SlideShare une entreprise Scribd logo
1  sur  53
Télécharger pour lire hors ligne
1
Structure and Thermokinetics of
Y-Ti-O Precipitates in Nanostructured
Ferritic Alloys
Dane Morgan
University of Wisconsin, Madison
Leland Barnard
Knolls Atomic Power Laboratory
Nicholas Cunningham, G.R. Odette
University of California, Santa Barbara
Samrat Choudhury, Blas Uberuaga
Los Alamos National Laboratory
March 18, 2015
TMS
Orlando, Florida
The Idea Behind Nanostructured Ferritic
Alloys
2
Steel (Fe, C, W, …)
Oxide (Y2O3, TiO2, …)
Mix+Consolidate
(Mechanical ball
milling, HIP)
Steel with fine grains, high density
of nanoscale (1-3nm) stable
precipitates
• Enhances mechanical properties
• Enhances radiation resistance
• Called Nanostructured Ferritic Alloys (NFAs) or Oxide Dispersion
Strengthened (ODS) Alloys
• Of interest for applications in next generation nuclear reactors which
include high temperature, high radiation dose conditions
• Practical and fundamental science issues related to nature and evolution of
nanoscale precipitates
Outline
• Introduction to Nanostructured Ferritic Alloys
• Precipitate “bulk” structure [1]
• Precipitate interfacial structure [2]
• Thermal Aging [3]
3
[1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An
ab initio study of Ti-Y-O nanocluster energetics in
nanostructured ferritic alloys, Acta Materialia 60, p. 935-947
(2012).
[2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive
Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide
Interfaces, Scientific Reports 4, p. 8 (2014)
[3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska,
and D. Morgan, Thermodynamic and kinetic modeling of oxide
precipitation in nanostructured ferritic alloys, To be published
in Acta Materialia (2015).
Outline
• Introduction to Nanostructured Ferritic Alloys
• Precipitate “bulk” structure [1]
• Precipitate interfacial structure [2]
• Thermal Aging [3]
4
[1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An
ab initio study of Ti-Y-O nanocluster energetics in
nanostructured ferritic alloys, Acta Materialia 60, p. 935-947
(2012).
[2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive
Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide
Interfaces, Scientific Reports 4, p. 8 (2014)
[3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska,
and D. Morgan, Thermodynamic and kinetic modeling of oxide
precipitation in nanostructured ferritic alloys, To be published
in Acta Materialia (2015).
Nanostructured Ferritic Alloy Mechanical
Properties
• Excellent
tensile, creep,
fatigue strength
• Good fracture
toughness
• Stable to high
temperatures
5
G.R. Odette, et al., Annu Rev Mater Res ‘08; G.R. Odette, JOM ‘14
Nanostructured Ferritic Alloy Mechanical
Properties
• Excellent
tensile, creep,
fatigue strength
• Good fracture
toughness
• Stable to high
temperatures
6
Klueh, et al., JNM, ‘02
800°C, 138 MPa
Nanostructured Ferritic Alloy Radiation
Resistance
High sink strength
reduces
• He
bubble/Void,
loop growth
• Radiation
embrittlement
• Swelling
7
G.R. Odette, JOM ‘14
Thin lines – unirradiated
Thick lines - irradiated
Nanostructured Ferritic Alloy Radiation
Resistance
High sink strength
reduces
• He
bubble/Void,
loop growth
• Radiation
embrittlement
• Swelling
8
G.R. Odette, JOM ‘14
Open Questions about Nanostructured
Ferritic Alloys
• What alloying elements and heat treatments are needed
for optimum nanocluster density/size distribution?
• What is the thermal and radiation stability of nanoclusters?
• What is the matrix-nanocluster interface structure and it
segregation tendencies (e.g. He trapping)?
• What are the nanocluster-dislocation interactions and their
effects on mechanical properties?
A detailed, atomistic-level understanding of the Y-Ti-O
precipitates and their energetics is a crucial step toward
addressing all of these concerns.
9
Todays Key Questions
• What “bulk” structures of oxide precipitates
form in Fe at ~1nm – coherent vs. incoherent?
• What interfacial structures occur at the oxide-
metal interface?
• What controls the thermal stability of the
precipitates?
10
Outline
• Introduction to Nanostructured Ferritic Alloys
• Precipitate “bulk’ structure [1]
• Precipitate interfacial structure [2]
• Thermal Aging [3]
11
[1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An
ab initio study of Ti-Y-O nanocluster energetics in
nanostructured ferritic alloys, Acta Materialia 60, p. 935-947
(2012).
[2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive
Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide
Interfaces, Scientific Reports 4, p. 8 (2014)
[3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska,
and D. Morgan, Thermodynamic and kinetic modeling of oxide
precipitation in nanostructured ferritic alloys, To be published
in Acta Materialia (2015).
Y2TiO5+
Y2Ti2O7
Y2O3
Y2Ti2O7+
TiO2
Y2O3+
Y2TiO5
FeO↔Fe+1/2O2
Cr2O3↔2Cr+3/2O2
TiO2↔Ti+O2
The Y-Ti-O Phase Diagram
The Nature of the Nanoprecipitates
• Typical values: Number
density=1023-1024/m3,
Volume fraction=0.5-1%,
Diameter=1.5-3.0nm
• Explored with SANS/SAXS,
Atom Probe, TEM, Ab Initio
Tools
• Generally pyrochlore
Y2Ti2O7 (227) but significant
uncertainty due to
conditions and
interpretation challenges
(Y2TiO5, rocksalt,
amorphous)
13
TEM showing lattice spacings of Y2Ti2O7
J. Ribis, R. de Carlan , Acta Mat, ‘12
Fe–14Cr–1W–0.3Ti–0.3Y2O3 wt.%
The Nature of the Nanoprecipitates
• Typical values: Number
density=1023-1024/m3,
Volume fraction=0.5-1%,
Diameter=1.5-3.0nm
• Explored with SANS/SAXS,
Atom Probe, TEM, Ab Initio
Tools
• Generally pyrochlore
Y2Ti2O7 (227) but significant
uncertainty due to
conditions and
interpretation challenges
(Y2TiO5, rocksalt,
amorphous)
14
A. Hirata, Nat Mat, ‘11
14YWT (Fe-14Cr-3W-0.4Ti-0.25-Y2O3 wt.%)
Real space STEM showing NaCl structures
The Nature of the Nanoprecipitates
• Typical values: Number
density=1023-1024/m3,
Volume fraction=0.5-1%,
Diameter=1.5-3.0nm
• Explored with SANS/SAXS,
Atom Probe, TEM, Ab Initio
Tools
• Generally pyrochlore
Y2Ti2O7 (227) but significant
uncertainty due to
conditions and
interpretation challenges
(Y2TiO5, rocksalt,
amorphous)
15
G.R. Odette and D.T. Hoelzer, JOM ’10
G.R. Odette, JOM ‘14
Atom Probe: Ti/Y≈1.5-4, O/(Ti+Y)<1
Y2Ti2O7: Ti/Y=1, O/(Ti+Y)=7/4>1
MA957 (Fe–14Cr–0.3Mo–1Ti–0.3Y–0.2O–
0.03C wt.%)
Ti+Y >3% isocomposition contours
Atomistic models of coherent structures show
unusual chemistry – off stoichiometry, high
vacancy stability
The Nature of the Nanoprecipitates
• Typical values: Number
density=1023-1024/m3,
Volume fraction=0.5-1%,
Diameter=1.5-3.0nm
• Explored with SANS/SAXS,
Atom Probe, TEM, Ab Initio
Tools
• Generally pyrochlore
Y2Ti2O7 (227) but significant
uncertainty due to
conditions and
interpretation challenges
(Y2TiO5, rocksalt,
amorphous)
16
Posselt, et al. MSMSE ‘14
The Nature of the Nanoprecipitates
Why so much uncertainty?
• Complex heterogeneous non-equilibrium system with many possible
behaviors (e.g., multiple phases can be present, coherent vs. incoherent)
• Systems may be quite different: stoichiometry, mixing, consolidation
differences
• Data interpretation challenging (e.g. atom probe stoichiometry)
• Sampling different precipitates (e.g., with TEM)
17
Need to guidance from Y-Ti-O precipitate structure-stability relationships
Density Functional Theory Calculation of
Y-Ti-O Clustering Energetics
18
•How do we search for stable clusters, considering
•Structure
•Coherence
•Stoichiometry
•Different approaches:
•Clusters based around strongly bound O-Vac pairs [1].
•Clusters that minimize interaction energies [2].
•Clusters that match bulk oxide stoichiometry [3].
•All assume clusters restricted to the Fe lattice.
•Here, we will investigate including some clusters not restricted to
the Fe lattice.
[1] C.L. Fu, M. Krcmar, G. S. Painter, and X. Q. Chen, Physical Review Letters 99 (2007).
[2] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009); A. Gopejenko, Y. Zhukovskii, P. Vladimirov, E. Kotomin, A.
Moslang, and X. Q. Chen, Journal of Nuclear Materials 406 (2010); M Posselt, D Murali, and B K Panigrahi, MSMSE 22 (2014).
[3] C. Hin, B. D. Wirth, and J. B. Neaton, Physical review B 80 (2009).
Cluster Searching Methods
•On-lattice clusters:
•Clusters restricted to the bcc Fe lattice
•Structure matched clusters:
•Clusters guided by the structure of known bulk oxides (e.g,
rutile TiO2 and bixbyite Y2O3).
19
Methods: On Lattice Clusters
= Fe or Ti/Y
= O
20
• Metal atoms restricted
to bcc Fe lattice
• O atoms in interstitial
stites
[1] C.L. Fu, M. Krcmar, G. S. Painter, and X. Q. Chen, Physical Review Letters 99 (2007).
[2] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009); A. Gopejenko, Y. Zhukovskii, P. Vladimirov, E. Kotomin, A.
Moslang, and X. Q. Chen, Journal of Nuclear Materials 406 (2010); M Posselt, D Murali, and B K Panigrahi, MSMSE 22 (2014)
[3] C. Hin, B. D. Wirth, and J. B. Neaton, Physical review B 80 (2009).
Methods: Structure Matched Clusters
• Some Ti, Y atoms mapped onto Fe lattice sites
• O atoms placed relative to Ti, Y atoms according to oxide structure.
• Fe atoms impinging closely upon Ti,Y,O atoms removed.
• Ti-O/Y-O matched to rutile TiO2 / bixbyite Y2O3 21
+z
Methods: Formation Energy Calculation
• Reference states:
• Pure Fe.
• Isolated Ti, Y on Fe substitutional site.
• Isolated O on octahedral Fe interstitial site.
• Calculations performed using Density Functional
Theory (VASP, PAW, GGA) according to methods
developed in [1].
[1] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009).
x +y
-=
22
Ti-O Cluster Formation Energies
23
Ti-O Cluster Formation Energies
24
Ti-O Cluster Formation Energies
25
•Given a fixed number of Ti atoms but allowing any
number of O atoms, what sort of Ti-O cluster will be
most stable?
•Predicated on relative diffusivities:
•At 1150 oC:
•Fe: 1.1E-20 m2/sec
•Y: 1.5E-23 m2/sec
•Ti: 1.7E-20 m2/sec
•O: 1.0E-14 m2/sec
Ti-O Cluster Formation Energies
26
Hypostoichiometric
M Terminated
Stoichiometric
Mixed Termination
Hypertoichiometric
O Termination
Ti-O Cluster Formation Energies
27
Hypostoichiometric
Ti Terminated
Hypertoichiometric
O Termination
Stoichiometric
Mixed Termination
Increasing O
Y-O Cluster Formation Energies
28
Hypostoichiometric
Ti Terminated
Hypertoichiometric
O Termination
Stoichiometric
Mixed Termination
Increasing O
Y-Ti-O Clusters
•To assess whether these trends continue in the full Y-Ti-O
system, we will perform a much smaller suite of calculations
on Y-Ti-O on-lattice and structure matched clusters.
•We will restrict our search to clusters with Y:Ti ratio of 1:1,
matching the pyrochlore oxide Y2Ti2O7.
29
Ti-Y-O Cluster Formation Energies
Hypostoichiometric
M Terminated
Hypertoichiometric
O Termination
Stoichiometric
Mixed Termination
Increasing O
[1] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009).
[2] D. Murali et al. Journal of Nuclear Materials 113 (2010). 30
•Again, most stable clusters are structure-matched, hyperstoichiometric
Conclusion - Clusters that Resemble Bulk
Oxide are Most Stable
31
Bulk oxide Embedded Cluster
Ti-O
(Rutile TiO2)
Y-O
(Bixbyite Y2O3)
Ti-Y-O
(Pyrochlore
Y2Ti2O7)
Outline
• Introduction to Nanostructured Ferritic Alloys
• Precipitate “bulk” structure [1]
• Precipitate interfacial structure [2]
• Thermal Aging [3]
32
[1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An
ab initio study of Ti-Y-O nanocluster energetics in
nanostructured ferritic alloys, Acta Materialia 60, p. 935-947
(2012).
[2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive
Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide
Interfaces, Scientific Reports 4, p. 8 (2014)
[3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska,
and D. Morgan, Thermodynamic and kinetic modeling of oxide
precipitation in nanostructured ferritic alloys, To be published
in Acta Materialia (2015).
Atomic Structure of the Y2O3/Fe Interface
{010}FeAl|| {011}YO, <100>YO|| <001>FeAl
Inksonetal.MRSProc,1997
Relaxed Structure of the bi-layer of
metal and oxide
Iron Yttrium Oxygen
Fe
Y2O3
Orientation Relationship between Y2O3/Fe
Misfit dislocation at the
interface results in excessive
Fe/O ratio
Local structure of misfit
dislocation in metal/oxide is a
f (strain, chemistry)
Fe bcc {010} plane
Y2O3 {011} plane
Restoring Chemical Balance at Dislocation (Fe/O > 1)
Taking out Y
 Interfacial Fe Vacancy
Taking out Fe
Fe ¯
O
 Interfacial Y Vacancy
Inserting Oxygen
 Oxygen in Interfacial Fe layer Fe
O -
Iron
Yttrium
Oxygen
Interstitial Oxygen
Reducing Conditions
Oxidizing Conditions
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
0 0.16 0.32 0.48
0.70.91.11.31.5
ChangeinEnergy(eV)
Vacancy Concentation in the Interfacial layer
Fe/O ratio at the Interface
Change in Energy of the System with Point Defects
Fe Vacancies
DE = EWith n Vacancies
Interface
+ n´ mFe
bulk
+ m´ mO - EWithout Vac
InterfaceMost of the vacancies/oxygen interstitials enter at the dislocation
Interstitial Oxygen
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
-2.0
-1.0
0.0
0 0.16 0.32 0.48
0.70.91.11.31.5
ChangeinEnergy(eV)
Vacancy Concentation in the Interfacial layer
Fe/O ratio at the Interface
Change in Energy of the System with Point Defects
Fe Vacancies
-14.0
-12.0
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
0 0.1 0.2 0.3 0.4 0.5
0.480.640.80.96
ChangeinEnergy(eV)
Vacancy Concentation in the Interfacial layer
Fe/O ratio at the Interface
Interstitial Oxygen + Fe Vacancies
Under More Reducing Conditions: Fe vacancies
Under More Oxidizing Conditions (~Cr/Cr2O3): Interstitial Oxygen + Fe Vacancies
Conclusions - Fe/Y2O3 Interfaces are Highly
Defected
• Fe/Y2O3 semi-
coherent interface
shows highly defected
structure
• Undefected Fe/O=1.5,
Equilibrium Fe/O~0.5
(~50% Fe vac, ~50%
extra O interstitials at
PO2=Cr/Cr2O3)
• Will impact interface
segregation, stability.
Iron Yttrium Oxygen
Fe
Y2O3
-14.0
-12.0
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
0 0.1 0.2 0.3 0.4 0.5
0.480.640.80.96
ChangeinEnergy(eV)
Vacancy Concentation in the Interfacial layer
Fe/O ratio at the Interface
Outline
• Introduction to Nanostructured Ferritic Alloys
• Precipitate “bulk” structure [1]
• Precipitate interfacial structure [2]
• Thermal Aging [3]
38
[1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An
ab initio study of Ti-Y-O nanocluster energetics in
nanostructured ferritic alloys, Acta Materialia 60, p. 935-947
(2012).
[2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive
Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide
Interfaces, Scientific Reports 4, p. 8 (2014)
[3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska,
and D. Morgan, Thermodynamic and kinetic modeling of oxide
precipitation in nanostructured ferritic alloys, To be published
in Acta Materialia (2015).
Thermal Aging Nanostructured Ferritic
Alloy
• Long-term stability of nanoprecipitates at
elevated temperature (potentially under
irradiation) is critical for sustained
performance.
• Thermal aging experiments show excellent
stability.
• Goal is to model these experiments to develop
molecular scale understanding of mechanisms
controlling stability of nanoprecipitates.
39
Experimental Thermal Aging Data from Odette Group (UCSB)
MA957 (Fe–14Cr–0.3Mo–1Ti–0.3Y–0.2O–0.03C wt.%)
40
M. Alinger, PhD Thesis, University of California Santa Barbara, 2004.
N. Cunningham, et al, Mat Sci & Eng A (2014)
N. Cunningham, et al., Fusion Materials Report June 30, 2012, DOE/ER-0313/52
1
2
3
4
5
-4 -2 0 2 4 6
MeanRadius(nm)
LOG Aging Time (hr)
1223K Cunningham
1273K Cunningham
1423K Alinger
1473K Alinger
1523K Alinger
1573K Alinger
Fits to classical
coarsening models
suggest pipe
diffusion
Chemical rate theory/mass action kinetics
Method – Cluster Dynamics (CD)
• Cluster growth/shrink rates determined from diffusion coefficients,
thermodynamics, and interfacial energy.
• Solve coupled ODEs to obtain the number of clusters at each size.
Generalized for standard and pipe diffusion.
Time evolution
V. Slezov, Kinetics of First-Order Phase Transitions, 1st ed., Wiley-VCH, 2009.
Parameterizing Cluster Dynamics Model
• Fe-Y-Ti-O Thermodynamics
– Y-Ti-O Bulk + Impurity (CALPHAD)
– Interfacial (Fitting)
– PO2 (Fitting)
– Y–dislocation binding (ab initio)
• Fe-Y-Ti-O Kinetics
– Bulk impurity diffusion (experiments, ab initio (Y in
Fe))
– Dislocation impurity diffusion (empirical correlation)
42
Parameterizing Cluster Dynamics Model
• Fe-Y-Ti-O Thermodynamics
– Y-Ti-O Bulk + Impurity (CALPHAD)
– Interfacial (Fitting)
– PO2 (Fitting)
– Y–dislocation binding (ab initio)
• Fe-Y-Ti-O Kinetics
– Bulk impurity diffusion (experiments, ab initio (Y in
Fe))
– Dislocation impurity diffusion (empirical correlation)
43
1
2
3
4
5
-4 -2 0 2 4 6
MeanRadius(nm)
LOG Aging Time (hr)
1223K Cunningham
1273K Cunningham
1423K Alinger
1473K Alinger
1523K Alinger
1573K Alinger
Parameterizing Cluster Dynamics Model:
Interfacial Energy
44

