SlideShare une entreprise Scribd logo

[2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례

NAVER D2
NAVER D2

DEVIEW 2014 [2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례

1  sur  46
Télécharger pour lire hors ligne
[2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례
• 
• 
• 
• 
• 
• 
• 
• 
•
• 
• 
• 
• 
• 
• 
•…
• 
• 
• 
•… 
•
[2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례
[2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례

Recommandé

강성훈, 실버바인 대기열 서버 설계 리뷰, NDC2019
강성훈, 실버바인 대기열 서버 설계 리뷰, NDC2019강성훈, 실버바인 대기열 서버 설계 리뷰, NDC2019
강성훈, 실버바인 대기열 서버 설계 리뷰, NDC2019devCAT Studio, NEXON
 
Massive service basic
Massive service basicMassive service basic
Massive service basicDaeMyung Kang
 
Understanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineUnderstanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineInfluxData
 
Maxscale 소개 1.1.1
Maxscale 소개 1.1.1Maxscale 소개 1.1.1
Maxscale 소개 1.1.1NeoClova
 
Scylla Summit 2022: The Future of Consensus in ScyllaDB 5.0 and Beyond
Scylla Summit 2022: The Future of Consensus in ScyllaDB 5.0 and BeyondScylla Summit 2022: The Future of Consensus in ScyllaDB 5.0 and Beyond
Scylla Summit 2022: The Future of Consensus in ScyllaDB 5.0 and BeyondScyllaDB
 
Getting up to speed with Kafka Connect: from the basics to the latest feature...
Getting up to speed with Kafka Connect: from the basics to the latest feature...Getting up to speed with Kafka Connect: from the basics to the latest feature...
Getting up to speed with Kafka Connect: from the basics to the latest feature...HostedbyConfluent
 
[2018] MySQL 이중화 진화기
[2018] MySQL 이중화 진화기[2018] MySQL 이중화 진화기
[2018] MySQL 이중화 진화기NHN FORWARD
 
DDD on example of Symfony (SfCampUA14)
DDD on example of Symfony (SfCampUA14)DDD on example of Symfony (SfCampUA14)
DDD on example of Symfony (SfCampUA14)Oleg Zinchenko
 

Contenu connexe

Tendances

1.mysql disk io 모니터링 및 분석사례
1.mysql disk io 모니터링 및 분석사례1.mysql disk io 모니터링 및 분석사례
1.mysql disk io 모니터링 및 분석사례I Goo Lee
 
Scylla on Kubernetes: Introducing the Scylla Operator
Scylla on Kubernetes: Introducing the Scylla OperatorScylla on Kubernetes: Introducing the Scylla Operator
Scylla on Kubernetes: Introducing the Scylla OperatorScyllaDB
 
Improving Kafka at-least-once performance at Uber
Improving Kafka at-least-once performance at UberImproving Kafka at-least-once performance at Uber
Improving Kafka at-least-once performance at UberYing Zheng
 
엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기
엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기
엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기흥래 김
 
Cassandra at Instagram (August 2013)
Cassandra at Instagram (August 2013)Cassandra at Instagram (August 2013)
Cassandra at Instagram (August 2013)Rick Branson
 
MySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptxMySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptxNeoClova
 
Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)Brian Brazil
 
Embulk, an open-source plugin-based parallel bulk data loader
Embulk, an open-source plugin-based parallel bulk data loaderEmbulk, an open-source plugin-based parallel bulk data loader
Embulk, an open-source plugin-based parallel bulk data loaderSadayuki Furuhashi
 
High-speed Database Throughput Using Apache Arrow Flight SQL
High-speed Database Throughput Using Apache Arrow Flight SQLHigh-speed Database Throughput Using Apache Arrow Flight SQL
High-speed Database Throughput Using Apache Arrow Flight SQLScyllaDB
 
The Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and ContainersThe Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and ContainersSATOSHI TAGOMORI
 
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)Seongyun Byeon
 
Storing 16 Bytes at Scale
Storing 16 Bytes at ScaleStoring 16 Bytes at Scale
Storing 16 Bytes at ScaleFabian Reinartz
 
[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요
[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요
[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요NAVER D2
 
MongoDB WiredTiger Internals
MongoDB WiredTiger InternalsMongoDB WiredTiger Internals
MongoDB WiredTiger InternalsNorberto Leite
 
