SlideShare une entreprise Scribd logo
1  sur  120
Dr. S. Raghu MD (chest)
Associate professor,
Dept. of TB&CD,
Guntur medical college,
Chest physician,
Govt Fever Hospital, Guntur.
drraghus@gmail.com
Introduction
• COPD poses enormous burden in terms of
morbidity and mortality globally and in India.
• COPD is a major public health problem in
India.
• Although several International guidelines for
diagnosis and management of COPD are
available, yet there are lot of gaps in
recognition and management of COPD in India
due to vast differences in availability and
affordability of healthcare facilities across the
country.
FORMULATION OF
GUIDELINES
• The process of development of guidelines for
diagnosis and management of patients of
COPD in India was undertaken as a joint
exercise ICS and NCCP, by the Department of
Pulmonary Medicine, PGIMER, Chandigarh.
• The search was conducted under five subgroups:
(a) definitions, epidemiology, and disease
burden;
(b) disease assessment and diagnosis;
(c) pharmacologic management of stable COPD;
(d) management of acute exacerbations; and
(e) non-pharmacologic and preventive measures.
• Important questions were framed on the basis
of discussions on issues with reference to the
Indian context.
• Final decisions in the joint group were based
on a consensus approach on the majority
voting.
Classification of level of evidence and grading of
recommendation
• The modified grade system was used for
classifying the quality of evidence as 1, 2, 3, or
usual practice point (UPP).
• The strength of recommendation was graded
as A or B depending upon the level of evidence
Classification of level of evidence
Level 1 High-quality evidence backed by consistent results from
well-performed randomized controlled trials, or
overwhelming evidence from well-executed
observational studies with strong effects
Level 2 Moderate-quality evidence from randomized trials (that
suffer from flaws in conduct, inconsistency, indirectness,
imprecise estimates, reporting bias, or other limitations)
Level 3 Low-quality evidence from observational evidence or
from controlled trials with several serious limitations
Useful
practice
point
Not backed by sufficient evidence; however, a
consensus reached by working group, based on clinical
experience and expertise
Grading of recommendation based on the quality of
evidence
Grade
A
Strong recommendation to do (or not to do) where
the benefits clearly outweigh the risk (or vice versa)
for most, if not all patients
Grade
B
Weaker recommendation where benefits and risk
are more closely balanced or are more certain
• Grade A recommendations in the guidelines
should be interpreted as “recommended” and
the grade B recommendations as “suggested”.
• While making a recommendation, the issues of
practicality, costs, and feasibility in the country
at different levels of healthcare was also taken
into consideration.
Burden of COPD
Worldwide
• Affects more than
400 million people
• Causes 3 million
deaths per year –
the 3rd leading
cause of death
In India
• Affects about 15
million people
• Causes about 0. 5
million (5 lakh)
deaths per year
• Causes more
deaths than TB
and pneumonia
DEFINITION ???
• The GOLD definition in its latest edition is
comprehensive and elaborate, but complex.
• Retaining the key components of various definitions
and using simple terms, ICS & NCCP recommend
the following definition of COPD
“Chronic Obstructive Pulmonary Disease (COPD) is a
common, preventable lung disorder characterized by
progressive, poorly reversible airflow limitation often
with systemic manifestations, in response to tobacco
smoke and/or other harmful inhalational exposures.”
RISK FACTORS ?
Risk factors for COPD
Established
• Tobacco smoking
• Environmental tobacco
smoke
• Exposure to biomass fuel
smoke
• Occupational exposure
• Alpha-1 antitrypsin
deficiency
Probable
• Outdoor air pollution
• Pulmonary tuberculosis
• Poorly treated asthma
• Intrauterine growth
retardation
• Poor nourishment
• Repeated lower respiratory
infections
• during childhood
• Others
• Age
• Male gender
• Low socioeconomic status
The bigger risk factor?