 TiAx 00
Simple model to
get one fitting
parameter 0. Set by bare (TiO2)-(Y2O3)
0.0
1.0
2.0
3.0
0.00 0.33 0.67 1.00
InterfacialEnergy(J/m2)
Ti fraction of metal atoms in oxide
Y2O3 Surface Energy
TiO2 Surface Energy
TiO2/liquid Fe Interface Energy
Pipe Diffusion Model Best Fit
Standard Model Best Fit
Close agreement with
bare and liquid Fe
interfacial energies
validates approach
Parameterizing Cluster Dynamics Model:
PO2
45
PO2 fit to give best agreement
to coarsening data
-30
-25
-20
-15
-10
1200 1300 1400 1500 1600
LOGPO2
Temperature (K)
Pipe Diffusion Best Fit
Standard Model Best Fit
Cr/Cr2O3 Equillibrium
Ti/TiO2 Equilibrium
• Close agreement with Cr/Cr2O3
equilibrium validates approach
• Suggests no exception PO2 in
NFA steels
Parameterizing Cluster Dynamics Model:
Y–dislocation binding (ab initio)
46
Calculate dislocation
binding energy for
multiple elements
• Good agreement with experiment,
elasticity for C, N, O
• Y exceptionally stable – drives Y
solubility for pipe diffusion!
-3
-2
-1
0
C N O Y
BindingEnergy(eV)
Elasticity Theory
Ab Initio
Experiment
5
[100]
[010]
2
1
3
4
Cluster Dynamics Modeling of Thermal
Aging
47
1
2
3
4
5
-4 -2 0 2 4 6
MeanRadius(nm)
LOG Aging Time (hr)
1223K Cunningham
1273K Cunningham
1423K Alinger
1473K Alinger
1523K Alinger
1573K Alinger
Pipe Model
Standard Model
0.0
0.5
1.0
1.5
2.0
2.5
1000 1100 1200 1300 1400
Changeinmeanradius
(nm)
Temperature (K)
50 years
80 years
Predictions of Coarsening Over Reactor
Lifetimes
Excellent stability up to over 1,100K
Conclusions – Successful Y-Ti-O Nanocluster
Coarsening
• Confirms results of reduced
order fitting from Odette et al
that process is pipe diffusion
• Predicts long term stability of
>100 years at >1,100K.
• Suggests PO2 may be
controlled by Cr/Cr2O3 in
Nanostructured Ferritic Alloys
with Cr
• Provides useful molecular
scale parameters (interfacial
energies, Y diffusivity, …) for
models of processing and
thermal/irradiation stability
49
1
2
3
4
5
-4 -2 0 2 4 6
MeanRadius(nm)
LOG Aging Time (hr)
1223K Cunningham
1273K Cunningham
1423K Alinger
1473K Alinger
1523K Alinger
1573K Alinger
Pipe Model
Standard Model
1
2
3
4
5
-4 -2 0 2 4 6
MeanRadius(nm)
LOG Aging Time (hr)
1223K Cunningham 1273K Cunningham
1423K Alinger 1473K Alinger
1523K Alinger 1573K Alinger
Pipe Model Standard Model
Summary Conclusions on Y-Ti-O Precipitates in
Nanostructured Ferritic Alloys
• Nanoprecipitates are bulk-like
structures down to very small sizes –
remaining on bcc lattice is higher in
energy
• Larger particle semi-coherent
interfaces create complex defect
structure to maintain Fe/O balance
• Molecular understanding of
coarsening is available
– Confirms pipe diffusion
– Shows exceptional stability (>100
years at >1100K)
– Foundation for composition,
processing, irradiation modeling
50
1
2
3
4
5
-4 -2 0 2 4 6
MeanRadius(nm)
LOG Aging Time (hr)
1223K Cunningham
1273K Cunningham
1423K Alinger
1473K Alinger
1523K Alinger
1573K Alinger
Pipe Model
Standard Model
Iron Yttrium Oxygen
Fe
Y2O3
51
http://matmodel.engr.wisc.edu/
COMPUTATIONAL MATERIALS GROUP
Faculty
* Izabela Szlufarska * Dane Morgan
Postdocs
* Guangfu Luo * Georgios Bokas
* Henry Wu * Jia-Hong Ke
* Mahmood Mamivand * Min Yu
* Wei Xie * Yueh-Lin Lee
Graduate Students
* Amy Kaczmarowski * Ao Li
* Austin Way * Benjamin Afflerbach
* Cheng Liu * Chaiyapat Tangpatjaroen
* Franklin Hobbs * Hao Jiang
* Huibin Ke * Hyunseok Ko
* James Gilbert * Jie Feng
* Kai Huang * Kumaresh Murugan
* Lei Zhao * Mehrdad Arjmand
* Ryan Jacobs * Shenzen Xu
* Tam Mayeshiba * Xing Wang
* Yipeng Cao * Zhewen Song
* Zhizhang Shen
Acknowledgements
U.S. DEPARTMENT OF ENERGY
Rickover Fellowship Program
In Nuclear Engineering
DMR MMN
(110564)
10-888
Computing time provided by NSF TG-
DMR110074 and NSF TG-
DMR090023, NSF grant number
OCI-1053575
Funding/Resources Acknowledgements
Thank You for
Your Attention
53

