SlideShare a Scribd company logo
1 of 18
1.3 Elementary Theoremsand Conditional Probability
Theorem 1,2 Generalization of third axiom of probability Theorem 1: If A1, A2,….,Anare mutually exclusive events in a sample space, then P(A1 A2….An) = P(A1) + P(A2) + …+ P(An). Rule for calculating probability of an event Theorem 2: If A is an event in the finite sample space S, then P(A) equals the sum of the probabilities of the individual outcome comprising A.
Theorem 3 Proof: If E1, E2,……Enbe the n outcomes comprising event A, then A = E1E2 ……  En. Since the E’s areindividual outcomesthey are mutually exclusive, and by Theorem 1, we have  		P(A) = P(E1E2 ……  En)          	        = P(E1) + P(E2) + …+ P(En). General addition rule for probability Theorem 3: If  A and  B are any events in S, then 			   P(AB) = P(A) + P(B) – P(AB).
Theorem 4 Note: When A and B are mutually exclusive  so that P(AB) = 0, Theorem 3 reduces to the third axiom of probability therefore the third axiom of probability also called the special addition rule Probability rule of the complements Theorem 4: If A is any event in S, then  P( ) = 1 – P(A).
Proof are mutually exclusive by Proof: Since A and definition and A =  S. Hence we have ) = P(S) = 1. P(A) + P( ) = P (A P(    ) = 1 – P( ) = 1 – P( S ) = 0. If A  B then P(B) = P(B) - P(A)  P(A  B) = P(A) + P(B) - 2 P(AB)
 Conditional Probability If we ask for the probability of an event then it is meaningful only if we mention about the sample space. When we use the symbol P(A) for probability of A, we really mean the probability of A with respect to some sample space S.  Since there are problems in which we are interested in probabilities of A with respect to more sample spaces than one, the notation P(A|S) is used to make it clear that we are referring to a particular sample space S.
Conditional Probability P(A|S)  conditional probability of A relative to S. Conditional probability: If A and B are any events in S and P(B)  0, the conditional probability of A given B is  P (A|B) is the probability that event A occurs once event B has occurred
Conditional Probability (cont’d) Reduced Sample Space A  B S B A P(A|B) measures the relative probability of A with respect to the reduced sample space B
Conditional Probability (cont’d) If A and B are any two events in the sample space S, Then the event A is independent of the event B if and only if  P(A|B) = P(A) i.e. occurrence of B does not influence the     occurrence of A.  But B is independent of A whenever A is independent of B.   A and B are independent events if and only if  either  P(A|B) = P(A)or    P(B|A) = P(B)
Conditional Probability General multiplication rule of probability Theorem 5: If A and B are any events in S, then P(AB) = P(A)· P(B|A)	if P(A)0 = P(B)· P(A|B)	if P(B)0 Special product rule of probability Theorem 6: Two events A and B are independent events if and only if 		   P(AB) = P(A)· P(B)
The mutually exclusive events are not independent unless one of them has zero probability. If an event A is independent of itself then P(A) = 0 or P(A) = 1 If the events A and B are independent, then so are events     and B, events A and     and events     and                    .
Bayes’ Theorem Let S be a sample space and B1, B2,….Bnbe mutually exclusive events such that               S = B1B2 …… Bn and A be an event in the sample space S. Then 		A = AS = A(B1B2 …… Bn) 		   = (A B1)  (A B2) ……. (A Bn). Since all A  Bi ’s are mutually exclusive events     P(A)=P(AB1) + P(AB2) +……. + P(ABn).
Bayes’ Theorem or But from multiplication rule for probability P(ABi) = P(Bi)·P(A|Bi),    for i = 1, 2, …, n hence we have
Bayes’ Theorem Rule of elimination or rule of total probability Theorem 7 : Let A be an event in a sample space S and if B1, B2,……Bn are mutually exclusive events such that S = B1B2 …… Bnand P (Bi)  0 for i = 1, 2, …, n, then
Bayes’ Theorem To visualize this result, we have to construct a tree   diagram where the probability of the final outcome is  given by the sum of the products of the probabilities    corresponding to each branch of the tree. P(A|B1) B1 A B2 P(A|B2) P(B1) A Figure: Tree diagram for rule of elimination P(B2) P(Bn) P(A|Bn) A Bn
Bayes’ Theorem (cont’d) from the definitionof  conditional probability but according to multiplication rule of probability, we have P (Bk  A) = P(Bk)·P(A|Bk). Hence, we have
Bayes’ Theorem Using rule of total probability, we have following result. Bayes’ Theorem Theorem 8: Let A be an event in a sample space S and if B1, B2,……Bn are mutually exclusive events such that S = B1B2 …… Bn and P (Bi)  0 for i = 1, 2, …, n, then for k = 1, 2,….., n.
Bayes’ Theorem This theorem provides a formula for finding the probability that the “effect” A was “caused” by the event Bk. Note: The expression in the numerator is the probability of reaching A via the kth branch of the tree and the expression in the denominator is the sum of the probabilities of reaching A via the n branches of the tree.

