Soumettre la recherche
Mettre en ligne
HydraICN: Scalable Content Exchangein Challenged ICNs
Signaler
Partager
Dirk Kutscher
Chief Researcher at NEC Laboratories Europe à OPNFV
Suivre
•
0 j'aime
•
342 vues
1
sur
32
HydraICN: Scalable Content Exchangein Challenged ICNs
•
0 j'aime
•
342 vues
Signaler
Partager
Télécharger maintenant
Télécharger pour lire hors ligne
Internet
Presentation at CCNxCon-2015 about ICN-based information exchange in disruption-challenged networks.
Lire la suite
Dirk Kutscher
Chief Researcher at NEC Laboratories Europe à OPNFV
Suivre
Recommandé
Innovative ICT Building Better Connected Education par
Innovative ICT Building Better Connected Education
Huawei Enterprise
3.6K vues
•
18 diapositives
8 Killer Project-Based Student Challenges in Earth Science par
8 Killer Project-Based Student Challenges in Earth Science
IT'S ABOUT TIME®
298.1K vues
•
10 diapositives
L'Oreal, trend talk by hairstylist Guido Paulo par
L'Oreal, trend talk by hairstylist Guido Paulo
Jon Bradley
647 vues
•
10 diapositives
AIESEC Estonia internship_Wanda Piekutowska Infopackage par
AIESEC Estonia internship_Wanda Piekutowska Infopackage
smileyaika
529 vues
•
13 diapositives
Guide To Finding A Job par
Guide To Finding A Job
Pharmacy Postings
579 vues
•
14 diapositives
Workshop Erfgoedhuis Zh par
Workshop Erfgoedhuis Zh
Petra1010
269 vues
•
15 diapositives
Contenu connexe
En vedette
Breaking Through the Talent Barrier par
Breaking Through the Talent Barrier
Service Strategies
627 vues
•
22 diapositives
Presentazione INFN par
Presentazione INFN
Paolo Valente
428 vues
•
39 diapositives
Inversitgating Socio-Technical Experiences of Disability in New Media par
Inversitgating Socio-Technical Experiences of Disability in New Media
Sarah Lewthwaite
421 vues
•
43 diapositives
Marionetas Unicas Camille Sk par
Marionetas Unicas Camille Sk
haizichou
175 vues
•
50 diapositives
Surviving Huge Growth by Driving Huge Change par
Surviving Huge Growth by Driving Huge Change
Service Strategies
427 vues
•
25 diapositives
One par
One
🎩🎖 Roy Fang
822 vues
•
4 diapositives
En vedette
(15)
Breaking Through the Talent Barrier par Service Strategies
Breaking Through the Talent Barrier
Service Strategies
•
627 vues
Presentazione INFN par Paolo Valente
Presentazione INFN
Paolo Valente
•
428 vues
Inversitgating Socio-Technical Experiences of Disability in New Media par Sarah Lewthwaite
Inversitgating Socio-Technical Experiences of Disability in New Media
Sarah Lewthwaite
•
421 vues
Marionetas Unicas Camille Sk par haizichou
Marionetas Unicas Camille Sk
haizichou
•
175 vues
Surviving Huge Growth by Driving Huge Change par Service Strategies
Surviving Huge Growth by Driving Huge Change
Service Strategies
•
427 vues
One par 🎩🎖 Roy Fang
One
🎩🎖 Roy Fang
•
822 vues
Defining Leadership For You par smileyaika
Defining Leadership For You
smileyaika
•
661 vues
Getting the Right People on the Bus par Dr. Shayne Tracy CMC OCC
Getting the Right People on the Bus
Dr. Shayne Tracy CMC OCC
•
596 vues
Gaining Startup Speed with DevOps PaaS par Chris Haddad
Gaining Startup Speed with DevOps PaaS
Chris Haddad
•
915 vues
Google Analytics par OMcareers Community
Google Analytics
OMcareers Community
•
527 vues
lighting design Kennispoort Eindhoven par Tom Veeger
lighting design Kennispoort Eindhoven
Tom Veeger
•
407 vues
OpenID Foundation Presentation to CIO Organization of Multnomah County, Oregon par Matterport