Contenu connexe

Tendances

Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...eSAT Journals
 
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-PhaseCarlos Bella
 
Self assembled monolayers
Self assembled monolayersSelf assembled monolayers
Self assembled monolayersSumit Kumar
 
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...albertdivis
 
Organic Nanoparticles (ONPs)
Organic Nanoparticles (ONPs)Organic Nanoparticles (ONPs)
Organic Nanoparticles (ONPs)Mahdi Mirzaie
 
Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...
Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...
Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...IRJET Journal
 
Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...
Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...
Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...ijrap
 
Characterization of cobalt oxide and calcium aluminum
Characterization of cobalt oxide and calcium aluminumCharacterization of cobalt oxide and calcium aluminum
Characterization of cobalt oxide and calcium aluminumShujaul Mulk Khan
 
Synthesis and Characterisation of Copper Oxide nanoparticles
Synthesis and Characterisation of Copper Oxide nanoparticlesSynthesis and Characterisation of Copper Oxide nanoparticles
Synthesis and Characterisation of Copper Oxide nanoparticlesIOSR Journals
 
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...Oleg Maksimov
 
synthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlessynthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlesGaurav Yogesh
 
Core shell nanostructures
Core shell nanostructuresCore shell nanostructures
Core shell nanostructuresshashank chetty
 
Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...
Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...
Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...Editor IJCATR
 
Nanocomposites gopi
Nanocomposites gopiNanocomposites gopi
Nanocomposites gopigopi krishna
 
metal organic framework-carbon capture and sequestration
metal organic framework-carbon capture and sequestrationmetal organic framework-carbon capture and sequestration
metal organic framework-carbon capture and sequestrationVasiUddin Siddiqui
 
IRJET - Comparative Study on the Structural and Optical Characterization of Z...
IRJET - Comparative Study on the Structural and Optical Characterization of Z...IRJET - Comparative Study on the Structural and Optical Characterization of Z...
IRJET - Comparative Study on the Structural and Optical Characterization of Z...IRJET Journal
 
Hydrothermal synthesis and characterization of one
Hydrothermal synthesis and characterization of oneHydrothermal synthesis and characterization of one
Hydrothermal synthesis and characterization of oneAlexander Decker
 

Tendances (20)

Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...Synthesis and characterization of zno thin films deposited by chemical bath t...
Synthesis and characterization of zno thin films deposited by chemical bath t...
 
