Scalable Systems) par Bradford Stephens
Make Life Suck Less (Building Scalable Systems)Make Life Suck Less (Building Scalable Systems)
Make Life Suck Less (Building Scalable Systems)
Casual mass parallel computing par aragozin
Casual mass parallel computingCasual mass parallel computing
Casual mass parallel computing
aragozin7.4K vues
Prepare your data for machine learning par Ivo Andreev
Prepare your data for machine learningPrepare your data for machine learning
Prepare your data for machine learning
Ivo Andreev9.1K vues
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT par Amazon Web Services
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOTAWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
AWS APAC Webinar Week - Big Data on AWS. RedShift, EMR, & IOT
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs) par Clancy Childs
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
BYO/DIY Analytics Platform (MeasureCamp Presentation by Clancy Childs)
Clancy Childs1.3K vues
Hard Coding as a design approach par Oren Eini
Hard Coding as a design approachHard Coding as a design approach
Hard Coding as a design approach
Oren Eini660 vues
ShaREing Is Caring par sporst
ShaREing Is CaringShaREing Is Caring
ShaREing Is Caring
sporst1.3K vues
Apache con big data 2015 - Data Science from the trenches par Vinay Shukla
Apache con big data 2015 - Data Science from the trenchesApache con big data 2015 - Data Science from the trenches
Apache con big data 2015 - Data Science from the trenches
Vinay Shukla2.1K vues
Automate Machine Learning Pipeline Using MLBox par Axel de Romblay
Automate Machine Learning Pipeline Using MLBoxAutomate Machine Learning Pipeline Using MLBox
Automate Machine Learning Pipeline Using MLBox
Axel de Romblay249 vues

Plus de Databricks

DW Migration Webinar-March 2022.pptx par
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptxDatabricks
4.3K vues25 diapositives
Data Lakehouse Symposium | Day 1 | Part 1 par
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1Databricks
1.5K vues43 diapositives
Data Lakehouse Symposium | Day 1 | Part 2 par
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2Databricks
743 vues16 diapositives
Data Lakehouse Symposium | Day 4 par
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4Databricks
1.8K vues74 diapositives
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop par
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of HadoopDatabricks
6.3K vues64 diapositives
Democratizing Data Quality Through a Centralized Platform par
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized PlatformDatabricks
1.4K vues36 diapositives

Plus de Databricks(20)

DW Migration Webinar-March 2022.pptx par Databricks
DW Migration Webinar-March 2022.pptxDW Migration Webinar-March 2022.pptx
DW Migration Webinar-March 2022.pptx
Databricks4.3K vues
Data Lakehouse Symposium | Day 1 | Part 1 par Databricks
Data Lakehouse Symposium | Day 1 | Part 1Data Lakehouse Symposium | Day 1 | Part 1
Data Lakehouse Symposium | Day 1 | Part 1
Databricks1.5K vues
Data Lakehouse Symposium | Day 1 | Part 2 par Databricks
Data Lakehouse Symposium | Day 1 | Part 2Data Lakehouse Symposium | Day 1 | Part 2
Data Lakehouse Symposium | Day 1 | Part 2
Databricks743 vues
Data Lakehouse Symposium | Day 4 par Databricks
Data Lakehouse Symposium | Day 4Data Lakehouse Symposium | Day 4
Data Lakehouse Symposium | Day 4
Databricks1.8K vues
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop par Databricks
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
5 Critical Steps to Clean Your Data Swamp When Migrating Off of Hadoop
Databricks6.3K vues
Democratizing Data Quality Through a Centralized Platform par Databricks
Democratizing Data Quality Through a Centralized PlatformDemocratizing Data Quality Through a Centralized Platform
Democratizing Data Quality Through a Centralized Platform
Databricks1.4K vues
Learn to Use Databricks for Data Science par Databricks
Learn to Use Databricks for Data ScienceLearn to Use Databricks for Data Science
Learn to Use Databricks for Data Science
Databricks1.6K vues
Why APM Is Not the Same As ML Monitoring par Databricks
Why APM Is Not the Same As ML MonitoringWhy APM Is Not the Same As ML Monitoring
Why APM Is Not the Same As ML Monitoring
Databricks743 vues
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix par Databricks
The Function, the Context, and the Data—Enabling ML Ops at Stitch FixThe Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
The Function, the Context, and the Data—Enabling ML Ops at Stitch Fix
Databricks689 vues
Stage Level Scheduling Improving Big Data and AI Integration par Databricks
Stage Level Scheduling Improving Big Data and AI IntegrationStage Level Scheduling Improving Big Data and AI Integration
Stage Level Scheduling Improving Big Data and AI Integration
Databricks850 vues
Simplify Data Conversion from Spark to TensorFlow and PyTorch par Databricks
Simplify Data Conversion from Spark to TensorFlow and PyTorchSimplify Data Conversion from Spark to TensorFlow and PyTorch
Simplify Data Conversion from Spark to TensorFlow and PyTorch
Databricks1.8K vues
Scaling your Data Pipelines with Apache Spark on Kubernetes par Databricks
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks2.1K vues
Scaling and Unifying SciKit Learn and Apache Spark Pipelines par Databricks
Scaling and Unifying SciKit Learn and Apache Spark PipelinesScaling and Unifying SciKit Learn and Apache Spark Pipelines
Scaling and Unifying SciKit Learn and Apache Spark Pipelines
Databricks667 vues
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink par Databricks
Redis + Apache Spark = Swiss Army Knife Meets Kitchen SinkRedis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Redis + Apache Spark = Swiss Army Knife Meets Kitchen Sink
Databricks677 vues
Re-imagine Data Monitoring with whylogs and Spark par Databricks
Re-imagine Data Monitoring with whylogs and SparkRe-imagine Data Monitoring with whylogs and Spark
Re-imagine Data Monitoring with whylogs and Spark
Databricks551 vues
Raven: End-to-end Optimization of ML Prediction Queries par Databricks
Raven: End-to-end Optimization of ML Prediction QueriesRaven: End-to-end Optimization of ML Prediction Queries
Raven: End-to-end Optimization of ML Prediction Queries
Databricks450 vues
Processing Large Datasets for ADAS Applications using Apache Spark par Databricks
Processing Large Datasets for ADAS Applications using Apache SparkProcessing Large Datasets for ADAS Applications using Apache Spark
Processing Large Datasets for ADAS Applications using Apache Spark
Databricks513 vues
Massive Data Processing in Adobe Using Delta Lake par Databricks
Massive Data Processing in Adobe Using Delta LakeMassive Data Processing in Adobe Using Delta Lake
Massive Data Processing in Adobe Using Delta Lake
Databricks719 vues
Machine Learning CI/CD for Email Attack Detection par Databricks
Machine Learning CI/CD for Email Attack DetectionMachine Learning CI/CD for Email Attack Detection
Machine Learning CI/CD for Email Attack Detection
Databricks389 vues
Jeeves Grows Up: An AI Chatbot for Performance and Quality par Databricks
Jeeves Grows Up: An AI Chatbot for Performance and QualityJeeves Grows Up: An AI Chatbot for Performance and Quality
Jeeves Grows Up: An AI Chatbot for Performance and Quality
Databricks260 vues

