On considère l’application f définie de 3
IR vers 3
IR par : ),,()),,(( zzxzyzyxf +−=
1) Montrer que l’application f est l...
Correction de l’exercice 1
1) Montrons que l’application f est linéaire.
♦ Soit ( )23
),( IRyx ∈ : ),,( 321 xxxx = et ),,(...
Correction de l’exercice 2
1) ),,,()),,(( zyxxzzyyxzyxf +++++=
a) Calculons l’image de la base canonique { }321 ,, eee de ...
)(),,( fKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx
ssi







=++
=+
=+
=+
0
0
0
0
zyx
zx
zy
yx
ssi






...
c) Déterminons une base de )(gKer et ( ))(grg
♦ Déterminons une base de )(gKer :
{ })0,0,0,0(),,(/),,()( 3
=∈= zyxgIRzyxgK...
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
...
o Le système { }1u est libre 1)( =⇒ Srg
o { }1u est alors une base de fIm : >=>=<=< 321Im uuuf
c. ),,(),( yxxyyxyxf −+−=
D...
o On pose { }321 ,, uuuS = avec





−==
==
−==
)1,2,1()(
)1,1,2()(
)1,2,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuu...
o { }321 ,, uuu est alors une base de fIm :
3
Im IRf =
Pour déterminer une base de )Im( f , sans calcul, il suffit de rema...
d. f définie de
3
IR vers
3
IR par : ),,(),,( zyxzyxzyxzyxf −++−++=
33
dimdim IRIR = , donc f peut être bijective :
f est ...
a) Calculons l’image de la base B de V par g .
{ }



=
−=
⇒



=
=
=
)1,1()(
)1,1()(
)1,0,1(
)0,1,0(
:,
2
1
2
1
21
...
♦ Déterminons
1−
g : ),,(),(1
zyxYXg =−
ssi ),(),,( YXzyxg = , avec Vzyx ∈),,(
( )VzyxYXzyxg ∈= ),,(),,(),,( ssi




...
Prochain SlideShare
Chargement dans…5
×

Exercices corrigés applications linéaires-djeddi kamel

949 vues

Publié le

djeddi kamel

Publié dans : Formation
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
949
Sur SlideShare
0
Issues des intégrations
0
Intégrations
3
Actions
Partages
0
Téléchargements
41
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Exercices corrigés applications linéaires-djeddi kamel