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
Formation SiO2 Mass-Independent Oxygen Isotopic Partitioning During Gas-Phase
 
Self assembled monolayers
Self assembled monolayersSelf assembled monolayers
Self assembled monolayers
 
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
Studies of the Atomic and Crystalline Characteristics of Ceramic Oxide Nano P...
 
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
Molecular simulation of carbon capture in MOFs: challenges and pitfalls - Dr ...
 
Organic Nanoparticles (ONPs)
Organic Nanoparticles (ONPs)Organic Nanoparticles (ONPs)
Organic Nanoparticles (ONPs)
 
Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...
Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...
Surface Texture and Luminous Analysis of Sol-Gel Spin Coated Dy-doped ZnO Thi...
 
Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...
Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...
Optical and Dielectric Studies on Semiorganic Nonlinear Optical Crystal by So...
 
Characterization of cobalt oxide and calcium aluminum
Characterization of cobalt oxide and calcium aluminumCharacterization of cobalt oxide and calcium aluminum
Characterization of cobalt oxide and calcium aluminum
 
Synthesis and Characterisation of Copper Oxide nanoparticles
Synthesis and Characterisation of Copper Oxide nanoparticlesSynthesis and Characterisation of Copper Oxide nanoparticles
Synthesis and Characterisation of Copper Oxide nanoparticles
 
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
Structural characterization of TiO2 films grown on LaAlO3 and SrTiO3 substrat...
 
poster
posterposter
poster
 
synthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticlessynthesis of doped chromium oxide nanoparticles
synthesis of doped chromium oxide nanoparticles
 
Core shell nanostructures
Core shell nanostructuresCore shell nanostructures
Core shell nanostructures
 
Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...
Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...
Effect of Solvents on Size and Morphologies Of sno Nanoparticles via Chemical...
 
Nanocomposites gopi
Nanocomposites gopiNanocomposites gopi
Nanocomposites gopi
 
metal organic framework-carbon capture and sequestration
metal organic framework-carbon capture and sequestrationmetal organic framework-carbon capture and sequestration
metal organic framework-carbon capture and sequestration
 
IRJET - Comparative Study on the Structural and Optical Characterization of Z...
IRJET - Comparative Study on the Structural and Optical Characterization of Z...IRJET - Comparative Study on the Structural and Optical Characterization of Z...
IRJET - Comparative Study on the Structural and Optical Characterization of Z...
 
Hydrothermal synthesis and characterization of one
Hydrothermal synthesis and characterization of oneHydrothermal synthesis and characterization of one
Hydrothermal synthesis and characterization of one
 
Magnetic NanoComposites
Magnetic NanoCompositesMagnetic NanoComposites
Magnetic NanoComposites
 

Similaire à Morgan tms ods 2015 02-29 v4.4 dist

Spectroscopic characterization and biological activity
Spectroscopic characterization and biological activitySpectroscopic characterization and biological activity
Spectroscopic characterization and biological activityMahmoud Abdulla
 
Solidification and microstructure of metals
Solidification and microstructure of metals Solidification and microstructure of metals
Solidification and microstructure of metals Bibin Bhaskaran
 
Dissertation mid evaluation
Dissertation mid evaluationDissertation mid evaluation
Dissertation mid evaluationMohit Rajput
 
Mid-Dissertation Work Report Presentation
Mid-Dissertation Work Report Presentation  Mid-Dissertation Work Report Presentation
Mid-Dissertation Work Report Presentation Mohit Rajput
 
14.25 o14 i islah u-din
14.25 o14 i islah u-din14.25 o14 i islah u-din
14.25 o14 i islah u-dinNZIP
 
inorganic materials 2004-5.pdf
inorganic materials 2004-5.pdfinorganic materials 2004-5.pdf
inorganic materials 2004-5.pdfMoosisaaDhugaasaa
 
Nano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubes
Nano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubesNano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubes
Nano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubesAbhijeetKumar937500
 
Iron – carbon phase diagram
Iron – carbon phase diagramIron – carbon phase diagram
Iron – carbon phase diagramEng.Ahmed Samy
 
Dental casting alloys/ rotary endodontic courses by indian dental academy
Dental casting alloys/ rotary endodontic courses by indian dental academyDental casting alloys/ rotary endodontic courses by indian dental academy
Dental casting alloys/ rotary endodontic courses by indian dental academyIndian dental academy
 
nanostructured high strength Mo alloy with unprecented tensile ductility..pptx
nanostructured high strength Mo alloy with unprecented tensile ductility..pptxnanostructured high strength Mo alloy with unprecented tensile ductility..pptx
nanostructured high strength Mo alloy with unprecented tensile ductility..pptxRishikeshrishi7
 
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...Joshua Borycz
 
Chapter 6 - Metal Clusters.pdf
Chapter 6 - Metal Clusters.pdfChapter 6 - Metal Clusters.pdf
Chapter 6 - Metal Clusters.pdfShotosroyRoyTirtho
 
PhD-thesis-defense
PhD-thesis-defensePhD-thesis-defense
PhD-thesis-defenseOrkun Önal
 
Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...
Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...
Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...Duane McCrory
 
Metallic scaffolds for bone tissue engineering
Metallic scaffolds for bone tissue engineering Metallic scaffolds for bone tissue engineering
Metallic scaffolds for bone tissue engineering Mohamed M. Abdul-Monem
 
“Metallic glasses from''alchemy''to pure science: Present and future of desig...
“Metallic glasses from''alchemy''to pure science: Present and future of desig...“Metallic glasses from''alchemy''to pure science: Present and future of desig...
“Metallic glasses from''alchemy''to pure science: Present and future of desig...Eugen Axinte
 
Amorphous Materials: Structural Principles and Characterization
Amorphous Materials: Structural Principles and CharacterizationAmorphous Materials: Structural Principles and Characterization
Amorphous Materials: Structural Principles and CharacterizationUniversity of Wisconsin MRSEC
 

Similaire à Morgan tms ods 2015 02-29 v4.4 dist (20)

Spectroscopic characterization and biological activity
Spectroscopic characterization and biological activitySpectroscopic characterization and biological activity
Spectroscopic characterization and biological activity
 
Solidification and microstructure of metals
Solidification and microstructure of metals Solidification and microstructure of metals
Solidification and microstructure of metals
 
Dissertation mid evaluation
Dissertation mid evaluationDissertation mid evaluation
Dissertation mid evaluation
 
Mid-Dissertation Work Report Presentation
Mid-Dissertation Work Report Presentation  Mid-Dissertation Work Report Presentation
Mid-Dissertation Work Report Presentation
 
14.25 o14 i islah u-din
14.25 o14 i islah u-din14.25 o14 i islah u-din
14.25 o14 i islah u-din
 
Ss jana
Ss jana Ss jana
Ss jana
 
inorganic materials 2004-5.pdf
inorganic materials 2004-5.pdfinorganic materials 2004-5.pdf
inorganic materials 2004-5.pdf
 
Nano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubes
Nano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubesNano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubes
Nano Materials-M1.pdf, nanotechnology, nanoparticles, carbon nanotubes
 
Sub1563
Sub1563Sub1563
Sub1563
 
Metallurgy Lab
Metallurgy Lab Metallurgy Lab
Metallurgy Lab
 
Iron – carbon phase diagram
Iron – carbon phase diagramIron – carbon phase diagram
Iron – carbon phase diagram
 
Dental casting alloys/ rotary endodontic courses by indian dental academy
Dental casting alloys/ rotary endodontic courses by indian dental academyDental casting alloys/ rotary endodontic courses by indian dental academy
Dental casting alloys/ rotary endodontic courses by indian dental academy
 
nanostructured high strength Mo alloy with unprecented tensile ductility..pptx
nanostructured high strength Mo alloy with unprecented tensile ductility..pptxnanostructured high strength Mo alloy with unprecented tensile ductility..pptx
nanostructured high strength Mo alloy with unprecented tensile ductility..pptx
 
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
Computationally Driven Characterization of Magnetism, Adsorption, and Reactiv...
 
Chapter 6 - Metal Clusters.pdf
Chapter 6 - Metal Clusters.pdfChapter 6 - Metal Clusters.pdf
Chapter 6 - Metal Clusters.pdf
 
PhD-thesis-defense
PhD-thesis-defensePhD-thesis-defense
PhD-thesis-defense
 
Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...
Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...
Paramagnetic Defects in Variously Procesed Strontium Titanate & Lanthanum Alu...
 