Dernier

[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ... par
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...DataScienceConferenc1
5 vues19 diapositives
Amy slides.pdf par
Amy slides.pdfAmy slides.pdf
Amy slides.pdfStatsCommunications
5 vues13 diapositives
UNEP FI CRS Climate Risk Results.pptx par
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptxpekka28
11 vues51 diapositives
CRM stick or twist.pptx par
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptxinfo828217
11 vues16 diapositives
Chapter 3b- Process Communication (1) (1)(1) (1).pptx par
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptxayeshabaig2004
7 vues30 diapositives
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx par
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptxDataScienceConferenc1
6 vues12 diapositives

Dernier(20)

[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ... par DataScienceConferenc1
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...
[DSC Europe 23] Danijela Horak - The Innovator’s Dilemma: to Build or Not to ...
UNEP FI CRS Climate Risk Results.pptx par pekka28
UNEP FI CRS Climate Risk Results.pptxUNEP FI CRS Climate Risk Results.pptx
UNEP FI CRS Climate Risk Results.pptx
pekka2811 vues
CRM stick or twist.pptx par info828217
CRM stick or twist.pptxCRM stick or twist.pptx
CRM stick or twist.pptx
info82821711 vues
Chapter 3b- Process Communication (1) (1)(1) (1).pptx par ayeshabaig2004
Chapter 3b- Process Communication (1) (1)(1) (1).pptxChapter 3b- Process Communication (1) (1)(1) (1).pptx
Chapter 3b- Process Communication (1) (1)(1) (1).pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx par DataScienceConferenc1
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
[DSC Europe 23] Zsolt Feleki - Machine Translation should we trust it.pptx
CRM stick or twist workshop par info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info82821712 vues
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx par DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation par DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an... par StatsCommunications
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
OECD-Persol Holdings Workshop on Advancing Employee Well-being in Business an...
Organic Shopping in Google Analytics 4.pdf par GA4 Tutorials
Organic Shopping in Google Analytics 4.pdfOrganic Shopping in Google Analytics 4.pdf
Organic Shopping in Google Analytics 4.pdf
GA4 Tutorials16 vues
[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ... par DataScienceConferenc1
[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ...[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ...
[DSC Europe 23][AI:CSI] Aleksa Stojanovic - Applying AI for Threat Detection ...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M... par DataScienceConferenc1
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
[DSC Europe 23] Milos Grubjesic Empowering Business with Pepsico s Advanced M...
Data about the sector workshop par info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821716 vues
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int... par DataScienceConferenc1
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
[DSC Europe 23] Rania Wazir - Opening up the box: the complexity of human int...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... par DataScienceConferenc1
[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...
CRIJ4385_Death Penalty_F23.pptx par yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1007 vues

Sawtooth Windows for Feature Aggregations