OpenID Foundation Presentation to CIO Organization of Multnomah County, Oregon
Matterport
•
701 vues
COREQUESTIONSintroEng par Radka
COREQUESTIONSintroEng
Radka
•
327 vues
Inbound Marketing par Fathhi Mohamed
Inbound Marketing
Fathhi Mohamed
•
418 vues
Are you in the right vehicle for your journey par Russ Thornton
Are you in the right vehicle for your journey
Russ Thornton
•
230 vues
Similaire à HydraICN: Scalable Content Exchangein Challenged ICNs
RECAP: The Simulation Approach par
RECAP: The Simulation Approach
RECAP Project
479 vues
•
29 diapositives
Detecting Hacks: Anomaly Detection on Networking Data par
Detecting Hacks: Anomaly Detection on Networking Data
DataWorks Summit
4.2K vues
•
34 diapositives
Telecoms Service Assurance & Service Fulfillment with Neo4j Graph Database par
Telecoms Service Assurance & Service Fulfillment with Neo4j Graph Database
Neo4j
123 vues
•
21 diapositives
Detecting Hacks: Anomaly Detection on Networking Data par
Detecting Hacks: Anomaly Detection on Networking Data
James Sirota
6.9K vues
•
35 diapositives
Knowledge Graphs for Network Digital Twins par
Knowledge Graphs for Network Digital Twins
Neo4j
143 vues
•
20 diapositives
Graph-Based Network Topology Analysis for Telecom Operators par
Graph-Based Network Topology Analysis for Telecom Operators
Neo4j
164 vues
•
20 diapositives
Similaire à HydraICN: Scalable Content Exchangein Challenged ICNs
(20)
RECAP: The Simulation Approach par RECAP Project
RECAP: The Simulation Approach
RECAP Project
•
479 vues
Detecting Hacks: Anomaly Detection on Networking Data par DataWorks Summit
Detecting Hacks: Anomaly Detection on Networking Data
DataWorks Summit
•
4.2K vues
Telecoms Service Assurance & Service Fulfillment with Neo4j Graph Database par Neo4j
Telecoms Service Assurance & Service Fulfillment with Neo4j Graph Database
Neo4j
•
123 vues
Detecting Hacks: Anomaly Detection on Networking Data par James Sirota
Detecting Hacks: Anomaly Detection on Networking Data
James Sirota
•
6.9K vues
Knowledge Graphs for Network Digital Twins par Neo4j
Knowledge Graphs for Network Digital Twins
Neo4j
•
143 vues
Graph-Based Network Topology Analysis for Telecom Operators par Neo4j
Graph-Based Network Topology Analysis for Telecom Operators
Neo4j
•
164 vues
PITA 27th AGM & Business Forum Expo 23: Internet Exchange Points par APNIC
PITA 27th AGM & Business Forum Expo 23: Internet Exchange Points
APNIC
•
230 vues
PacNOG 31: Internet Exchange Points par APNIC
PacNOG 31: Internet Exchange Points
APNIC
•
141 vues
Cloud and Edge: price, performance and privacy considerations in IOT, by Tsvi... par Cloud Native Day Tel Aviv
Cloud and Edge: price, performance and privacy considerations in IOT, by Tsvi...
Cloud Native Day Tel Aviv
•
73 vues
Scaling Prometheus Metrics in Kubernetes with Telegraf | Chris Goller | Influ... par InfluxData
Scaling Prometheus Metrics in Kubernetes with Telegraf | Chris Goller | Influ...
InfluxData
•
2.4K vues
Why I should Model my Network par APNIC
Why I should Model my Network
APNIC
•
513 vues
Security and Transport Performance in 5G par Dirk Kutscher
Security and Transport Performance in 5G
Dirk Kutscher
•
1.6K vues
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P... par Edge AI and Vision Alliance
"Approaches for Energy Efficient Implementation of Deep Neural Networks," a P...