How Prometheus Store the Data
How Prometheus Store the DataHow Prometheus Store the Data
How Prometheus Store the DataHao Chen
 
mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교Woo Yeong Choi
 
Towards SLA-based Scheduling on YARN Clusters
Towards SLA-based Scheduling on YARN ClustersTowards SLA-based Scheduling on YARN Clusters
Towards SLA-based Scheduling on YARN ClustersDataWorks Summit
 
PostgreSQL WAL for DBAs
PostgreSQL WAL for DBAs PostgreSQL WAL for DBAs
PostgreSQL WAL for DBAs PGConf APAC
 

Tendances (20)

1.mysql disk io 모니터링 및 분석사례
1.mysql disk io 모니터링 및 분석사례1.mysql disk io 모니터링 및 분석사례
1.mysql disk io 모니터링 및 분석사례
 
Scylla on Kubernetes: Introducing the Scylla Operator
Scylla on Kubernetes: Introducing the Scylla OperatorScylla on Kubernetes: Introducing the Scylla Operator
Scylla on Kubernetes: Introducing the Scylla Operator
 
Improving Kafka at-least-once performance at Uber
Improving Kafka at-least-once performance at UberImproving Kafka at-least-once performance at Uber
Improving Kafka at-least-once performance at Uber
 
엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기
엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기
엘라스틱서치 클러스터로 수십억 건의 데이터 운영하기
 
Cassandra at Instagram (August 2013)
Cassandra at Instagram (August 2013)Cassandra at Instagram (August 2013)
Cassandra at Instagram (August 2013)
 
Redis
RedisRedis
Redis
 
MySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptxMySQL_MariaDB-성능개선-202201.pptx
MySQL_MariaDB-성능개선-202201.pptx
 
Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)Systems Monitoring with Prometheus (Devops Ireland April 2015)
Systems Monitoring with Prometheus (Devops Ireland April 2015)
 
Embulk, an open-source plugin-based parallel bulk data loader
Embulk, an open-source plugin-based parallel bulk data loaderEmbulk, an open-source plugin-based parallel bulk data loader
Embulk, an open-source plugin-based parallel bulk data loader
 
High-speed Database Throughput Using Apache Arrow Flight SQL
High-speed Database Throughput Using Apache Arrow Flight SQLHigh-speed Database Throughput Using Apache Arrow Flight SQL
High-speed Database Throughput Using Apache Arrow Flight SQL
 
The Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and ContainersThe Patterns of Distributed Logging and Containers
The Patterns of Distributed Logging and Containers
 
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
[MLOps KR 행사] MLOps 춘추 전국 시대 정리(210605)
 
Storing 16 Bytes at Scale
Storing 16 Bytes at ScaleStoring 16 Bytes at Scale
Storing 16 Bytes at Scale
 
[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요
[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요
[2B7]시즌2 멀티쓰레드프로그래밍이 왜 이리 힘드나요
 
MongoDB WiredTiger Internals
MongoDB WiredTiger InternalsMongoDB WiredTiger Internals
MongoDB WiredTiger Internals
 
How Prometheus Store the Data
How Prometheus Store the DataHow Prometheus Store the Data
How Prometheus Store the Data
 
Milvusdm
MilvusdmMilvusdm
Milvusdm
 
mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교mongodb와 mysql의 CRUD 연산의 성능 비교
mongodb와 mysql의 CRUD 연산의 성능 비교
 
Towards SLA-based Scheduling on YARN Clusters
Towards SLA-based Scheduling on YARN ClustersTowards SLA-based Scheduling on YARN Clusters
Towards SLA-based Scheduling on YARN Clusters
 
PostgreSQL WAL for DBAs
PostgreSQL WAL for DBAs PostgreSQL WAL for DBAs
PostgreSQL WAL for DBAs
 

Similaire à [2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례

Arch intro4sts
Arch intro4stsArch intro4sts
Arch intro4stsDima Dzuba
 
覺旅文化與價值觀 簡報 20160303
覺旅文化與價值觀 簡報 20160303覺旅文化與價值觀 簡報 20160303
覺旅文化與價值觀 簡報 20160303Brendon Chang
 
打坐入門(四)
打坐入門(四)打坐入門(四)
打坐入門(四)宏 恆
 
طرق إبداعية في حفظ القرآن الكريم
طرق إبداعية في حفظ القرآن الكريمطرق إبداعية في حفظ القرآن الكريم
طرق إبداعية في حفظ القرآن الكريمGhadir ElGhafri
 