More Related Content

What's hot

Probability Theory
Probability TheoryProbability Theory
Probability TheoryParul Singh
 
Introduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood EstimatorIntroduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood EstimatorAmir Al-Ansary
 
PROBABILITY AND IT'S TYPES WITH RULES
PROBABILITY AND IT'S TYPES WITH RULESPROBABILITY AND IT'S TYPES WITH RULES
PROBABILITY AND IT'S TYPES WITH RULESBhargavi Bhanu
 
Probability basics and bayes' theorem
Probability basics and bayes' theoremProbability basics and bayes' theorem
Probability basics and bayes' theoremBalaji P
 
Conditional probability
Conditional probabilityConditional probability
Conditional probabilitysuncil0071
 
Introduction to Probability and Probability Distributions
Introduction to Probability and Probability DistributionsIntroduction to Probability and Probability Distributions
Introduction to Probability and Probability DistributionsJezhabeth Villegas
 
Probability concepts for Data Analytics
Probability concepts for Data AnalyticsProbability concepts for Data Analytics
Probability concepts for Data AnalyticsSSaudia
 
Sample Space and Event,Probability,The Axioms of Probability,Bayes Theorem
Sample Space and Event,Probability,The Axioms of Probability,Bayes TheoremSample Space and Event,Probability,The Axioms of Probability,Bayes Theorem
Sample Space and Event,Probability,The Axioms of Probability,Bayes TheoremBharath kumar Karanam
 
Basic probability concept
Basic probability conceptBasic probability concept
Basic probability conceptMmedsc Hahm
 
The Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal DistributionsThe Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal DistributionsSCE.Surat
 
Discrete probability distribution (complete)
Discrete probability distribution (complete)Discrete probability distribution (complete)
Discrete probability distribution (complete)ISYousafzai
 
Maximum likelihood estimation
Maximum likelihood estimationMaximum likelihood estimation
Maximum likelihood estimationzihad164
 
Basic concept of probability
Basic concept of probabilityBasic concept of probability
Basic concept of probabilityIkhlas Rahman
 

What's hot (20)

Unit 1-probability
Unit 1-probabilityUnit 1-probability
Unit 1-probability
 
Probability
ProbabilityProbability
Probability
 
Probability Theory
Probability TheoryProbability Theory
Probability Theory
 
Bayes' theorem
Bayes' theoremBayes' theorem
Bayes' theorem
 
Introduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood EstimatorIntroduction to Maximum Likelihood Estimator
Introduction to Maximum Likelihood Estimator
 
PROBABILITY AND IT'S TYPES WITH RULES
PROBABILITY AND IT'S TYPES WITH RULESPROBABILITY AND IT'S TYPES WITH RULES
PROBABILITY AND IT'S TYPES WITH RULES
 
Probability basics and bayes' theorem
Probability basics and bayes' theoremProbability basics and bayes' theorem
Probability basics and bayes' theorem
 
Conditional probability
Conditional probabilityConditional probability
Conditional probability
 
Probability
ProbabilityProbability
Probability
 
Introduction to Probability and Probability Distributions
Introduction to Probability and Probability DistributionsIntroduction to Probability and Probability Distributions
Introduction to Probability and Probability Distributions
 
Probability
ProbabilityProbability
Probability
 
Probability concepts for Data Analytics
Probability concepts for Data AnalyticsProbability concepts for Data Analytics
Probability concepts for Data Analytics
 