  1. 1. On considère l’application f définie de 3 IR vers 3 IR par : ),,()),,(( zzxzyzyxf +−= 1) Montrer que l’application f est linéaire. 2) Calculer ff o et en déduire que f est un automorphisme. 3) Déterminer )( fKer et )Im( f . Exercice 2 1) On considère l’application linéaire f définie de 3 IR vers 4 IR par : ),,,()),,((:),,( 3 zyxxzzyyxzyxfIRzyx +++++=∈∀ a) Calculer l’image de la base canonique de 3 IR par f . b) En déduire une base de )Im( f et le rang de f ( ))( frg . c) Déterminer le noyau de f ( ))( fKer et en déduire le rang de f ( ))( frg . 2) Mêmes questions pour l’application linéaire g définie de 3 IR vers 4 IR par : ),,,()),,((:),,( 3 zyxzyxzyxzyxzyxgIRzyx −+−+−−+−−+=∈∀ 1) Déterminer une base de )Im( f et une base de )( fKer pour chacune des applications linéaires. a) f définie de 3 IR vers 2 IR par : ),(),,( zyxzyxzyxf −−+−= b) f définie de 3 IR vers 2 IR par : ),(),,( xzyzyxzyxf −+−−= c) f définie de 2 IR vers 3 IR par : ),,(),( yxxyyxyxf −+−= d) f définie de 3 IR vers 3 IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++= e) f définie de 3 IR vers 3 IR par : ),,(),,( zyxzyxzyxzyxf −++−++= 2) Déterminer 1− f si elle existe. Dans 3 IR , on considère le sous espace vectoriel V défini par { }0/),,( 3 =−∈= zxIRzyxV . 1) Donner une base B du sous espace vectoriel V . 2) On considère l’application linéaire g définie de V vers 2 IR par : ),()),,(( yxyxzyxg −+= a) Calculer l’image de la base B par f et en déduire une base de )Im(g . b) Montrer que g est un isomorphisme de V vers 2 IR et déterminer 1− g . Série 2: Applications linéaires Exercice 1 Exercice 3 Exercice 4 E-mail:djeddi.kamel@gmail.com 2015
  2. 2. Correction de l’exercice 1 1) Montrons que l’application f est linéaire. ♦ Soit ( )23 ),( IRyx ∈ : ),,( 321 xxxx = et ),,( 321 yyyy = On vérifie que 2 ),( IR∈∀ βα , on a : ( ) ( )yfxfyxf ..)..( βαβα +=+ ♦ L’application f est alors linéaire. 2) ♦ Calcul de l’application ff o . ( )( ) ( )( ) ( )zzxzyfzyxffzyxffzzxzyzyxf ,,,,,,),,()),,(( +−==⇒+−= o ( )( ) ( ) ( ) ),,(,)(,)(,,,, zyxzzzyzzxzzxzyzyxff =+−−+=+−=⇒ o ⇒ 3 IR Idff =o ♦ f est un automorphisme : L’application f est linéaire. L’application f est bijective et ff =−1 : 3 IR Idff =o 3) Déterminons )( fKer et )Im( f . ♦ Déterminons )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer )(),,( fKerzyx ∈ ssi )0,0,0(),,( =+− zzxzy ssi      = =+ =− 0 0 0 z zx zy ssi      = =−= == 0 0 0 z zx zy { })0,0,0()( =fKer ♦ Déterminons )Im( f : >=< )(),(),(Im 321 efefeff , { }321 ,, eee une base de 3 IR { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e      −== == == )1,1,1()( )0,0,1()( )0,1,0()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf On pose { }321 ,, uuuS = : >=< 321 ,,Im uuuf Corrections E-mail:djeddi.kamel@gmail.com
  3. 3. Correction de l’exercice 2 1) ),,,()),,(( zyxxzzyyxzyxf +++++= a) Calculons l’image de la base canonique { }321 ,, eee de 3 IR par f .      = = = ⇒      = = = )1,1,1,0()( )1,0,1,1()( )1,1,0,1()( )1,0,0( )0,1,0( )0,0,1( 3 2 1 3 2 1 ef ef ef e e e b) Déduisons en une base de )Im( f et ( ))( frg ♦ Déterminons une base de )Im( f >>=<=< 321321 ,,)(),(),(Im uuuefefeff avec :      = = = )1,1,1,0( )1,0,1,1( )1,1,0,1( 3 2 1 u u u Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? 0 00 0 0 0 )0,0,0,0(... 321 321 213 23 21 321 31 32 21 332211 ===⇒        =++ =−= −= −= ⇒        =++ =+ =+ =+ ⇒=++ ααα ααα ααα αα αα ααα αα αα αα ααα uuu Le système { }321 ,, uuuS = est alors libre 3)( =⇒ Srg ♦ { }321 ,, uuu est alors une base de fIm : 3 Im IRf = ♦ ⇒== 3)dim(Im)( ffrg 3)( =frg c) Déterminons une base de )( fKer et ( ))( frg ♦ Déterminons une base de )( fKer : { })0,0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer Déterminons le rang du système 321 ,, uuuS = : 3)(1 ≤≤ Srg o Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? o )0,0,0(.. 332211 =++ uuu ααα o )0,0,0()1,1,1.()0,0,1.()1,0,1.( 321 =−++⇒ ααα