Edge AI and Vision Alliance
•
828 vues
presentation_these_141215 par Patrick Raad
presentation_these_141215
Patrick Raad
•
314 vues
Signal Classification and Identification for Cognitive Radio par IRJET Journal
Signal Classification and Identification for Cognitive Radio
IRJET Journal
•
5 vues
IRJET- Secure Database Management and Privacy Preserving in Cloud Server par IRJET Journal
IRJET- Secure Database Management and Privacy Preserving in Cloud Server
IRJET Journal
•
31 vues
Web rtc for iot, edge computing use cases par NTT Communications Technology Development
Web rtc for iot, edge computing use cases
NTT Communications Technology Development
•
1.7K vues
Anveshak: Placing Edge Servers In The Wild par Nitinder Mohan
Anveshak: Placing Edge Servers In The Wild
Nitinder Mohan
•
285 vues
Optimising MIMO Wi-Fi Performance par Andrew Nix
Optimising MIMO Wi-Fi Performance
Andrew Nix
•
491 vues
Ait235 Quizes Essay par Sue Jones
Ait235 Quizes Essay
Sue Jones
•
2 vues
Dernier
Cracking the Code Decoding Leased Line Quotes for Connectivity Excellence.pptx par
Cracking the Code Decoding Leased Line Quotes for Connectivity Excellence.pptx
LeasedLinesQuote
5 vues
•
8 diapositives
Affiliate Marketing par
Affiliate Marketing
Navin Dhanuka
21 vues
•
30 diapositives
ARNAB12.pdf par
ARNAB12.pdf
ArnabChakraborty499766
5 vues
•
83 diapositives
40th TWNIC Open Policy Meeting: APNIC PDP update par
40th TWNIC Open Policy Meeting: APNIC PDP update
APNIC
106 vues
•
20 diapositives
Penetration Testing for Cybersecurity Professionals par
Penetration Testing for Cybersecurity Professionals
211 Check
49 vues
•
17 diapositives
40th TWNIC Open Policy Meeting: A quick look at QUIC par
40th TWNIC Open Policy Meeting: A quick look at QUIC
APNIC
109 vues
•
20 diapositives
Dernier
(15)
Cracking the Code Decoding Leased Line Quotes for Connectivity Excellence.pptx par LeasedLinesQuote
Cracking the Code Decoding Leased Line Quotes for Connectivity Excellence.pptx
LeasedLinesQuote
•
5 vues
Affiliate Marketing par Navin Dhanuka
Affiliate Marketing
Navin Dhanuka
•
21 vues
ARNAB12.pdf par ArnabChakraborty499766
ARNAB12.pdf
ArnabChakraborty499766
•
5 vues
40th TWNIC Open Policy Meeting: APNIC PDP update par APNIC
40th TWNIC Open Policy Meeting: APNIC PDP update
APNIC
•
106 vues
Penetration Testing for Cybersecurity Professionals par 211 Check
Penetration Testing for Cybersecurity Professionals
211 Check
•
49 vues
40th TWNIC Open Policy Meeting: A quick look at QUIC par APNIC
40th TWNIC Open Policy Meeting: A quick look at QUIC
APNIC
•
109 vues
40th TWNIC OPM: On LEOs (Low Earth Orbits) and Starlink Download par APNIC
40th TWNIC OPM: On LEOs (Low Earth Orbits) and Starlink Download
APNIC
•
112 vues
ATPMOUSE_융합2조.pptx par kts120898
ATPMOUSE_융합2조.pptx
kts120898
•
35 vues
The Boys – Season 4 par phamthebach2210
The Boys – Season 4
phamthebach2210
•
7 vues
hamro digital logics.pptx par tupeshghimire
hamro digital logics.pptx
tupeshghimire
•
11 vues
the internet.pptx par SrihariJena
the internet.pptx
SrihariJena
•
6 vues
Liberando a produccion con confidencia.pdf par Andres Almiray
Liberando a produccion con confidencia.pdf
Andres Almiray
•
6 vues
WITS Deck par W.I.T.S.
WITS Deck
W.I.T.S.
•
36 vues
cis5-Project-11a-Harry Lai par harrylai126
cis5-Project-11a-Harry Lai
harrylai126
•
9 vues
The Dark Web : Hidden Services par Anshu Singh
The Dark Web : Hidden Services
Anshu Singh
•
22 vues
HydraICN: Scalable Content Exchangein Challenged ICNs
1.
© NEC Corporation
2015 HydraICN Scalable Content Exchange in Challenged ICNs Bilal Gill Jan Seedorf Dirk Kutscher NEC Laboratories Europe Supported by GreenICN Project 1
2.
© NEC Corporation
2015 ICN Information Availability in Fragmented Networks 2 ICN nodes: store-and-forward mode
3.
© NEC Corporation
2015 Data Mules Between Fragmented Communities 3
4.
© NEC Corporation
2015 Challenges ▐ Achieving „optimal“ data availability in fragmented ICNs with intermittent, unpredictable connectivity ▐ Allocating storage and networking resources accordingly ▐ Leveraging knowledge about data popularity/relevance to optimize resource usage ▐ No global view on popularity: need good enough decentralized estimation ▐ Estimation algorithm: balance effectiveness and complexity 4
5.
© NEC Corporation
2015 Objectives ▐ Distributed counting/aggregating of interests Interests serve as popularity counters Aggregating interest information without losing too much information ▐ Robust protocol Scalable with respect to network size and network lifetimes Loop-free to accomodate random, unpredictable movements of ICN nodes 5
6.