Sample Space and Event,Probability,The Axioms of Probability,Bayes Theorem
Sample Space and Event,Probability,The Axioms of Probability,Bayes TheoremSample Space and Event,Probability,The Axioms of Probability,Bayes Theorem
Sample Space and Event,Probability,The Axioms of Probability,Bayes Theorem
 
Basic probability concept
Basic probability conceptBasic probability concept
Basic probability concept
 
Chi-square distribution
Chi-square distribution Chi-square distribution
Chi-square distribution
 
Probability+distribution
Probability+distributionProbability+distribution
Probability+distribution
 
The Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal DistributionsThe Binomial, Poisson, and Normal Distributions
The Binomial, Poisson, and Normal Distributions
 
Discrete probability distribution (complete)
Discrete probability distribution (complete)Discrete probability distribution (complete)
Discrete probability distribution (complete)
 
Maximum likelihood estimation
Maximum likelihood estimationMaximum likelihood estimation
Maximum likelihood estimation
 
Basic concept of probability
Basic concept of probabilityBasic concept of probability
Basic concept of probability
 

Viewers also liked

Viewers also liked (20)

AI: Planning and AI
AI: Planning and AIAI: Planning and AI
AI: Planning and AI
 
AI: Learning in AI
AI: Learning in AI AI: Learning in AI
AI: Learning in AI
 
Expert system
Expert systemExpert system
Expert system
 
artificial intelligence
artificial intelligenceartificial intelligence
artificial intelligence
 
Planning
PlanningPlanning
Planning
 
1a difference between inferential and descriptive statistics (explanation)
1a difference between inferential and descriptive statistics (explanation)1a difference between inferential and descriptive statistics (explanation)
1a difference between inferential and descriptive statistics (explanation)
 
Miedo Jajjjajajja
Miedo JajjjajajjaMiedo Jajjjajajja
Miedo Jajjjajajja
 
Matlab: Saving And Publishing
Matlab: Saving And PublishingMatlab: Saving And Publishing
Matlab: Saving And Publishing
 
Control Statements in Matlab
Control Statements in  MatlabControl Statements in  Matlab
Control Statements in Matlab
 
R Statistics
R StatisticsR Statistics
R Statistics
 
MS Sql Server: Doing Calculations With Functions
MS Sql Server: Doing Calculations With FunctionsMS Sql Server: Doing Calculations With Functions
MS Sql Server: Doing Calculations With Functions
 
Pentaho: Reporting Solution Development
Pentaho: Reporting Solution DevelopmentPentaho: Reporting Solution Development
Pentaho: Reporting Solution Development
 
Direct-services portfolio
Direct-services portfolioDirect-services portfolio
Direct-services portfolio
 
Data Mining The Sky
Data Mining The SkyData Mining The Sky
Data Mining The Sky
 
2008 IEDM presentation
2008 IEDM presentation2008 IEDM presentation
2008 IEDM presentation
 
Test
TestTest
Test
 
Quantica Construction Search
Quantica Construction SearchQuantica Construction Search
Quantica Construction Search
 
BI: Open Source
BI: Open SourceBI: Open Source
BI: Open Source
 
R Environment
R EnvironmentR Environment
R Environment
 
Quick Look At Clustering
Quick Look At ClusteringQuick Look At Clustering
Quick Look At Clustering
 

Similar to Theorems And Conditional Probability

Probability Arunesh Chand Mankotia 2005
Probability   Arunesh Chand Mankotia 2005Probability   Arunesh Chand Mankotia 2005
Probability Arunesh Chand Mankotia 2005Consultonmic
 
Show that if A is a fixed event of positive probability, then the fu.pdf
Show that if A is a fixed event of positive probability, then the fu.pdfShow that if A is a fixed event of positive probability, then the fu.pdf
Show that if A is a fixed event of positive probability, then the fu.pdfakshitent
 
Briefnts1 events
Briefnts1 eventsBriefnts1 events
Briefnts1 eventsilathahere
 
Probability Review Additions
Probability Review AdditionsProbability Review Additions
Probability Review Additionsrishi.indian
 
1 Probability Please read sections 3.1 – 3.3 in your .docx
 1 Probability   Please read sections 3.1 – 3.3 in your .docx 1 Probability   Please read sections 3.1 – 3.3 in your .docx
1 Probability Please read sections 3.1 – 3.3 in your .docxaryan532920
 