  4. 4. )(),,( fKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx ssi        =++ =+ =+ =+ 0 0 0 0 zyx zx zy yx ssi        −−= −= =−= −= zxy xz xyz yx ssi 0=== zyx ♦ Donc : { })0,0,0()( =fKer , ( ) 0)(dim =fKer ♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 fKerfrgIRfKerfrg 3)( =frg 2) ),,,()),,(( zyxzyxzyxzyxzyxg −+−+−−+−−+= a) Calculons l’image de la base canonique { }321 ,, eee de 3 IR par g .      −−= −−= −−= ⇒      = = = )1,1,1,1()( )1,1,1,1()( )1,1,1,1()( )1,0,0( )0,1,0( )0,0,1( 3 2 1 3 2 1 eg eg eg e e e b) Déduisons en une base de )Im(g et ( ))(grg ♦ Déterminons une base de )Im(g >>=<=< 321321 ,,)(),(),(Im uuuegegegf avec :      −−= −−= −−= )1,1,1,1( )1,1,1,1( )1,1,1,1( 3 2 1 u u u Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 23 uu −= 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg ♦ { }21,uu et { }31,uu sont deux base de gIm : >>=<=< 3121 ,,Im uuuug ♦ ⇒== 2)dim(Im)( ggrg 2)( =grg
  5. 5. c) Déterminons une base de )(gKer et ( ))(grg ♦ Déterminons une base de )(gKer : { })0,0,0,0(),,(/),,()( 3 =∈= zyxgIRzyxgKer )(),,( gKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx ssi        =−+− =+−− =+− =−+ 0 0 0 0 )4( )3( )2( )1( zyx zyx zyx zyx ssi    +− =−+ zyx zyx 0 )2( )1( ssi    = = − + zy x 0 )2()1( )2()1( ssi )1,1,0.(),,0(),,( yyyzyx == , ( )IRy ∈ ♦ Donc : >=< )1,1,0()(gKer , ( ) 1)(dim =gKer ♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 gKergrgIRgKergrg 2)( =grg Correction de l’exercice 3 1) Déterminons )( fKer et )Im( f . a. ),(),,( zyxzyxzyxf −−+−= Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0(),( =−−+− zyxzyx o ssi    =−− =+− 0 0 zyx zyx ssi    −= =− yxz yx 0 ssi    = = 0z yx o >=< )0,1,1()( fKer , { })0,1,1( est une base de )( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −−== == )1,1()( )1,1()( )1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf
  6. 6. o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 12 uu −= 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }32,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg o { }32,uu et { }31,uu sont deux base de fIm o >>=<=< 3132 ,,Im uuuuf , 2 Im IRf = b. ),(),,( xzyzyxzyxf −+−−= Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0(),( =++−−− zyxzyx o ssi    =++− =−− 0 0 zyx zyx ssi 0=−− zyx ssi zyx += , ( )IRzy ∈, o ssi )1,0,1.()0,1,1.(),,(),,( zyzyzyzyx +=+= , ( )IRzy ∈, o Donc : >=< )1,0,1(),0,1,1()( fKer , { })1,0,1(),0,1,1( est une base de )( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −== −== )1,1()( )1,1()( )1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 123 uuu −== 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu est lié car 12 uu −= Le système { }31,uu est lié car 13 uu −= Le système { }32,uu est lié car 23 uu = • 2)( <⇒ Srg
  7. 7. o Le système { }1u est libre 1)( =⇒ Srg o { }1u est alors une base de fIm : >=>=<=< 321Im uuuf c. ),,(),( yxxyyxyxf −+−= Déterminons une base de )( fKer : { })0,0,0(),(/),()( 2 =∈= yxfIRyxfKer o )(),( fKeryx ∈ ssi )0,0,0(),,( =−+− yxxyyx o ssi    =+ =− 0 0 yx yx ssi    −= = yx yx ssi 0== yx o Donc : { })0,0()( =fKer Déterminons une base de )Im( f : >=< )(),(Im 21 efeff o { }21,ee la base canonique de 2 IR : )0,1(1 =e , )1,0(2 =e o On pose { }21,uuS = , avec    −−== == )1,1,1()( )1,1,1()( 22 11 efu efu : >=< 21,Im uuf o Déterminons le rang du système { }21,uuS = : 2)(1 ≤≤ Srg • Cherchons si 2)( =Srg : { }21,uuS = est-il libre ? { }21,uuS = est libre (calcul) o 2)( <⇒ Srg o { }21,uuS = est alors une base de fIm : >=< 21,Im uuf d. ),22,2(),,( zyxzyxzyxzyxf −+−++++= Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0,0(),22,2( =−+−++++ zyxzyxzyx o ssi      =−+− =++ =++ 0 022 02 )3( )2( )1( zyx zyx zyx ssi      =+ −=+ =+ yzx yzx y )(2 0 )3( )2( )3()1( ssi      ∈ −= = IRx xz y 0 o ssi )1,0,1.(),0,(),,( −=−= xxxzyx , ( )IRx∈ o Donc : >−=< )1,0,1()( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
  8. 8. o On pose { }321 ,, uuuS = avec      −== == −== )1,2,1()( )1,1,2()( )1,2,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 13 uu = 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu (ou bien { }32,uu ) est libre (calcul) 2)( =⇒ Srg o { }21,uu et { }32,uu sont deux base de fIm : >>=<=< 3221 ,,Im uuuuf e. ),,(),,( zyxzyxzyxzyxf −++−++= Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0,0(),,( =−++−++ zyxzyxzyx o ssi      =−+ =+− =++ 0 0 0 )3( )2( )1( zyx zyx zyx ssi      = = = + − − 0 0 0 )3()2( )2()1( )3()1( x y z o Donc : { })0,0,0()( =fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −== == )1,1,1()( )1,1,1()( )1,1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? On vérifie que { }321 ,, uuuS = est libre (calcul). • 3=⇒ S