> 70% use biomass
fuel for cooking
25% smoke
Exposure to biomass fuel may be a bigger risk
factor for COPD in India
SmokingChullah smoke
• Both smokeless and smoking forms of tobacco are
associated with serious health hazards, although only
smoking tobacco is primarily responsible for COPD. (1A)
• Bidi and other indigenous forms of tobacco smoking are at
least as (or even more) harmful than cigarette smoking.
(1A)
• Low tar or filtered cigarettes are not “less harmful”. (2B)
• There is no minimum number of cigarettes/bidi per day
below which the risk for COPD decreases. (1A)
Smoking
• Tobacco smoking is the most
well established risk factor for
COPD. (1A)
 Exposure to environmental tobacco smoke (ETS) is a
definitive risk factor for COPD. (1A)
 Exposure to biomass fuel smoke is a strong risk factor
for COPD. (1A)
 There is limited data on the association of ambient air
pollution and COPD, and its causative role in COPD
needs further evaluation.
 There is insufficient evidence to attribute an etiological
role of pulmonary tuberculosis in causing COPD.
 A subgroup of chronic asthma may clinically behave like
COPD; whether it is true COPD remains to be
established. (UPP)
WHEN TO SUSPECT ?
The 4 typical ways of case
presentation
1. With one or more of the characteristic respiratory symptoms of
chronic progressive breathlessness, cough, sputum
production, wheezing, and/or chest tightness
2. Without respiratory symptoms like breathlessness, because
patients might have reduced their physical activity unknowingly
to very low levels. They might just complain of fatigue
3. With symptoms attributed to complications of the disease like
weight loss (COPD related cachexia) or leg swelling (due to cor
pulmonale)
4. With an exacerbation
With respiratory
symptoms
Without resp.
symptoms, just
fatigue
Symptoms due
to complications
Exacerbation
Useful physical signs in the
diagnosis of COPD
Percussion
Palpation
Auscultation
Inspection
Special
maneuver
Pursed-lip breathing
Use of accessory
muscles of
respiration
Jugular venous
distension during
expiration
Retraction of
suprasternal,
supraclavicular and
intercostal spaces
during
inspiration
Short trachea
Pulsus paradoxus
Increased
anteroposterior
diameter of the chest
(barrel-shaped
chest)
Reduced chest
movements
Peripheral edema
Dyspnea-relieving
posture
Muscle wasting
Restricted
chest
expansion
Subxiphoid
shift of
maximum
impulse of
the heart
Chest
hyperresona
nce
Obliteration
of cardiac
dullness
Lower level
of liver
dullness
Lower
diaphragmati
c levels
Diminished
breath
sounds
Early
inspiratory
crackles
Loud
pulmonic
component
of second
heart sound
Forced
expiratory
time
Snider’s
match test
FET: Forced expiratory
time
• A diagnosis of COPD should be considered in
persons having chronic symptoms of cough,
sputum production, shortness of breath, and/or
wheezing, especially among those with
prolonged exposure to risk factors for the
disease. (1A)
• A diagnosis of COPD should not be excluded in
the absence of physical signs. (2A)
• Forced expiratory time (FET) of more than six
seconds is suggestive of airflow obstruction.
(2B)
ROLE OF SPIROMETRY IN
DIAGNOSIS ?
• Spirometry should be performed in all patients
suspected of having COPD. (1A)
• In the absence of availability of spirometry,
patients suspected of having COPD should be
referred for spirometric evaluation to a center
with the facility. (UPP)
• A post-bronchodilator forced expiratory volume
in first second (FEV1)/forced vital capacity
(FVC) below the LLN (lower fifth percentile of
values from a reference population) should be
preferably used as the criterion for diagnosis of
airflow obstruction. (1A)
• However, in the absence of reference
equations for LLN, FEV1/FVC < 0.7 may be
used as the cutoff for defining airflow
obstruction. (1A)
ROLE OF REVERSIBILITY
TESTING ?
• Absence of bronchodilator reversibility
does not differentiate COPD from
asthma, and its presence does not
predict the response to treatment. (1A)
• However, all FEV1 values should be
reported post-bronchodilator.
ROLE OF SCREENING
SPIROMETRY?