Metallic scaffolds for bone tissue engineering
Metallic scaffolds for bone tissue engineering Metallic scaffolds for bone tissue engineering
Metallic scaffolds for bone tissue engineering
 
“Metallic glasses from''alchemy''to pure science: Present and future of desig...
“Metallic glasses from''alchemy''to pure science: Present and future of desig...“Metallic glasses from''alchemy''to pure science: Present and future of desig...
“Metallic glasses from''alchemy''to pure science: Present and future of desig...
 
Amorphous Materials: Structural Principles and Characterization
Amorphous Materials: Structural Principles and CharacterizationAmorphous Materials: Structural Principles and Characterization
Amorphous Materials: Structural Principles and Characterization
 

Plus de ddm314

Morgan uw mse900 2020 040-25 v2.0
Morgan uw mse900 2020 040-25 v2.0Morgan uw mse900 2020 040-25 v2.0
Morgan uw mse900 2020 040-25 v2.0ddm314
 
2019 09-06 skunkworks q&amp;a information session v2.1 dist
2019 09-06 skunkworks q&amp;a information session v2.1 dist2019 09-06 skunkworks q&amp;a information session v2.1 dist
2019 09-06 skunkworks q&amp;a information session v2.1 distddm314
 
Ema 20190124 v1.4_dist
Ema 20190124 v1.4_distEma 20190124 v1.4_dist
Ema 20190124 v1.4_distddm314
 
Morgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distMorgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distddm314
 
2018 09-07 skunkworks q&amp;a information session v1.2
2018 09-07 skunkworks q&amp;a information session v1.22018 09-07 skunkworks q&amp;a information session v1.2
2018 09-07 skunkworks q&amp;a information session v1.2ddm314
 
2017-09-08 skunkworks q&amp;a information session v1.0 distr
2017-09-08 skunkworks q&amp;a information session v1.0 distr2017-09-08 skunkworks q&amp;a information session v1.0 distr
2017-09-08 skunkworks q&amp;a information session v1.0 distrddm314
 
Morgan osg user school 2016 07-29 dist
Morgan osg user school 2016 07-29 distMorgan osg user school 2016 07-29 dist
Morgan osg user school 2016 07-29 distddm314
 
2016 09-06v3 skunkworks q&amp;a information session public
2016 09-06v3 skunkworks q&amp;a information session public2016 09-06v3 skunkworks q&amp;a information session public
2016 09-06v3 skunkworks q&amp;a information session publicddm314
 
Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12
Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12
Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12ddm314
 
Mat informatics opportunties fisherbarton 2015 12-07 1.1
Mat informatics opportunties fisherbarton 2015 12-07 1.1Mat informatics opportunties fisherbarton 2015 12-07 1.1
Mat informatics opportunties fisherbarton 2015 12-07 1.1ddm314
 
Skunworks Final poster 2015-09-21_eau_claire
Skunworks Final poster 2015-09-21_eau_claireSkunworks Final poster 2015-09-21_eau_claire
Skunworks Final poster 2015-09-21_eau_claireddm314
 
Materials informatics skunkworks overview 2015-11-18 1.1
Materials informatics skunkworks overview 2015-11-18 1.1Materials informatics skunkworks overview 2015-11-18 1.1
Materials informatics skunkworks overview 2015-11-18 1.1ddm314
 
UW Materials Informatics 2015-09-21 v2.0 dist
UW Materials Informatics 2015-09-21 v2.0 distUW Materials Informatics 2015-09-21 v2.0 dist
UW Materials Informatics 2015-09-21 v2.0 distddm314
 
Morgan mgi meeting 2015 01-11 v2.0 distribution
Morgan mgi meeting 2015 01-11 v2.0 distributionMorgan mgi meeting 2015 01-11 v2.0 distribution
Morgan mgi meeting 2015 01-11 v2.0 distributionddm314
 
Morgan mmm 2014 10-06 v4.1 dist
Morgan mmm 2014 10-06 v4.1 distMorgan mmm 2014 10-06 v4.1 dist
Morgan mmm 2014 10-06 v4.1 distddm314
 

Plus de ddm314 (15)

Morgan uw mse900 2020 040-25 v2.0
Morgan uw mse900 2020 040-25 v2.0Morgan uw mse900 2020 040-25 v2.0
Morgan uw mse900 2020 040-25 v2.0
 
2019 09-06 skunkworks q&amp;a information session v2.1 dist
2019 09-06 skunkworks q&amp;a information session v2.1 dist2019 09-06 skunkworks q&amp;a information session v2.1 dist
2019 09-06 skunkworks q&amp;a information session v2.1 dist
 
Ema 20190124 v1.4_dist
Ema 20190124 v1.4_distEma 20190124 v1.4_dist
Ema 20190124 v1.4_dist
 
Morgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 distMorgan uw maGIV v1.3 dist
Morgan uw maGIV v1.3 dist
 
2018 09-07 skunkworks q&amp;a information session v1.2
2018 09-07 skunkworks q&amp;a information session v1.22018 09-07 skunkworks q&amp;a information session v1.2
2018 09-07 skunkworks q&amp;a information session v1.2
 
2017-09-08 skunkworks q&amp;a information session v1.0 distr
2017-09-08 skunkworks q&amp;a information session v1.0 distr2017-09-08 skunkworks q&amp;a information session v1.0 distr
2017-09-08 skunkworks q&amp;a information session v1.0 distr
 
Morgan osg user school 2016 07-29 dist
Morgan osg user school 2016 07-29 distMorgan osg user school 2016 07-29 dist
Morgan osg user school 2016 07-29 dist
 
2016 09-06v3 skunkworks q&amp;a information session public
2016 09-06v3 skunkworks q&amp;a information session public2016 09-06v3 skunkworks q&amp;a information session public
2016 09-06v3 skunkworks q&amp;a information session public
 
Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12
Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12
Zach and Aren talk on Materials Informatics at UW WIMSEA 2016-02-12
 
Mat informatics opportunties fisherbarton 2015 12-07 1.1
Mat informatics opportunties fisherbarton 2015 12-07 1.1Mat informatics opportunties fisherbarton 2015 12-07 1.1
Mat informatics opportunties fisherbarton 2015 12-07 1.1
 
Skunworks Final poster 2015-09-21_eau_claire
Skunworks Final poster 2015-09-21_eau_claireSkunworks Final poster 2015-09-21_eau_claire
Skunworks Final poster 2015-09-21_eau_claire
 
Materials informatics skunkworks overview 2015-11-18 1.1
Materials informatics skunkworks overview 2015-11-18 1.1Materials informatics skunkworks overview 2015-11-18 1.1
Materials informatics skunkworks overview 2015-11-18 1.1
 
UW Materials Informatics 2015-09-21 v2.0 dist
UW Materials Informatics 2015-09-21 v2.0 distUW Materials Informatics 2015-09-21 v2.0 dist
UW Materials Informatics 2015-09-21 v2.0 dist
 
Morgan mgi meeting 2015 01-11 v2.0 distribution
Morgan mgi meeting 2015 01-11 v2.0 distributionMorgan mgi meeting 2015 01-11 v2.0 distribution
Morgan mgi meeting 2015 01-11 v2.0 distribution
 
Morgan mmm 2014 10-06 v4.1 dist
Morgan mmm 2014 10-06 v4.1 distMorgan mmm 2014 10-06 v4.1 dist
Morgan mmm 2014 10-06 v4.1 dist
 

Dernier

sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfJulia Kaye
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Bahzad5
 
Modelling Guide for Timber Structures - FPInnovations
Modelling Guide for Timber Structures - FPInnovationsModelling Guide for Timber Structures - FPInnovations
Modelling Guide for Timber Structures - FPInnovationsYusuf Yıldız
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxrealme6igamerr
 
Phase noise transfer functions.pptx
Phase noise transfer      functions.pptxPhase noise transfer      functions.pptx
Phase noise transfer functions.pptxSaiGouthamSunkara
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderjuancarlos286641
 
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecGuardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecTrupti Shiralkar, CISSP
 
ChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai searchChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai searchrohitcse52
 
Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...sahb78428
 
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...soginsider
 
Graphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesGraphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesDIPIKA83
 
me3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part Ame3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part Akarthi keyan
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical SensorTanvir Moin
 
Dev.bg DevOps March 2024 Monitoring & Logging
Dev.bg DevOps March 2024 Monitoring & LoggingDev.bg DevOps March 2024 Monitoring & Logging
Dev.bg DevOps March 2024 Monitoring & LoggingMarian Marinov
 
Mohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxMohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxKISHAN KUMAR
 
Gender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 ProjectGender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 Projectreemakb03
 
Multicomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdfMulticomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdfGiovanaGhasary1
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS Bahzad5
 

Dernier (20)

sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdfsdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
sdfsadopkjpiosufoiasdoifjasldkjfl a asldkjflaskdjflkjsdsdf
 
