Nous avons mis à jour notre politique de confidentialité. Cliquez ici pour consulter les détails. Cliquez ici pour consulter les détails.
Activez votre essai gratuit de 30 jours pour accéder à une lecture illimitée
Activez votre essai gratuit de 30 jours pour continuer votre lecture.
Télécharger pour lire hors ligne
Slides of the paper presented at the 4th Int. Conference on Process Mining (ICPM 2022, Bolzano, Italy).
Abstract:
Process mining analyzes business processes’ behavior and performance using event logs. An essential requirement is that events are grouped in cases representing the execution of process instances. However, logs extracted from different systems or non-process-aware information systems do not map events with unique case identifiers (case IDs). In such settings, the event log needs to be pre-processed to group events into cases – an operation known as event correlation. Existing techniques for correlating events work with different assumptions: some assume the generating processes are acyclic, while others require extra domain knowledge, such as the relation between the events and event attributes or heuristic information about the activities’ execution time behavior. However, domain knowledge is not always available or easy to acquire, compromising the quality of the correlated event log. In this paper, we propose a new technique called EC-SA-RM, which correlates the events using a simulated annealing technique and iteratively learns the domain knowledge as a set of association rules. The technique requires a sequence of timestamped events (i.e., the log without case IDs) and a process model describing the underlying business process. A possible correlated log is generated at each iteration of the simulated annealing. Then, EC-SA-RM uses this correlated log to learn a set of association rules that represent the relationship between the events and the changing behavior over the events’ attributes in an understandable way. These rules enrich the input and improve the event correlation process for the next iteration. EC-SA-RM returns an event log in which events are grouped in cases and a set of association rules that explain the correlation over the events. We evaluate our approach using four real-life datasets.
Slides of the paper presented at the 4th Int. Conference on Process Mining (ICPM 2022, Bolzano, Italy).
Abstract:
Process mining analyzes business processes’ behavior and performance using event logs. An essential requirement is that events are grouped in cases representing the execution of process instances. However, logs extracted from different systems or non-process-aware information systems do not map events with unique case identifiers (case IDs). In such settings, the event log needs to be pre-processed to group events into cases – an operation known as event correlation. Existing techniques for correlating events work with different assumptions: some assume the generating processes are acyclic, while others require extra domain knowledge, such as the relation between the events and event attributes or heuristic information about the activities’ execution time behavior. However, domain knowledge is not always available or easy to acquire, compromising the quality of the correlated event log. In this paper, we propose a new technique called EC-SA-RM, which correlates the events using a simulated annealing technique and iteratively learns the domain knowledge as a set of association rules. The technique requires a sequence of timestamped events (i.e., the log without case IDs) and a process model describing the underlying business process. A possible correlated log is generated at each iteration of the simulated annealing. Then, EC-SA-RM uses this correlated log to learn a set of association rules that represent the relationship between the events and the changing behavior over the events’ attributes in an understandable way. These rules enrich the input and improve the event correlation process for the next iteration. EC-SA-RM returns an event log in which events are grouped in cases and a set of association rules that explain the correlation over the events. We evaluate our approach using four real-life datasets.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Vous avez clippé votre première diapositive !
En clippant ainsi les diapos qui vous intéressent, vous pourrez les revoir plus tard. Personnalisez le nom d’un clipboard pour mettre de côté vos diapositives.La famille SlideShare vient de s'agrandir. Profitez de l'accès à des millions de livres numériques, livres audio, magazines et bien plus encore sur Scribd.
Annulez à tout moment.Lecture illimitée
Apprenez plus vite et de façon plus astucieuse avec les meilleurs spécialistes
Téléchargements illimités
Téléchargez et portez vos connaissances avec vous hors ligne et en déplacement
Vous bénéficiez également d'un accés gratuit à Scribd!
Accès instantané à des millions de livres numériques, de livres audio, de magazines, de podcasts, et bien plus encore.
Lisez et écoutez hors ligne depuis n'importe quel appareil.
Accès gratuit à des services premium tels que TuneIn, Mubi, et bien plus encore.
Nous avons mis à jour notre politique de confidentialité pour nous conformer à l'évolution des réglementations mondiales en matière de confidentialité et pour vous informer de la manière dont nous utilisons vos données de façon limitée.
Vous pouvez consulter les détails ci-dessous. En cliquant sur Accepter, vous acceptez la politique de confidentialité mise à jour.
Merci!