• Spirometry should not be used as a screening
tool in asymptomatic individuals to detect airflow
obstruction. (2A)
ROLE OF PEFR ?
• PEF should not be routinely used for screening,
diagnosis, or monitoring of COPD. (1A)
CLASSIFICATION OF
SEVERITY?
• Classification of severity of the disease should
be done for all COPD patients based on the
FEV1 and exacerbation frequency. (1A)
Classification of severity of COPD
Severity * Post-
bronchodilator
FEV1, % predicted
mMRC
grade
Exacerbation
Frequency †
Complicatio
ns ‡
Mild ≥80 <2 <2 No
Moderate 50-79 ≥2 <2 No
Severe <50 ≥2 ≥2 Yes
*The category with the worst value should be used for severity classification, †number of
exacerbations in the last year, ‡complications include respiratory failure (defined by pO2
< 60 mmHg and/or SpO2 < 88% and/or pCO2 > 50 mmHg), cor pulmonale, and
secondary
polycythemia (hematocrit 55%)
• Level of patient’s disability due to symptoms
should be assessed using modified Medical
Research Council (mMRC) dyspnea
questionnaire or the COPD assessment test
(CAT) and recorded at each clinical visit. (1A)
mMRC grading of breathlessness
“I only get breathless with strenuous exercise”
“I get short of breath when hurrying on the level or walking up a slight
hill”
“I walk slower than people of the same age on the level because of
breathlessness or have to stop for breath when walking at my own
pace on the level”
“I stop for breath after walking about 100 yards or after a few minutes
on the level”
“I am too breathless to leave the house” or “I am breathless when
dressing or undressing”
0
1
2
3
4
ROLE OF ADDITIONAL
INVESTIGATIONS ?
 All new COPD suspects with cough of more than
2 weeks’ duration should undergo sputum smear
examination for acid fast bacilli to rule out
pulmonary tuberculosis as per the standard
practice of Revised National Tuberculosis
Control Program (RNTCP). (UPP)
 Pulse oximetry should be used to screen for
hypoxemia in stable disease with FEV1 < 50%
and in the presence of clinical suspicion of
hypoxemia. (3A)
• An arterial blood gas analysis should be done if
arterial saturation by pulse oximetry is less than
90%. (2A)
• Diagnosis of COPD should not be made on the
basis of a chest radiograph. (2A)
• Chest radiograph may be done during the initial
evaluation of COPD to look for comorbidities,
complications, and alternative diagnoses. (2B)
• Special investigations like high-resolution computed
tomography (HRCT) scan, lung volumes, diffusing
capacity for carbon monoxide (DLCO), and exercise
testing should be done in situations of diagnostic
difficulty or whenever clinically indicated. (2A)
• 6MWT may be used for monitoring of exercise
capacity in COPD. (1A)
• Testing for alpha-1 antitrypsin deficiency may be done
in young patients with lower lobe emphysema. (UPP)
Differential diagnosis of COPD
Features
Asthma Early age of onset
Episodic symptoms with asymptomatic periods in
between
Wide variation of symptoms day to day
Symptoms worse at night/early morning
Chronic productive cough is uncommon
History of atopy may be present
Family history of asthma may be present
Reversibility of airway obstruction
Increased diffusing capacity for carbon monoxide
(DLCO)
Congestive
heart failure
Cardiomegaly/pulmonary edema in chest X-ray
PFT suggestive of restrictive abnormality
Bronchiectasis Copious purulent sputum
Clubbing, coarse crackles
HRCT shows bronchial dilatation and bronchial wall
thickening
Differential diagnosis of
COPD
Features
Tuberculosis Fever, anorexia, weight loss
Chest X-ray opacity, fibrocavitary disease
Microbiological diagnosis
Constrictive
bronchiolitis
Non-smoker, young age
History of rheumatoid arthritis, fume exposure,
lung/bone marrow
transplantation
HRCT shows mosaic attenuation
Diffuse
panbronchiolitis
Non-smoker
Association with chronic sinusitis
HRCT shows centrilobular nodules,
hyperinflation and air-trapping
ROLE OF MULTI-DIMENSIONAL
ASSESSMENT TOOLS ?