Présentation IIRB 2024 Chloe Dufrane.pdf
Présentation IIRB 2024 Chloe Dufrane.pdfPrésentation IIRB 2024 Chloe Dufrane.pdf
Présentation IIRB 2024 Chloe Dufrane.pdf
 
Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)Lecture 1: Basics of trigonometry (surveying)
Lecture 1: Basics of trigonometry (surveying)
 
Modelling Guide for Timber Structures - FPInnovations
Modelling Guide for Timber Structures - FPInnovationsModelling Guide for Timber Structures - FPInnovations
Modelling Guide for Timber Structures - FPInnovations
 
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptxUNIT4_ESD_wfffffggggggggggggith_ARM.pptx
UNIT4_ESD_wfffffggggggggggggith_ARM.pptx
 
Phase noise transfer functions.pptx
Phase noise transfer      functions.pptxPhase noise transfer      functions.pptx
Phase noise transfer functions.pptx
 
ASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entenderASME BPVC 2023 Section I para leer y entender
ASME BPVC 2023 Section I para leer y entender
 
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSecGuardians and Glitches: Navigating the Duality of Gen AI in AppSec
Guardians and Glitches: Navigating the Duality of Gen AI in AppSec
 
ChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai searchChatGPT-and-Generative-AI-Landscape Working of generative ai search
ChatGPT-and-Generative-AI-Landscape Working of generative ai search
 
Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...Clutches and brkesSelect any 3 position random motion out of real world and d...
Clutches and brkesSelect any 3 position random motion out of real world and d...
 
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...Transforming Process Safety Management: Challenges, Benefits, and Transition ...
Transforming Process Safety Management: Challenges, Benefits, and Transition ...
 
Graphics Primitives and CG Display Devices
Graphics Primitives and CG Display DevicesGraphics Primitives and CG Display Devices
Graphics Primitives and CG Display Devices
 
me3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part Ame3493 manufacturing technology unit 1 Part A
me3493 manufacturing technology unit 1 Part A
 
Litature Review: Research Paper work for Engineering
Litature Review: Research Paper work for EngineeringLitature Review: Research Paper work for Engineering
Litature Review: Research Paper work for Engineering
 
Basic Principle of Electrochemical Sensor
Basic Principle of  Electrochemical SensorBasic Principle of  Electrochemical Sensor
Basic Principle of Electrochemical Sensor
 
Dev.bg DevOps March 2024 Monitoring & Logging
Dev.bg DevOps March 2024 Monitoring & LoggingDev.bg DevOps March 2024 Monitoring & Logging
Dev.bg DevOps March 2024 Monitoring & Logging
 
Mohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptxMohs Scale of Hardness, Hardness Scale.pptx
Mohs Scale of Hardness, Hardness Scale.pptx
 
Gender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 ProjectGender Bias in Engineer, Honors 203 Project
Gender Bias in Engineer, Honors 203 Project
 
Multicomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdfMulticomponent Spiral Wound Membrane Separation Model.pdf
Multicomponent Spiral Wound Membrane Separation Model.pdf
 
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS GENERAL CONDITIONS  FOR  CONTRACTS OF CIVIL ENGINEERING WORKS
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
 