Akita.mはこんな感じでやってます。
Akita.mはこんな感じでやってます。Akita.mはこんな感じでやってます。
Akita.mはこんな感じでやってます。gutskun
 
Kawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manualKawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manualfjsjjekdkme
 
Kawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manualKawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manualf98soeodidkdk
 
Introducción a Groovy y Grails
Introducción a Groovy y GrailsIntroducción a Groovy y Grails
Introducción a Groovy y GrailsEscuela de Groovy
 
CoreMLでリアルタイム画風変換
CoreMLでリアルタイム画風変換CoreMLでリアルタイム画風変換
CoreMLでリアルタイム画風変換mike-neko
 
WBDEG Digital Media Kit
WBDEG Digital Media KitWBDEG Digital Media Kit
WBDEG Digital Media KitWBDEG
 
⑨Web制作、デザイン、セキュリティなどの基礎を学ぼう
⑨Web制作、デザイン、セキュリティなどの基礎を学ぼう⑨Web制作、デザイン、セキュリティなどの基礎を学ぼう
⑨Web制作、デザイン、セキュリティなどの基礎を学ぼうNishida Kansuke
 
打坐入門(一)
打坐入門(一)打坐入門(一)
打坐入門(一)宏 恆
 
Living with Minerals 4 - Shaping UK minerals policy - Part 7
Living with Minerals 4 - Shaping UK minerals policy - Part 7Living with Minerals 4 - Shaping UK minerals policy - Part 7
Living with Minerals 4 - Shaping UK minerals policy - Part 7Confederation of British Industry
 
الثقافه الاسلاميه المستوىالرابع-القسم الأول
الثقافه الاسلاميه المستوىالرابع-القسم الأولالثقافه الاسلاميه المستوىالرابع-القسم الأول
الثقافه الاسلاميه المستوىالرابع-القسم الأولAlaa Farag
 
Sentric Workforce Open House
Sentric Workforce Open HouseSentric Workforce Open House
Sentric Workforce Open HouseShannon Maggs
 

Similaire à [2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례 (20)

Arch intro4sts
Arch intro4stsArch intro4sts
Arch intro4sts
 
YBA LineCard 2016
YBA LineCard 2016YBA LineCard 2016
YBA LineCard 2016
 
覺旅文化與價值觀 簡報 20160303
覺旅文化與價值觀 簡報 20160303覺旅文化與價值觀 簡報 20160303
覺旅文化與價值觀 簡報 20160303
 
Dmo yaktrak
Dmo yaktrakDmo yaktrak
Dmo yaktrak
 
Painter x
Painter xPainter x
Painter x
 
打坐入門(四)
打坐入門(四)打坐入門(四)
打坐入門(四)
 
каталог Lamark 2014
каталог Lamark 2014каталог Lamark 2014
каталог Lamark 2014
 
طرق إبداعية في حفظ القرآن الكريم
طرق إبداعية في حفظ القرآن الكريمطرق إبداعية في حفظ القرآن الكريم
طرق إبداعية في حفظ القرآن الكريم
 
Akita.mはこんな感じでやってます。
Akita.mはこんな感じでやってます。Akita.mはこんな感じでやってます。
Akita.mはこんな感じでやってます。
 
Kawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manualKawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manual
 
Kawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manualKawasaki 135 zv 2 wheel loader operation and maintenance manual
Kawasaki 135 zv 2 wheel loader operation and maintenance manual
 
Introducción a Groovy y Grails
Introducción a Groovy y GrailsIntroducción a Groovy y Grails
Introducción a Groovy y Grails
 
CoreMLでリアルタイム画風変換
CoreMLでリアルタイム画風変換CoreMLでリアルタイム画風変換
CoreMLでリアルタイム画風変換
 
00 instalaciones 1
00 instalaciones 100 instalaciones 1
00 instalaciones 1
 
WBDEG Digital Media Kit
WBDEG Digital Media KitWBDEG Digital Media Kit
WBDEG Digital Media Kit
 
⑨Web制作、デザイン、セキュリティなどの基礎を学ぼう
⑨Web制作、デザイン、セキュリティなどの基礎を学ぼう⑨Web制作、デザイン、セキュリティなどの基礎を学ぼう
⑨Web制作、デザイン、セキュリティなどの基礎を学ぼう
 