• Composite scores including BODE (body mass
index (BMI), obstruction, dyspnea, exercise
capacity) and DOSE (dyspnea, obstruction,
smoking, exacerbation) should not be used to
assess severity or prognosis in COPD unless
they are validated in Indian patients. (2A)
ASSOCIATED
CO-MORBIDITIES ?
• Comorbid diseases in COPD are
independently associated with a higher risk of
hospitalization and mortality.
• COPD patients should be routinely evaluated
and appropriately treated for comorbid
conditions. (2A)
INDIAN STRATEGY FOR
MANAGEMENT OF COPD?
Treatment goals in stable
COPD
• Relief in breathlessness and other symptoms
• Improvement in exercise tolerance
• Improvement in overall health-related quality of life
Reduction in current symptoms
• Prevention (or slowing down) of disease progression
• Prevention of disease exacerbations
• Reduction in disease-related mortality
Reduction of future risk
Minimizing adverse effects from treatment
Commonly used drugs
Inhaled agents Oral agents
– Anticholinergics
• Short-acting
• Long-acting
– Beta-agonists
• Short-acting
• Long-acting
– Corticosteroids
– Beta-agonists
– Methylxanthines
– Selective PDE4
inhibitors
Treating patients of stable COPD
Category Initial therapy Add-on
therapy (if
patient
continues to
have
symptoms)
First choice Alternative
choice
Mild SABA or
SAMA
Methyl
xanthines
-
Moderate LAMA LABA Methylxanthine
s to
LAMA/LABA
Severe ICS plus
LABA
LAMA Methylxanthine
s to LAMA or
ICS plus LABA
ROLE OF INHALATION
THERAPY ?
• Short-acting antimuscarinic agent (SAMA) can be used
as rescue medication to relieve patient symptoms. (1A)
• Long term SAMA monotherapy on regular basis is not
recommended. (1A)
• Long-acting antimuscarinic agents (LAMA) are useful in
stable COPD (FEV1 < 80%) to control symptoms and
decrease the risk of exacerbations. (1A)
• LAMA should be preferred over SAMA. (1A)
• We suggest close monitoring of patients with coronary
artery disease who are treated with LAMA. (UPP)
• Short-acting beta-agonist (SABA) can be used to
relieve symptoms of dyspnea as and when
needed. (1A)
• Long term SABA monotherapy on regular basis is
not recommended. (2A)
• Long-acting beta-agonist (LABA) monotherapy
can relieve symptoms and decrease the
exacerbation rate in patients with stable COPD
(FEV1 < 80%). (1A)
• Patients with symptomatic coronary artery disease
receiving inhaled beta-agonists should be closely
monitored. (UPP)
• ICS have a beneficial effect in subgroup of
COPD patients with FEV1 < 50%. (1A)
• ICS have a beneficial effect in subgroup of
COPD patients with frequent exacerbations (≥ 2
exacerbations/ year). (1A)
• The risk-benefit profile favors use of ICS in
patients with severe COPD. (1A)
• ICS monotherapy should not be used. (1A)
• LAMA is superior to LABA monotherapy. (1A)
• SABA and SAMA are equally effective when
used for COPD. (2A)
• LAMA plus LABA may be used in patients who
continue to have symptoms on monotherapy,
except for those with frequent exacerbations.
(1A)
• LABA plus ICS should be preferred over LABA
alone in patients with FEV1 < 50% or those having
frequent exacerbations. (1A)
• In patients of severe COPD (FEV1 < 50%), triple
therapy may be used in those who are symptomatic
despite single or dual bronchodilator therapy. (1B)
• There is lack of sufficient data to recommend
ICS-LABA or ICS-LAMA combination over LAMA
monotherapy.
ROLE OF ORAL
BRONCHODILATORS IN STABLE
COPD?
Oral methylxanthines
- Not recommended as first line therapy in patients
with COPD. (1A)
- Can be used
a. As alternative in patients noncompliant
with inhalers for any reason. (1B)
b. As add-on therapy in patients continuing
to have symptoms despite optimum
inhaled therapy. (3A)
- Patients on oral methylxanthines need to be
monitored for side effects and drug interactions.