1-Probability-Conditional-Bayes.pdf
1-Probability-Conditional-Bayes.pdf1-Probability-Conditional-Bayes.pdf
1-Probability-Conditional-Bayes.pdfKrushangDilipbhaiPar
 
Deep learning .pdf
Deep learning .pdfDeep learning .pdf
Deep learning .pdfAlHayyan
 
Discrete probability
Discrete probabilityDiscrete probability
Discrete probabilityRanjan Kumar
 
Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...
Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...
Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...Scilab
 
Making probability easy!!!
Making probability easy!!!Making probability easy!!!
Making probability easy!!!GAURAV SAHA
 
BHARAT & KAJAL.pptx
BHARAT & KAJAL.pptxBHARAT & KAJAL.pptx
BHARAT & KAJAL.pptxKunal639873
 
CSE357 fa21 (1) Course Intro and Probability 8-26.pdf
CSE357 fa21 (1) Course Intro and Probability 8-26.pdfCSE357 fa21 (1) Course Intro and Probability 8-26.pdf
CSE357 fa21 (1) Course Intro and Probability 8-26.pdfNermeenKamel7
 
Information Theory and coding - Lecture 1
Information Theory and coding - Lecture 1Information Theory and coding - Lecture 1
Information Theory and coding - Lecture 1Aref35
 
Mathematics for Language Technology: Introduction to Probability Theory
Mathematics for Language Technology: Introduction to Probability TheoryMathematics for Language Technology: Introduction to Probability Theory
Mathematics for Language Technology: Introduction to Probability TheoryMarina Santini
 

Similar to Theorems And Conditional Probability (20)

Probability Arunesh Chand Mankotia 2005
Probability   Arunesh Chand Mankotia 2005Probability   Arunesh Chand Mankotia 2005
Probability Arunesh Chand Mankotia 2005
 
Show that if A is a fixed event of positive probability, then the fu.pdf
Show that if A is a fixed event of positive probability, then the fu.pdfShow that if A is a fixed event of positive probability, then the fu.pdf
Show that if A is a fixed event of positive probability, then the fu.pdf
 
S244 10 Probability.ppt
S244 10 Probability.pptS244 10 Probability.ppt
S244 10 Probability.ppt
 
Briefnts1 events
Briefnts1 eventsBriefnts1 events
Briefnts1 events
 
Probability
ProbabilityProbability
Probability
 
Course material mca
Course material   mcaCourse material   mca
Course material mca
 
Probability Review Additions
Probability Review AdditionsProbability Review Additions
Probability Review Additions
 
1 Probability Please read sections 3.1 – 3.3 in your .docx
 1 Probability   Please read sections 3.1 – 3.3 in your .docx 1 Probability   Please read sections 3.1 – 3.3 in your .docx
1 Probability Please read sections 3.1 – 3.3 in your .docx
 
1-Probability-Conditional-Bayes.pdf
1-Probability-Conditional-Bayes.pdf1-Probability-Conditional-Bayes.pdf
1-Probability-Conditional-Bayes.pdf
 
Deep learning .pdf
Deep learning .pdfDeep learning .pdf
Deep learning .pdf
 
Discrete probability
Discrete probabilityDiscrete probability
Discrete probability
 
Probability.pptx
Probability.pptxProbability.pptx
Probability.pptx
 
Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...
Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...
Introduction to Discrete Probabilities with Scilab - Michaël Baudin, Consort...
 
Probability Theory 6
Probability Theory 6Probability Theory 6
Probability Theory 6
 
Making probability easy!!!
Making probability easy!!!Making probability easy!!!
Making probability easy!!!
 
BHARAT & KAJAL.pptx
BHARAT & KAJAL.pptxBHARAT & KAJAL.pptx
BHARAT & KAJAL.pptx
 
CSE357 fa21 (1) Course Intro and Probability 8-26.pdf
CSE357 fa21 (1) Course Intro and Probability 8-26.pdfCSE357 fa21 (1) Course Intro and Probability 8-26.pdf
CSE357 fa21 (1) Course Intro and Probability 8-26.pdf
 
Information Theory and coding - Lecture 1
Information Theory and coding - Lecture 1Information Theory and coding - Lecture 1
Information Theory and coding - Lecture 1
 