Morgan tms ods 2015 02-29 v4.4 dist

  • 1. 1 Structure and Thermokinetics of Y-Ti-O Precipitates in Nanostructured Ferritic Alloys Dane Morgan University of Wisconsin, Madison Leland Barnard Knolls Atomic Power Laboratory Nicholas Cunningham, G.R. Odette University of California, Santa Barbara Samrat Choudhury, Blas Uberuaga Los Alamos National Laboratory March 18, 2015 TMS Orlando, Florida
  • 2. The Idea Behind Nanostructured Ferritic Alloys 2 Steel (Fe, C, W, …) Oxide (Y2O3, TiO2, …) Mix+Consolidate (Mechanical ball milling, HIP) Steel with fine grains, high density of nanoscale (1-3nm) stable precipitates • Enhances mechanical properties • Enhances radiation resistance • Called Nanostructured Ferritic Alloys (NFAs) or Oxide Dispersion Strengthened (ODS) Alloys • Of interest for applications in next generation nuclear reactors which include high temperature, high radiation dose conditions • Practical and fundamental science issues related to nature and evolution of nanoscale precipitates
  • 3. Outline • Introduction to Nanostructured Ferritic Alloys • Precipitate “bulk” structure [1] • Precipitate interfacial structure [2] • Thermal Aging [3] 3 [1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An ab initio study of Ti-Y-O nanocluster energetics in nanostructured ferritic alloys, Acta Materialia 60, p. 935-947 (2012). [2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces, Scientific Reports 4, p. 8 (2014) [3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys, To be published in Acta Materialia (2015).
  • 4. Outline • Introduction to Nanostructured Ferritic Alloys • Precipitate “bulk” structure [1] • Precipitate interfacial structure [2] • Thermal Aging [3] 4 [1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An ab initio study of Ti-Y-O nanocluster energetics in nanostructured ferritic alloys, Acta Materialia 60, p. 935-947 (2012). [2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces, Scientific Reports 4, p. 8 (2014) [3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys, To be published in Acta Materialia (2015).
  • 5. Nanostructured Ferritic Alloy Mechanical Properties • Excellent tensile, creep, fatigue strength • Good fracture toughness • Stable to high temperatures 5 G.R. Odette, et al., Annu Rev Mater Res ‘08; G.R. Odette, JOM ‘14
  • 6. Nanostructured Ferritic Alloy Mechanical Properties • Excellent tensile, creep, fatigue strength • Good fracture toughness • Stable to high temperatures 6 Klueh, et al., JNM, ‘02 800°C, 138 MPa
  • 7. Nanostructured Ferritic Alloy Radiation Resistance High sink strength reduces • He bubble/Void, loop growth • Radiation embrittlement • Swelling 7 G.R. Odette, JOM ‘14 Thin lines – unirradiated Thick lines - irradiated
  • 8. Nanostructured Ferritic Alloy Radiation Resistance High sink strength reduces • He bubble/Void, loop growth • Radiation embrittlement • Swelling 8 G.R. Odette, JOM ‘14
  • 9. Open Questions about Nanostructured Ferritic Alloys • What alloying elements and heat treatments are needed for optimum nanocluster density/size distribution? • What is the thermal and radiation stability of nanoclusters? • What is the matrix-nanocluster interface structure and it segregation tendencies (e.g. He trapping)? • What are the nanocluster-dislocation interactions and their effects on mechanical properties? A detailed, atomistic-level understanding of the Y-Ti-O precipitates and their energetics is a crucial step toward addressing all of these concerns. 9
  • 10. Todays Key Questions • What “bulk” structures of oxide precipitates form in Fe at ~1nm – coherent vs. incoherent? • What interfacial structures occur at the oxide- metal interface? • What controls the thermal stability of the precipitates? 10
  • 11. Outline • Introduction to Nanostructured Ferritic Alloys • Precipitate “bulk’ structure [1] • Precipitate interfacial structure [2] • Thermal Aging [3] 11 [1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An ab initio study of Ti-Y-O nanocluster energetics in nanostructured ferritic alloys, Acta Materialia 60, p. 935-947 (2012). [2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces, Scientific Reports 4, p. 8 (2014) [3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys, To be published in Acta Materialia (2015).
  • 13. The Nature of the Nanoprecipitates • Typical values: Number density=1023-1024/m3, Volume fraction=0.5-1%, Diameter=1.5-3.0nm • Explored with SANS/SAXS, Atom Probe, TEM, Ab Initio Tools • Generally pyrochlore Y2Ti2O7 (227) but significant uncertainty due to conditions and interpretation challenges (Y2TiO5, rocksalt, amorphous) 13 TEM showing lattice spacings of Y2Ti2O7 J. Ribis, R. de Carlan , Acta Mat, ‘12 Fe–14Cr–1W–0.3Ti–0.3Y2O3 wt.%
  • 14. The Nature of the Nanoprecipitates • Typical values: Number density=1023-1024/m3, Volume fraction=0.5-1%, Diameter=1.5-3.0nm • Explored with SANS/SAXS, Atom Probe, TEM, Ab Initio Tools • Generally pyrochlore Y2Ti2O7 (227) but significant uncertainty due to conditions and interpretation challenges (Y2TiO5, rocksalt, amorphous) 14 A. Hirata, Nat Mat, ‘11 14YWT (Fe-14Cr-3W-0.4Ti-0.25-Y2O3 wt.%) Real space STEM showing NaCl structures
  • 15. The Nature of the Nanoprecipitates • Typical values: Number density=1023-1024/m3, Volume fraction=0.5-1%, Diameter=1.5-3.0nm • Explored with SANS/SAXS, Atom Probe, TEM, Ab Initio Tools • Generally pyrochlore Y2Ti2O7 (227) but significant uncertainty due to conditions and interpretation challenges (Y2TiO5, rocksalt, amorphous) 15 G.R. Odette and D.T. Hoelzer, JOM ’10 G.R. Odette, JOM ‘14 Atom Probe: Ti/Y≈1.5-4, O/(Ti+Y)<1 Y2Ti2O7: Ti/Y=1, O/(Ti+Y)=7/4>1 MA957 (Fe–14Cr–0.3Mo–1Ti–0.3Y–0.2O– 0.03C wt.%) Ti+Y >3% isocomposition contours
  • 16. Atomistic models of coherent structures show unusual chemistry – off stoichiometry, high vacancy stability The Nature of the Nanoprecipitates • Typical values: Number density=1023-1024/m3, Volume fraction=0.5-1%, Diameter=1.5-3.0nm • Explored with SANS/SAXS, Atom Probe, TEM, Ab Initio Tools • Generally pyrochlore Y2Ti2O7 (227) but significant uncertainty due to conditions and interpretation challenges (Y2TiO5, rocksalt, amorphous) 16 Posselt, et al. MSMSE ‘14
  • 17. The Nature of the Nanoprecipitates Why so much uncertainty? • Complex heterogeneous non-equilibrium system with many possible behaviors (e.g., multiple phases can be present, coherent vs. incoherent) • Systems may be quite different: stoichiometry, mixing, consolidation differences • Data interpretation challenging (e.g. atom probe stoichiometry) • Sampling different precipitates (e.g., with TEM) 17 Need to guidance from Y-Ti-O precipitate structure-stability relationships
  • 18. Density Functional Theory Calculation of Y-Ti-O Clustering Energetics 18 •How do we search for stable clusters, considering •Structure •Coherence •Stoichiometry •Different approaches: •Clusters based around strongly bound O-Vac pairs [1]. •Clusters that minimize interaction energies [2]. •Clusters that match bulk oxide stoichiometry [3]. •All assume clusters restricted to the Fe lattice. •Here, we will investigate including some clusters not restricted to the Fe lattice. [1] C.L. Fu, M. Krcmar, G. S. Painter, and X. Q. Chen, Physical Review Letters 99 (2007). [2] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009); A. Gopejenko, Y. Zhukovskii, P. Vladimirov, E. Kotomin, A. Moslang, and X. Q. Chen, Journal of Nuclear Materials 406 (2010); M Posselt, D Murali, and B K Panigrahi, MSMSE 22 (2014). [3] C. Hin, B. D. Wirth, and J. B. Neaton, Physical review B 80 (2009).
  • 19. Cluster Searching Methods •On-lattice clusters: •Clusters restricted to the bcc Fe lattice •Structure matched clusters: •Clusters guided by the structure of known bulk oxides (e.g, rutile TiO2 and bixbyite Y2O3). 19
  • 20. Methods: On Lattice Clusters = Fe or Ti/Y = O 20 • Metal atoms restricted to bcc Fe lattice • O atoms in interstitial stites [1] C.L. Fu, M. Krcmar, G. S. Painter, and X. Q. Chen, Physical Review Letters 99 (2007). [2] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009); A. Gopejenko, Y. Zhukovskii, P. Vladimirov, E. Kotomin, A. Moslang, and X. Q. Chen, Journal of Nuclear Materials 406 (2010); M Posselt, D Murali, and B K Panigrahi, MSMSE 22 (2014) [3] C. Hin, B. D. Wirth, and J. B. Neaton, Physical review B 80 (2009).
  • 21. Methods: Structure Matched Clusters • Some Ti, Y atoms mapped onto Fe lattice sites • O atoms placed relative to Ti, Y atoms according to oxide structure. • Fe atoms impinging closely upon Ti,Y,O atoms removed. • Ti-O/Y-O matched to rutile TiO2 / bixbyite Y2O3 21
  • 22. +z Methods: Formation Energy Calculation • Reference states: • Pure Fe. • Isolated Ti, Y on Fe substitutional site. • Isolated O on octahedral Fe interstitial site. • Calculations performed using Density Functional Theory (VASP, PAW, GGA) according to methods developed in [1]. [1] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009). x +y -= 22
  • 23. Ti-O Cluster Formation Energies 23
  • 24. Ti-O Cluster Formation Energies 24
  • 25. Ti-O Cluster Formation Energies 25 •Given a fixed number of Ti atoms but allowing any number of O atoms, what sort of Ti-O cluster will be most stable? •Predicated on relative diffusivities: •At 1150 oC: •Fe: 1.1E-20 m2/sec •Y: 1.5E-23 m2/sec •Ti: 1.7E-20 m2/sec •O: 1.0E-14 m2/sec
  • 26. Ti-O Cluster Formation Energies 26 Hypostoichiometric M Terminated Stoichiometric Mixed Termination Hypertoichiometric O Termination
  • 27. Ti-O Cluster Formation Energies 27 Hypostoichiometric Ti Terminated Hypertoichiometric O Termination Stoichiometric Mixed Termination Increasing O
  • 28. Y-O Cluster Formation Energies 28 Hypostoichiometric Ti Terminated Hypertoichiometric O Termination Stoichiometric Mixed Termination Increasing O
  • 29. Y-Ti-O Clusters •To assess whether these trends continue in the full Y-Ti-O system, we will perform a much smaller suite of calculations on Y-Ti-O on-lattice and structure matched clusters. •We will restrict our search to clusters with Y:Ti ratio of 1:1, matching the pyrochlore oxide Y2Ti2O7. 29