(UPP)
• Roflumilast (PDE4 inhibitor) may be used in
frequent exacerbators as an add-on or
substitute to ICS. (2B)
• Routine use of mucolytic agents is not
recommended in patients with COPD. (2A)
Vaccination for COPD
• Influenza & Pneumococcal vaccination is
likely to be beneficial patients with
severe COPD and/or frequent
exacerbations (UPP)
Smoking cessation
 A smoking history, including pack years or
smoking index should be documented for all
patients with COPD (UPP)
 All COPD patients, regardless of age, should be
encouraged to stop smoking, and offered help to
do so, at every opportunity (1A)
 Nicotine replacement therapies (varenicline or
bupropion), combined with an appropriate
support program, should be offered to people
who are planning to stop smoking (1A)
Topics for patient education
 Risks and benefits of stopping smoking and
cessation strategies
 Avoidance of potential risk factors in nonsmokers
 The concept of normal lung function
 Inhaler use
 Use of other medications, including oxygen
 Nutrition
 Adequate physical exercise, especially if the patient
is not enrolled in a pulmonary rehabilitation program
 Breathing strategies
 Advice related to travel and sexuality
 End of life planning
Non-pharmacological
management of stable COPD
• Pulmonary rehabilitation
• Oxygen therapy
• Non-invasive ventilation
• Bronchoscopic techniques
• Surgery
Pulmonary rehabilitation
Components include:
(a) Patient selection and assessment
(b) exercise
(c) nutritional support
(d) psychosocial support
(e) education
Pulmonary rehabilitation in stable
COPD
 Structured programs should be set up where
feasible (1A)
 In the absence of structured programs,
patients should be advised regarding
unsupervised daily physical activity (3A)
 All patients should be assessed for
nutritional status at least by BMI at the initial
visit and followed-up by serial BMI
estimation at every visit. Any patient found
to be malnourished should be referred for
nutritional advice to a specialist (UPP)
Aerobic exercises – increase amount of oxygen delivered
to muscles which allows them to work longer.
Lower body exercises – Improve lower body muscle
strength and endurance, help move around easily for longer
period.
knee extension Leg lift Step - ups
PULMONARY REHABILITATION
Upper body exercises – increase strength in shoulder
muscles that support ribcage and improve
breathing.
Arm extension Elbow circles Elbow breathing
Breathing exercises – reduces hyper inflation of the chest.
Education–Self-management strategies
Psychological and behavioral intervention – Support groups
for stress management
Oxygen therapy
Long-term supplemental oxygen therapy is indicated for
those with severe daytime resting hypoxemia (1A)
defined as:
a) PaO2 of < 55 mmHg (or pulse oxygen saturation of <
88%), or
b) PaO2 of 56-60 mmHg (or pulse oxygen saturation of
88-92%) with evidence of end-organ dysfunction such as
pulmonary hypertension, congestive cardiac failure, and
erythrocytosis with hematocrit > 55%
c) Determined on two occasions at least 3 weeks apart
in the stable patient.
Recommendations for oxygen therapy
 The role of oxygen supplementation in other
situations is currently not clear and should be decided
on a case to case basis (2B)
 Supplemental oxygen should be titrated to achieve a
pulse oximetric saturation of 90-92% or a PaO2 of 60-
65 mmHg (3A)
 Patients should breathe supplemental oxygen for at
least 16 hours a day (1A)
 Patients on long-term oxygen therapy should be
reviewed at regular intervals with either pulse
oximetry or arterial blood gas analysis as indicated
(UPP)
NIV in stable COPD
Indications:
1. Documentation of the diagnosis of COPD by a physician,
optimization of other therapies, and exclusion of sleep apnea if
required.