Chap03 probability
Chap03 probabilityChap03 probability
Chap03 probability
 
Mathematics for Language Technology: Introduction to Probability Theory
Mathematics for Language Technology: Introduction to Probability TheoryMathematics for Language Technology: Introduction to Probability Theory
Mathematics for Language Technology: Introduction to Probability Theory
 

More from DataminingTools Inc

AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceDataminingTools Inc
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web miningDataminingTools Inc
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataDataminingTools Inc
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsDataminingTools Inc
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisDataminingTools Inc
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technologyDataminingTools Inc
 
Data Mining: clustering and analysis
Data Mining: clustering and analysisData Mining: clustering and analysis
Data Mining: clustering and analysisDataminingTools Inc
 
Data mining: Classification and prediction
Data mining: Classification and predictionData mining: Classification and prediction
Data mining: Classification and predictionDataminingTools Inc
 

More from DataminingTools Inc (20)

Terminology Machine Learning
Terminology Machine LearningTerminology Machine Learning
Terminology Machine Learning
 
Techniques Machine Learning
Techniques Machine LearningTechniques Machine Learning
Techniques Machine Learning
 
Machine learning Introduction
Machine learning IntroductionMachine learning Introduction
Machine learning Introduction
 
Areas of machine leanring
Areas of machine leanringAreas of machine leanring
Areas of machine leanring
 
AI: Logic in AI 2
AI: Logic in AI 2AI: Logic in AI 2
AI: Logic in AI 2
 
AI: Logic in AI
AI: Logic in AIAI: Logic in AI
AI: Logic in AI
 
AI: Learning in AI 2
AI: Learning in AI 2AI: Learning in AI 2
AI: Learning in AI 2
 
AI: Introduction to artificial intelligence
AI: Introduction to artificial intelligenceAI: Introduction to artificial intelligence
AI: Introduction to artificial intelligence
 
AI: Belief Networks
AI: Belief NetworksAI: Belief Networks
AI: Belief Networks
 
AI: AI & Searching
AI: AI & SearchingAI: AI & Searching
AI: AI & Searching
 
AI: AI & Problem Solving
AI: AI & Problem SolvingAI: AI & Problem Solving
AI: AI & Problem Solving
 
Data Mining: Text and web mining
Data Mining: Text and web miningData Mining: Text and web mining
Data Mining: Text and web mining
 
Data Mining: Outlier analysis
Data Mining: Outlier analysisData Mining: Outlier analysis
Data Mining: Outlier analysis
 
Data Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence dataData Mining: Mining stream time series and sequence data
Data Mining: Mining stream time series and sequence data
 
Data Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlationsData Mining: Mining ,associations, and correlations
Data Mining: Mining ,associations, and correlations
 
Data Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysisData Mining: Graph mining and social network analysis
Data Mining: Graph mining and social network analysis
 
Data warehouse and olap technology
Data warehouse and olap technologyData warehouse and olap technology
Data warehouse and olap technology
 
Data Mining: Data processing
Data Mining: Data processingData Mining: Data processing
Data Mining: Data processing
 
Data Mining: clustering and analysis
Data Mining: clustering and analysisData Mining: clustering and analysis
Data Mining: clustering and analysis
 
Data mining: Classification and prediction
Data mining: Classification and predictionData mining: Classification and prediction
Data mining: Classification and prediction
 

Recently uploaded

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 

Recently uploaded (20)