打坐入門(一)
打坐入門(一)打坐入門(一)
打坐入門(一)
 
Living with Minerals 4 - Shaping UK minerals policy - Part 7
Living with Minerals 4 - Shaping UK minerals policy - Part 7Living with Minerals 4 - Shaping UK minerals policy - Part 7
Living with Minerals 4 - Shaping UK minerals policy - Part 7
 
الثقافه الاسلاميه المستوىالرابع-القسم الأول
الثقافه الاسلاميه المستوىالرابع-القسم الأولالثقافه الاسلاميه المستوىالرابع-القسم الأول
الثقافه الاسلاميه المستوىالرابع-القسم الأول
 
Sentric Workforce Open House
Sentric Workforce Open HouseSentric Workforce Open House
Sentric Workforce Open House
 

Plus de NAVER D2

[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다NAVER D2
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...NAVER D2
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기NAVER D2
 
[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발NAVER D2
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈NAVER D2
 
[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&ANAVER D2
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기NAVER D2
 
[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep LearningNAVER D2
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applicationsNAVER D2
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingOld version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingNAVER D2
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지NAVER D2
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기NAVER D2
 
[224]네이버 검색과 개인화
[224]네이버 검색과 개인화[224]네이버 검색과 개인화
[224]네이버 검색과 개인화NAVER D2
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)NAVER D2
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기NAVER D2
 
[213] Fashion Visual Search
[213] Fashion Visual Search[213] Fashion Visual Search
[213] Fashion Visual SearchNAVER D2
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화NAVER D2
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지NAVER D2
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터NAVER D2
 
[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?NAVER D2
 

Plus de NAVER D2 (20)

[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다[211] 인공지능이 인공지능 챗봇을 만든다
[211] 인공지능이 인공지능 챗봇을 만든다
 
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
[233] 대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing: Maglev Hashing Scheduler i...
 
[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기[215] Druid로 쉽고 빠르게 데이터 분석하기
[215] Druid로 쉽고 빠르게 데이터 분석하기
 
[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발[245]Papago Internals: 모델분석과 응용기술 개발
[245]Papago Internals: 모델분석과 응용기술 개발
 
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
[236] 스트림 저장소 최적화 이야기: 아파치 드루이드로부터 얻은 교훈
 
[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A[235]Wikipedia-scale Q&A
[235]Wikipedia-scale Q&A
 
[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기[244]로봇이 현실 세계에 대해 학습하도록 만들기
[244]로봇이 현실 세계에 대해 학습하도록 만들기
 
[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning[243] Deep Learning to help student’s Deep Learning
[243] Deep Learning to help student’s Deep Learning
 
[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications[234]Fast & Accurate Data Annotation Pipeline for AI applications
[234]Fast & Accurate Data Annotation Pipeline for AI applications
 
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load BalancingOld version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
Old version: [233]대형 컨테이너 클러스터에서의 고가용성 Network Load Balancing
 
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
[226]NAVER 광고 deep click prediction: 모델링부터 서빙까지
 
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
[225]NSML: 머신러닝 플랫폼 서비스하기 & 모델 튜닝 자동화하기
 
[224]네이버 검색과 개인화
[224]네이버 검색과 개인화[224]네이버 검색과 개인화
[224]네이버 검색과 개인화
 
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
[216]Search Reliability Engineering (부제: 지진에도 흔들리지 않는 네이버 검색시스템)
 
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
[214] Ai Serving Platform: 하루 수 억 건의 인퍼런스를 처리하기 위한 고군분투기
 
[213] Fashion Visual Search
[213] Fashion Visual Search[213] Fashion Visual Search
[213] Fashion Visual Search
 
[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화[232] TensorRT를 활용한 딥러닝 Inference 최적화
[232] TensorRT를 활용한 딥러닝 Inference 최적화
 
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
[242]컴퓨터 비전을 이용한 실내 지도 자동 업데이트 방법: 딥러닝을 통한 POI 변화 탐지
 
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
[212]C3, 데이터 처리에서 서빙까지 가능한 하둡 클러스터
 
[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?[223]기계독해 QA: 검색인가, NLP인가?
[223]기계독해 QA: 검색인가, NLP인가?
 

[2B3]ARCUS차별기능,사용이슈,그리고카카오적용사례