© NEC Corporation
2015 Naïve Approach: Counting Interests ▐ Append nonce to each unique Interest message and accumulate nonces in the network Interest + nonce == unique interest ▐ Advantage: can lead to accurate representation of popularity per Interest at many nodes ▐ Disadvantage: Scalability problem Need to store all nonces per Interest Also: need to exchange complete nonce list when two nodes meet 6
7.
© NEC Corporation
2015 Our Approach ▐ Idea: Aggregate [nonce:count] tuples Approximate content popularity ▐ Append nonce to each unique Interest message and count nonces as a popularity counter: [nonce:count] tuples ▐ Data mules maintain sorted list of [nonce:count] per interest for scalability ▐ When two data mules meet, they exchange their Interests Interests & Popularity estimation gets distributed in network 7
8.
© NEC Corporation
2015 Our Approach ▐ For each Interest, aggregate [nonce:count] tuples as follows: ▐ Compare([nonce1, count1] , [nonce2, count2]) ▐ IF nonce1 == nonce2 new_count = MAX(count1, count2) (at both nodes) ▐ IF nonce1 != nonce2 New_nonce = nonce with largest counter([nonce1, count1], [nonce2, count2]) New_count = count1 + count2 8
9.
© NEC Corporation
2015 Sample Exchange 1 9 DMx DMy DMa DMz /com/nec/info Nonce: ##az /com/nec/info Nonce: uoa# Two end users request the same name from DMx
10.
© NEC Corporation
2015 Sample Exchange 2 10 DMx DMy DMa DMz /com/nec/info Nonce: 8098:2 /com/nec/info Nonce: 8098:2 End users are assigned a new nonce with count 2 for the same prefix
11.
© NEC Corporation
2015 Sample Exchange 3 11 DMx DMy DMa DMz 1 2 3 4 DMa receives duplicate query (loop) from DMz, thus drops the message (loop detection) /com/nec/info Nonce: 8098:2 /com/nec/info Nonce: 8098:2 /com/nec/info Nonce: 8098:2 /com/nec/info Nonce: 8098:2 Duplicate: Will not increase popularity counter
12.
© NEC Corporation
2015 Sample Exchange 4 12 DMx DMy DMa DMz 1 2 3 4 /com/nec/info Nonce: 8098:2 /com/nec/info Nonce: 5678 /com/nec/info Nonce: 9904 Two new user requests with same prefix from DMz
13.
© NEC Corporation
2015 Sample Exchange 5 13 DMx DMy DMa DMz 1 2 3 4 /com/nec/info Nonce: 8098:4 /com/nec/info Nonce: 8098:4 /com/nec/info Nonce: 8098:4 DMz updates its count and sends new once to the end user DMz updates its counter
14.
© NEC Corporation
2015 Loop Problem 14 DMx DMy DMz /com/nec/info Nonce: 8098:1 /com/nec/info Nonce: 8098:3 /com/nec/info Nonce: 6789:8
15.
© NEC Corporation
2015 Loop Problem 15 DMx DMy DMz /com/nec/info Nonce: 8098:3 /com/nec/info Nonce: 8098:3 /com/nec/info Nonce: 6789:8 1
16.
© NEC Corporation
2015 Loop Problem 16 DMx DMy DMz /com/nec/info Nonce: 6789:11 /com/nec/info Nonce: 8098:3 /com/nec/info Nonce: 6789:11 1 2
17.
© NEC Corporation
2015 Loop Problem 17 DMx DMy DMz /com/nec/info Nonce: 6789:14 /com/nec/info Nonce: 6789:14 /com/nec/info Nonce: 6789:11 3 2 Over-estimating Popularity!
18.
© NEC Corporation
2015 Loop Prevention ▐ Data mules keep list of recently encountered mules per Interest ▐ If a data mule is encountered shortly after the first encounter, counters are not added ▐ Instead, max-counter rules is applied at both sides nonce1 != nonce2 (AND recently met) • New_nonce = nonce with largest counter([nonce1, count1], [nonce2, count2]) • New_count = MAX(count1, count2) ▐ Sliding approach: FIFO list of encountered nodes has limited (configurable) size Can trade off acuracy against memory conservation 18
19.
© NEC Corporation
2015 Exchange Scheme (1) 19 UE1 Data Mule A UE2Data Mule B /com/nec/movie1/ [9x6q; 12] I: /com/nec/movie1/ [67ww; 1] R: /com/nec/movie1/ [9x6q; 13] /com/nec/movie1/ [9x6q; 13] [UE1] I: /com/nec/movie1/ [9x6q; 13] /com/nec/movie1/ [9x6q; 13] [UE1]
20.