4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 

Theorems And Conditional Probability

  • 1. 1.3 Elementary Theoremsand Conditional Probability
  • 2. Theorem 1,2 Generalization of third axiom of probability Theorem 1: If A1, A2,….,Anare mutually exclusive events in a sample space, then P(A1 A2….An) = P(A1) + P(A2) + …+ P(An). Rule for calculating probability of an event Theorem 2: If A is an event in the finite sample space S, then P(A) equals the sum of the probabilities of the individual outcome comprising A.
  • 3. Theorem 3 Proof: If E1, E2,……Enbe the n outcomes comprising event A, then A = E1E2 ……  En. Since the E’s areindividual outcomesthey are mutually exclusive, and by Theorem 1, we have P(A) = P(E1E2 ……  En) = P(E1) + P(E2) + …+ P(En). General addition rule for probability Theorem 3: If A and B are any events in S, then P(AB) = P(A) + P(B) – P(AB).
  • 4. Theorem 4 Note: When A and B are mutually exclusive so that P(AB) = 0, Theorem 3 reduces to the third axiom of probability therefore the third axiom of probability also called the special addition rule Probability rule of the complements Theorem 4: If A is any event in S, then P( ) = 1 – P(A).
  • 5. Proof are mutually exclusive by Proof: Since A and definition and A = S. Hence we have ) = P(S) = 1. P(A) + P( ) = P (A P( ) = 1 – P( ) = 1 – P( S ) = 0. If A  B then P(B) = P(B) - P(A) P(A  B) = P(A) + P(B) - 2 P(AB)
  • 6. Conditional Probability If we ask for the probability of an event then it is meaningful only if we mention about the sample space. When we use the symbol P(A) for probability of A, we really mean the probability of A with respect to some sample space S. Since there are problems in which we are interested in probabilities of A with respect to more sample spaces than one, the notation P(A|S) is used to make it clear that we are referring to a particular sample space S.
  • 7. Conditional Probability P(A|S)  conditional probability of A relative to S. Conditional probability: If A and B are any events in S and P(B)  0, the conditional probability of A given B is P (A|B) is the probability that event A occurs once event B has occurred
  • 8. Conditional Probability (cont’d) Reduced Sample Space A  B S B A P(A|B) measures the relative probability of A with respect to the reduced sample space B
  • 9. Conditional Probability (cont’d) If A and B are any two events in the sample space S, Then the event A is independent of the event B if and only if P(A|B) = P(A) i.e. occurrence of B does not influence the occurrence of A. But B is independent of A whenever A is independent of B.  A and B are independent events if and only if either P(A|B) = P(A)or P(B|A) = P(B)
  • 10. Conditional Probability General multiplication rule of probability Theorem 5: If A and B are any events in S, then P(AB) = P(A)· P(B|A) if P(A)0 = P(B)· P(A|B) if P(B)0 Special product rule of probability Theorem 6: Two events A and B are independent events if and only if P(AB) = P(A)· P(B)
  • 11. The mutually exclusive events are not independent unless one of them has zero probability. If an event A is independent of itself then P(A) = 0 or P(A) = 1 If the events A and B are independent, then so are events and B, events A and and events and .
  • 12. Bayes’ Theorem Let S be a sample space and B1, B2,….Bnbe mutually exclusive events such that S = B1B2 …… Bn and A be an event in the sample space S. Then A = AS = A(B1B2 …… Bn) = (A B1)  (A B2) ……. (A Bn). Since all A  Bi ’s are mutually exclusive events P(A)=P(AB1) + P(AB2) +……. + P(ABn).
  • 13. Bayes’ Theorem or But from multiplication rule for probability P(ABi) = P(Bi)·P(A|Bi), for i = 1, 2, …, n hence we have
  • 14. Bayes’ Theorem Rule of elimination or rule of total probability Theorem 7 : Let A be an event in a sample space S and if B1, B2,……Bn are mutually exclusive events such that S = B1B2 …… Bnand P (Bi)  0 for i = 1, 2, …, n, then
  • 15. Bayes’ Theorem To visualize this result, we have to construct a tree diagram where the probability of the final outcome is given by the sum of the products of the probabilities corresponding to each branch of the tree. P(A|B1) B1 A B2 P(A|B2) P(B1) A Figure: Tree diagram for rule of elimination P(B2) P(Bn) P(A|Bn) A Bn
  • 16. Bayes’ Theorem (cont’d) from the definitionof conditional probability but according to multiplication rule of probability, we have P (Bk  A) = P(Bk)·P(A|Bk). Hence, we have
  • 17. Bayes’ Theorem Using rule of total probability, we have following result. Bayes’ Theorem Theorem 8: Let A be an event in a sample space S and if B1, B2,……Bn are mutually exclusive events such that S = B1B2 …… Bn and P (Bi)  0 for i = 1, 2, …, n, then for k = 1, 2,….., n.
  • 18. Bayes’ Theorem This theorem provides a formula for finding the probability that the “effect” A was “caused” by the event Bk. Note: The expression in the numerator is the probability of reaching A via the kth branch of the tree and the expression in the denominator is the sum of the probabilities of reaching A via the n branches of the tree.