  9. 9. o { }321 ,, uuu est alors une base de fIm : 3 Im IRf = Pour déterminer une base de )Im( f , sans calcul, il suffit de remarquer que : o f est injective car : { })0,0,0()( =fKer o f est alors un endomorphisme injectif de 3 IR , donc f est bijective. o Donc f est surjective et alors 3 Im IRf = 2) Déterminons 1− f , lorsqu’elle existe. a. f définie de 3 IR vers 2 IR par : ),(),,( zyxzyxzyxf −−+−= 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective : o 2 Im IRf = donc f est surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. b. f définie de 3 IR vers 2 IR par : ),(),,( xzyzyxzyxf −+−−= 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective : o 1)dim(Im =f , donc 2 Im IRf ≠ donc f n’est pas surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. c. f définie de 2 IR vers 3 IR par : ),,(),( yxxyyxyxf −+−= 23 dimdim IRIR < , donc f ne peut pas être surjective donc f ne peut pas être bijective : o 2)dim(Im =f , donc 3 Im IRf ≠ donc f n’est pas surjective. o { })0,0()( =fKer donc f est injective. o f définie de 3 IR vers 3 IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++= 33 dimdim IRIR = , donc f peut être bijective : f est bijective ssi f est injective ssi f est surjective o 2)dim(Im =f donc 3 Im IRf ≠ et f n’est pas surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. o f n’est alors pas un automorphisme de 3 IR .
  10. 10. d. f définie de 3 IR vers 3 IR par : ),,(),,( zyxzyxzyxzyxf −++−++= 33 dimdim IRIR = , donc f peut être bijective : f est bijective ssi f est injective ssi f est surjective o 3 Im IRf = donc f est surjective. o { })0,0,0()( =fKer donc f est injective. o f est alors un automorphisme de 3 IR . ♦ Déterminons alors 1− f . 1− f définie de 3 IR vers 3 IR par : ),,(),,(1 zyxZYXf =− ssi ),,(),,( ZYXzyxf = ),,(),,( ZYXzyxf = ssi ),,(),,( ZYXzyxzyxzyx =−++−++ ssi      =−+ =+− =++ Zzyx Yzyx Xzyx )3( )2( )1( ssi      += −= −= + − − ZYx YXy ZXz 2 2 2 )3()2( )2()1( )3()1( ssi         += −= −= ZYx YXy ZXz 2 1 2 1 2 1 2 1 2 1 2 1 ♦ La bijection réciproque 1− f de ),,(),,( zyxzyxzyxzyxf −++−++= est alors définie de 3 IR vers 3 IR par :       −−+=− ZXYXZYZYXf 2 1 2 1 , 2 1 2 1 , 2 1 2 1 ),,(1 Correction de l’exercice 2 1) Déterminons une base de { }0/),,( 3 =−∈= zxIRzyxV : ♦ Vzyx ∈),,( ssi 0== zx ssi )1,0,1.()0,1,0.(),,(),,( xyxyxzyx +== , ( )IRyx ∈, ♦ Donc : { })1,0,1(),0,1,0(=B est une base de V , 2dim =V 2) l’application linéaire g définie de V vers 2 IR par : ),()),,(( yxyxzyxg −+=
  11. 11. a) Calculons l’image de la base B de V par g . { }    = −= ⇒    = = = )1,1()( )1,1()( )1,0,1( )0,1,0( :, 2 1 2 1 21 ug ug u u uuB b) Montrons que g est un isomorphisme de V vers 2 IR et déterminons 1− g . ♦ Montrons que g est un isomorphisme de V vers 2 IR : g est une application linéaire de V vers 2 IR et 2)dim(dim 2 == IRV Pour montrer que g est un isomorphisme, il suffit alors de montrer que g est injective ou g est surjective. Montrons que g est injective : { })0,0,0()( ? =gKer o Déterminons )(gKer : { })0,0(),,(/),,()( =∈= zyxgVzyxfKer o )(),,( gKerzyx ∈ ssi      =− =+ =− 0 0 0 yx yx zx ssi 0=== zyx o Donc : { })0,0,0()( =gKer g est alors injective donc bijective. Ou bien : Montrons que g est surjective : 2 ? )Im( IRg = o >>=<=< 2121 ,))(),(Im vvugugg avec :    = −= )1,1( )1,1( 2 1 v v o Déterminons le rang du système { }21,vvS = : 2)(1 ≤≤ Srg o Le système { }21,vvS = est libre (calcul) 2)dim(Im2)( =⇒=⇒ gSrg o { }21,uu est alors une base de gIm : 2 )Im( IRg = g est alors surjective donc bijective. ♦ g est alors un isomorphisme de V vers 2 IR .
  12. 12. ♦ Déterminons 1− g : ),,(),(1 zyxYXg =− ssi ),(),,( YXzyxg = , avec Vzyx ∈),,( ( )VzyxYXzyxg ∈= ),,(),,(),,( ssi      =− =+ =− Yyx Xyx zx 0 )3( )2( )1( ssi      −= += = − + YXy YXx xz 2 2 )3()2( )3()2( )1( ssi         −= += += YXy YXx YXz 2 1 2 1 2 1 2 1 2 1 2 1 ♦ L’isomorphisme réciproque 1− g de ),()),,(( yxyxzyxg −+= est alors définie de 2 IR vers par :       +−+=− YXYXYXYXg 2 1 2 1 , 2 1 2 1 , 2 1 2 1 ),(1

×