  • 30. Ti-Y-O Cluster Formation Energies Hypostoichiometric M Terminated Hypertoichiometric O Termination Stoichiometric Mixed Termination Increasing O [1] Y. Jiang, J. R. Smith, and G. R. Odette, Physical Review B 79 (2009). [2] D. Murali et al. Journal of Nuclear Materials 113 (2010). 30 •Again, most stable clusters are structure-matched, hyperstoichiometric
  • 31. Conclusion - Clusters that Resemble Bulk Oxide are Most Stable 31 Bulk oxide Embedded Cluster Ti-O (Rutile TiO2) Y-O (Bixbyite Y2O3) Ti-Y-O (Pyrochlore Y2Ti2O7)
  • 32. Outline • Introduction to Nanostructured Ferritic Alloys • Precipitate “bulk” structure [1] • Precipitate interfacial structure [2] • Thermal Aging [3] 32 [1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An ab initio study of Ti-Y-O nanocluster energetics in nanostructured ferritic alloys, Acta Materialia 60, p. 935-947 (2012). [2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces, Scientific Reports 4, p. 8 (2014) [3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys, To be published in Acta Materialia (2015).
  • 33. Atomic Structure of the Y2O3/Fe Interface {010}FeAl|| {011}YO, <100>YO|| <001>FeAl Inksonetal.MRSProc,1997 Relaxed Structure of the bi-layer of metal and oxide Iron Yttrium Oxygen Fe Y2O3 Orientation Relationship between Y2O3/Fe Misfit dislocation at the interface results in excessive Fe/O ratio Local structure of misfit dislocation in metal/oxide is a f (strain, chemistry) Fe bcc {010} plane Y2O3 {011} plane
  • 34. Restoring Chemical Balance at Dislocation (Fe/O > 1) Taking out Y  Interfacial Fe Vacancy Taking out Fe Fe ¯ O  Interfacial Y Vacancy Inserting Oxygen  Oxygen in Interfacial Fe layer Fe O - Iron Yttrium Oxygen Interstitial Oxygen Reducing Conditions Oxidizing Conditions
  • 35. -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 0 0.16 0.32 0.48 0.70.91.11.31.5 ChangeinEnergy(eV) Vacancy Concentation in the Interfacial layer Fe/O ratio at the Interface Change in Energy of the System with Point Defects Fe Vacancies DE = EWith n Vacancies Interface + n´ mFe bulk + m´ mO - EWithout Vac InterfaceMost of the vacancies/oxygen interstitials enter at the dislocation Interstitial Oxygen
  • 36. -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0 0 0.16 0.32 0.48 0.70.91.11.31.5 ChangeinEnergy(eV) Vacancy Concentation in the Interfacial layer Fe/O ratio at the Interface Change in Energy of the System with Point Defects Fe Vacancies -14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 0 0.1 0.2 0.3 0.4 0.5 0.480.640.80.96 ChangeinEnergy(eV) Vacancy Concentation in the Interfacial layer Fe/O ratio at the Interface Interstitial Oxygen + Fe Vacancies Under More Reducing Conditions: Fe vacancies Under More Oxidizing Conditions (~Cr/Cr2O3): Interstitial Oxygen + Fe Vacancies
  • 37. Conclusions - Fe/Y2O3 Interfaces are Highly Defected • Fe/Y2O3 semi- coherent interface shows highly defected structure • Undefected Fe/O=1.5, Equilibrium Fe/O~0.5 (~50% Fe vac, ~50% extra O interstitials at PO2=Cr/Cr2O3) • Will impact interface segregation, stability. Iron Yttrium Oxygen Fe Y2O3 -14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 0 0.1 0.2 0.3 0.4 0.5 0.480.640.80.96 ChangeinEnergy(eV) Vacancy Concentation in the Interfacial layer Fe/O ratio at the Interface
  • 38. Outline • Introduction to Nanostructured Ferritic Alloys • Precipitate “bulk” structure [1] • Precipitate interfacial structure [2] • Thermal Aging [3] 38 [1] L. Barnard, G. R. Odette, I. Szlufarska, and D. Morgan, An ab initio study of Ti-Y-O nanocluster energetics in nanostructured ferritic alloys, Acta Materialia 60, p. 935-947 (2012). [2] S. Choudhury, D. Morgan, and B. P. Uberuaga, Massive Interfacial Reconstruction at Misfit Dislocations in Metal/Oxide Interfaces, Scientific Reports 4, p. 8 (2014) [3] L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Thermodynamic and kinetic modeling of oxide precipitation in nanostructured ferritic alloys, To be published in Acta Materialia (2015).
  • 39. Thermal Aging Nanostructured Ferritic Alloy • Long-term stability of nanoprecipitates at elevated temperature (potentially under irradiation) is critical for sustained performance. • Thermal aging experiments show excellent stability. • Goal is to model these experiments to develop molecular scale understanding of mechanisms controlling stability of nanoprecipitates. 39
  • 40. Experimental Thermal Aging Data from Odette Group (UCSB) MA957 (Fe–14Cr–0.3Mo–1Ti–0.3Y–0.2O–0.03C wt.%) 40 M. Alinger, PhD Thesis, University of California Santa Barbara, 2004. N. Cunningham, et al, Mat Sci & Eng A (2014) N. Cunningham, et al., Fusion Materials Report June 30, 2012, DOE/ER-0313/52 1 2 3 4 5 -4 -2 0 2 4 6 MeanRadius(nm) LOG Aging Time (hr) 1223K Cunningham 1273K Cunningham 1423K Alinger 1473K Alinger 1523K Alinger 1573K Alinger Fits to classical coarsening models suggest pipe diffusion
  • 41. Chemical rate theory/mass action kinetics Method – Cluster Dynamics (CD) • Cluster growth/shrink rates determined from diffusion coefficients, thermodynamics, and interfacial energy. • Solve coupled ODEs to obtain the number of clusters at each size. Generalized for standard and pipe diffusion. Time evolution V. Slezov, Kinetics of First-Order Phase Transitions, 1st ed., Wiley-VCH, 2009.
  • 42. Parameterizing Cluster Dynamics Model • Fe-Y-Ti-O Thermodynamics – Y-Ti-O Bulk + Impurity (CALPHAD) – Interfacial (Fitting) – PO2 (Fitting) – Y–dislocation binding (ab initio) • Fe-Y-Ti-O Kinetics – Bulk impurity diffusion (experiments, ab initio (Y in Fe)) – Dislocation impurity diffusion (empirical correlation) 42
  • 43. Parameterizing Cluster Dynamics Model • Fe-Y-Ti-O Thermodynamics – Y-Ti-O Bulk + Impurity (CALPHAD) – Interfacial (Fitting) – PO2 (Fitting) – Y–dislocation binding (ab initio) • Fe-Y-Ti-O Kinetics – Bulk impurity diffusion (experiments, ab initio (Y in Fe)) – Dislocation impurity diffusion (empirical correlation) 43 1 2 3 4 5 -4 -2 0 2 4 6 MeanRadius(nm) LOG Aging Time (hr) 1223K Cunningham 1273K Cunningham 1423K Alinger 1473K Alinger 1523K Alinger 1573K Alinger
  • 44. Parameterizing Cluster Dynamics Model: Interfacial Energy 44   TiAx 00 Simple model to get one fitting parameter 0. Set by bare (TiO2)-(Y2O3) 0.0 1.0 2.0 3.0 0.00 0.33 0.67 1.00 InterfacialEnergy(J/m2) Ti fraction of metal atoms in oxide Y2O3 Surface Energy TiO2 Surface Energy TiO2/liquid Fe Interface Energy Pipe Diffusion Model Best Fit Standard Model Best Fit Close agreement with bare and liquid Fe interfacial energies validates approach
  • 45. Parameterizing Cluster Dynamics Model: PO2 45 PO2 fit to give best agreement to coarsening data -30 -25 -20 -15 -10 1200 1300 1400 1500 1600 LOGPO2 Temperature (K) Pipe Diffusion Best Fit Standard Model Best Fit Cr/Cr2O3 Equillibrium Ti/TiO2 Equilibrium • Close agreement with Cr/Cr2O3 equilibrium validates approach • Suggests no exception PO2 in NFA steels
  • 46. Parameterizing Cluster Dynamics Model: Y–dislocation binding (ab initio) 46 Calculate dislocation binding energy for multiple elements • Good agreement with experiment, elasticity for C, N, O • Y exceptionally stable – drives Y solubility for pipe diffusion! -3 -2 -1 0 C N O Y BindingEnergy(eV) Elasticity Theory Ab Initio Experiment 5 [100] [010] 2 1 3 4
  • 47. Cluster Dynamics Modeling of Thermal Aging 47 1 2 3 4 5 -4 -2 0 2 4 6 MeanRadius(nm) LOG Aging Time (hr) 1223K Cunningham 1273K Cunningham 1423K Alinger 1473K Alinger 1523K Alinger 1573K Alinger Pipe Model Standard Model
  • 48. 0.0 0.5 1.0 1.5 2.0 2.5 1000 1100 1200 1300 1400 Changeinmeanradius (nm) Temperature (K) 50 years 80 years Predictions of Coarsening Over Reactor Lifetimes Excellent stability up to over 1,100K
  • 49. Conclusions – Successful Y-Ti-O Nanocluster Coarsening • Confirms results of reduced order fitting from Odette et al that process is pipe diffusion • Predicts long term stability of >100 years at >1,100K. • Suggests PO2 may be controlled by Cr/Cr2O3 in Nanostructured Ferritic Alloys with Cr • Provides useful molecular scale parameters (interfacial energies, Y diffusivity, …) for models of processing and thermal/irradiation stability 49 1 2 3 4 5 -4 -2 0 2 4 6 MeanRadius(nm) LOG Aging Time (hr) 1223K Cunningham 1273K Cunningham 1423K Alinger 1473K Alinger 1523K Alinger 1573K Alinger Pipe Model Standard Model 1 2 3 4 5 -4 -2 0 2 4 6 MeanRadius(nm) LOG Aging Time (hr) 1223K Cunningham 1273K Cunningham 1423K Alinger 1473K Alinger 1523K Alinger 1573K Alinger Pipe Model Standard Model
  • 50. Summary Conclusions on Y-Ti-O Precipitates in Nanostructured Ferritic Alloys • Nanoprecipitates are bulk-like structures down to very small sizes – remaining on bcc lattice is higher in energy • Larger particle semi-coherent interfaces create complex defect structure to maintain Fe/O balance • Molecular understanding of coarsening is available – Confirms pipe diffusion – Shows exceptional stability (>100 years at >1100K) – Foundation for composition, processing, irradiation modeling 50 1 2 3 4 5 -4 -2 0 2 4 6 MeanRadius(nm) LOG Aging Time (hr) 1223K Cunningham 1273K Cunningham 1423K Alinger 1473K Alinger 1523K Alinger 1573K Alinger Pipe Model Standard Model Iron Yttrium Oxygen Fe Y2O3
  • 51. 51 http://matmodel.engr.wisc.edu/ COMPUTATIONAL MATERIALS GROUP Faculty * Izabela Szlufarska * Dane Morgan Postdocs * Guangfu Luo * Georgios Bokas * Henry Wu * Jia-Hong Ke * Mahmood Mamivand * Min Yu * Wei Xie * Yueh-Lin Lee Graduate Students * Amy Kaczmarowski * Ao Li * Austin Way * Benjamin Afflerbach * Cheng Liu * Chaiyapat Tangpatjaroen * Franklin Hobbs * Hao Jiang * Huibin Ke * Hyunseok Ko * James Gilbert * Jie Feng * Kai Huang * Kumaresh Murugan * Lei Zhao * Mehrdad Arjmand * Ryan Jacobs * Shenzen Xu * Tam Mayeshiba * Xing Wang * Yipeng Cao * Zhewen Song * Zhizhang Shen Acknowledgements
  • 52. U.S. DEPARTMENT OF ENERGY Rickover Fellowship Program In Nuclear Engineering DMR MMN (110564) 10-888 Computing time provided by NSF TG- DMR110074 and NSF TG- DMR090023, NSF grant number OCI-1053575 Funding/Resources Acknowledgements
  • 53. Thank You for Your Attention 53