2. Presence of both symptoms (such as fatigue, dyspnea,
morning headache, etc.) and physiologic criteria (one of the
following):
a. PaCO2 ≥ 55 mmHg or PaCO2 of 50-54 mmHg and
nocturnal desaturation (oxygen saturation by pulse oximeter ≤
88% for continuous 5 min while receiving oxygen therapy at 2
L/min)
b. PaCO2 of 50-54 mmHg and hospitalization related to
recurrent (≥ 2 in a 12-month period) episodes of hypercapnic
respiratory failure.
Recommendations for NIV
1. NIV may be used in patients with recurrent
exacerbations who require frequent use of
mechanical and noninvasive ventilation
during the acute episodes; the patient
should be referred to a specialist center for
management (3A)
2. The choice of the machine for NIV
depends on the presence of coexistent
sleep apnea syndromes (UPP)
Indications for surgical
treatments for COPD
Bullectomy
• presence of
single large
bullae
compressing the
remaining lung,
• breathlessness
due to the bullae,
• hemoptysis,
• reduction in the
FEV1 to < 50%.
Lung Volume
Reduction Surgery
• predominantly
upper lobe
emphysema and
• low
post-rehabilitation
exercise capacity
Lung
transplantation
• BODE index of 7-
10 with an FEV1
< 20% predicted,
• or a DLCO < 20%
and homogenous
emphysema or
cor pulmonale
Surgical treatments for COPD
Bullectomy may be carried out in properly
selected patients in appropriate centers
(3A)
LVRS may be offered to properly selected
patients at centers capable of performing
the procedure (1A)
Lung transplantation may be offered to
properly selected patients at centers
capable of doing the procedure (1A)
PROPHYLACTIC
ANTIBIOTICS IN COPD
• Antibiotics should not be prescribed as a routine
for the prevention of exacerbations of COPD.
(2A)
ADVICE REGARDING AIR-
TRAVEL
• Patients with severe COPD and those on
long-term oxygen therapy should be assessed
before air travel by a specialist. (UPP)
ACUTE EXACERBATION OF
COPD (AECOPD)
DEFINITION OF AECOPD
• An exacerbation of COPD is an acute event
characterized by sustained worsening of any of
the patient’s respiratory symptoms (cough,
sputum quantity and/or character, dyspnea)
that is beyond normal day-to-day variation and
leads to a change in medication, and where
other causes of acute breathlessness have
been clinically excluded.
HOW TO INVESTIGATE
AECOPD ?
• No investigations apart from pulse oximetry are
routinely required in patients with acute exacerbations
managed in an outpatient setting. (IIA)
• In those hospitalized with AECOPD, serum
electrolytes, LFT, RFT, CBP, CXR, ECG, ABG (if
available) should be performed. (IA)
• If an infectious exacerbation does not respond to the
initial antibiotic treatment, a sputum culture and an
antibiotic sensitivity test should be performed. (IIA)
Differential diagnosis of AECOPD
• You need to exclude the 6 P’s
–Pneumonia
–Pulmonary embolism
–Pneumothorax
–Pleural effusion
–Pulmonary edema (heart failure)
–Paroxysmal atrial tachycardia (arrhythmias)
Causes of AECOPD
Infectious (60-80% of all
exacerbations)
• Frequent (70-85% of all infectious
• exacerbations)
• Viruses (influenza and
parainfluenza
• viruses, rhinoviruses,
coronaviruses)
• Haemophilus influenzae
• Streptococcus pneumoniae
• Moraxella catarrhalis
• Infrequent (15-30% of all infectious
• exacerbations)
• Pseudomonas aeruginosa
• Opportunistic gram-negative
species
• Staphylococcus aureus
• Chlamydophila pneumoniae
• Mycoplasma pneumoniae
Environmental factors
• Air pollution
• Non-adherence to respiratory
• medication
• Cold air
• Allergens
• Tobacco smoking
SITE OF MANAGEMENT OF
AECOPD ?