© NEC Corporation
2015 Exchange Scheme (2) 20 UE1 Data Mule A UE2Data Mule B /com/nec/movie1/ [9x6q; 13] [UE1] /com/nec/movie1/ [9x6q; 13] [UE1] I: /com/nec/movie1/ [7j8k; 1] R: /com/nec/movie1/ [9x6q; 14] /com/nec/movie1/ [9x6q; 14] [UE1, UE2]
21.
© NEC Corporation
2015 Exchange Scheme (3) 21 UE1 Data Mule A UE2Data Mule B /com/nec/movie1/ [9x6q; 13] [UE1] /com/nec/movie1/ [9x6q; 14] [UE1, UE2] I: /com/nec/movie1/ [9x6q; 13] R: /com/nec/movie1/ [9x6q; 14] /com/nec/movie1/ [9x6q; 14] [UE1, DMB] /com/nec/movie1/ [9x6q; 14] [UE1, UE2, DMB] DMB in source list for /com/nec/movie1/?
22.
© NEC Corporation
2015 Implementation ▐ Interests are retransmitted whenever two nodes meet ▐ Application on top of CCN creates FIB entries for all the interests (names) we want to send to the next node ▐ The life time of an interest packet is set to infinite Objective: don‘t expire interest PITs can become large... ▐ Current exchange protocol implemented in TCP (not in CCNx protocol) ▐ Popularity count for all the prefixes in the PIT Colon separates nonce and count 22 /com/nec/info 8098:4
23.
© NEC Corporation
2015 Name/Popularity-Based Prioritization ▐ Contact time between two data mules could be short Data prioritization scheme needed to optimize exchanges Here: Leverage popularity estimation for prioritization ▐ Name-Based Prioritization protocol (NBP) 1. Node contact: nodes exchange meta data about cached objects List of names, assessed popularity 2. Requesting node generates Interest packets, ordered by „priority“ ▐ Different categorization schemes possible GreenICN: prioritizing by name / prefix (disaster scenario) 23
24.
© NEC Corporation
2015 Evaluation ▐ Objective: evaluate accuracy of distributed popularity estimation ▐ Two Fragmented Communities ▐ 100 distinct data objects Queried from three different DMs in each of the fragmented communities ▐ Data mules meet each other in a random manner and exchange interests ▐ Zipf distribution for Interests with 0.8 < alpha <0.9 24
25.
© NEC Corporation
2015 Scenario Diagram 25 Fragmented Community 1 Fragmented Community 2 • 3 Nodes per FG which fetch interests from 600 end users • Different sets of names (popular content) in FGs
26.
© NEC Corporation
2015 Measurement Setup ▐ Areas with data mules Emulation: Mules meet randomly, no disruption during intermeeting times ▐ Details of the test setup 6 nodes, 2 Fragmented Communities with different set of names Three nodes in their respective FG fetch interest from end users Meet DM at random times 15 contacts between different DM at different times Object size: 8 KB Approx. 500 Interests issued by users ▐ Test specs 10 runs for each of the normalized results Each runs takes several minutes 26
27.
© NEC Corporation
2015 Evaluation (15 Contacts) 27 Results from the Fragmented Community # 1 Zipf, alpha=0.9 15 contacts
28.
© NEC Corporation
2015 Zipf-Alpha=0.8 28 Results from the Fragmented Community # 1 Zipf, alpha=0.8 15 contacts
29.
© NEC Corporation
2015 Better Estimation with more Contacts Zipf, alpha=0.9 7 and 15 contacts
30.
© NEC Corporation
2015 Observations ▐ More contacts: better accuracy 15 contacts lead to quite good results But: consistent underestimation (for all objects) – so may not be a real problem ▐ There can be more than one nonce per object name in the network Can lead to slight overestimation ▐ PITs can become large ▐ Our approach significantly more memory-efficient than naive approach (thanks to aggregation) 30
31.
© NEC Corporation
2015 Summary ▐ Popularity estimation in ICN for optimizing performance and availability (here: DTN scenario) ▐ Leveraging ICN naming and storage features – changing CCN semantics (store-carry-forward of interests for long time) ▐ Simple scheme – intuitively scalable ▐ First evaluations suggest sufficient accuracy ▐ Next Steps Polish implementation, documentation, more experiments Mobile GW implementation 31
32.
© NEC Corporation
2015 www.greenicn.org