Severity assessment of COPD exacerbation
Symptoms
• Marked reduction in activity of daily living due to dyspnea
• Altered sensorium
• New onset cyanosis
Signs
• Use of accessory respiratory muscles
• Paradoxical chest wall movements
• Central cyanosis
• Systolic blood pressure <90 mmHg
• RR >30/min
• Heart rate >110/min
• Asterixis
• Altered mental status
Others
• Presence of severe comorbid conditions
• Lack of social support
Pulse oximetry
• SpO2<90%
Algorithm for deciding place of management
after hospitalization
SHORT-ACTING BRONCHODILATORS IN
AECOPD
• Inhaled route is the preferred route of administering
bronchodilators. (IA)
• Inhaled SABAs should be used as the first-line agent
because of quicker onset of action (IIIA). SAMAs are
however, in no way inferior to SABAs.
• Nebulized salbutamol at a dose of 2.5 mg every 20
min (or salbutamol pressurized metered dose inhaler
(pMDI) 100 μg 2-4 puffs every 20 min) for 1 h can be
given initially. (IIIA) Further dosing would depend on
the clinical response, generally every 4-6 h. (IIIA)
• If additional bronchodilatation is desired, a
combination of ipratropium (500 μg nebulized or 20
μg 2-4 puffs with pMDI) and salbutamol (2.5 mg
nebulized or salbutamol pMDI 100 μg 2-4 puffs)
every 4-6 h can be used. (IIIA)
• Nebulizer or pMDIs with spacer are equally effective.
(IIA)
• Nebulization should not be driven by oxygen; patients
should receive oxygen separately through nasal
cannula, with monitoring of oxygen saturation. (IIA)
• Intravenous methyl xanthines should not be
routinely used. (IA)
• The use of intravenous or subcutaneous route
of administering bronchodilators should be
reserved in the most seriously ill mechanically
ventilated patient demonstrating inadequate
response to inhaled therapy. (IIIB)
GLUCOCORTICOIDS IN
AECOPD
• Systemic steroids
- shorten recovery time,
- improve lung function, oxygenation,
- reduce length of hospital stay
- fewer treatment failures. (IA)
• A short course of oral prednisolone (or
equivalent) at a dose of 30-40 mg/day is
recommended for managing acute
exacerbations. (IIA)
• The duration of systemic steroid therapy
should be 5-10 days. (IIA)
• Intravenous steroids should be given in
patients who are being mechanically ventilated
or cannot tolerate oral medication. (UPP)
• ICS are not routinely recommended in
management of AECOPD. (IA)
ANTIBIOTICS IN AECOPD
• Antibiotics should be prescribed for all
exacerbations of COPD. (IIA)
• The choice of antibiotics should be guided by
local flora and sensitivity pattern. (IIA)
• Fluoroquinolones should not be used routinely
in treating AECOPD. (IA)
• Patients with AECOPD being managed in the
outpatient setting may be treated with first line
antibiotics. (IIA)
• Hospitalized patients or those requiring mechanical
ventilation (noninvasive/invasive) should be treated
with second line drugs. (IIA)
• The duration of therapy should be 5-7 days. (IIA)
PROCALCITONIN
Any role in deciding for
antibiotic therapy?
• Biomarkers do not have any role in
management of acute exacerbation of
COPD. (IIA)
• Procalcitonin should not be used routinely in
guiding antibiotic usage in COPD. (IIA)
When to use O2 in AECOPD
• Oxygen should be prescribed to hypoxemic patients
with a target SpO2 between 88-92%. (IA)
• Oxygen should be delivered preferably by a Venturi
mask, and by nasal cannula upon recovery. (IIA)
• ABG monitoring is recommended in patients
receiving oxygen therapy, wherever available. (IIA)
Indication of NIV during
AECOPD
• NIV should be used early in the management of
respiratory failure due to AECOPD. (IA)
• NIV can be used even in settings where arterial
blood gas monitoring is not routinely available.
(UPP)
Indications and protocol of
invasive
mechanical ventilation
When should a patient be
discharged from hospital?
 Patient should be clinically stable for at least 24-
48 hours,
 Should be able to eat and sleep comfortably,
 Should be ambulatory for activities of daily living.
 In addition,
 minimal requirement of short-acting bronchodilators,
and
 the patient should be able to use long-acting
bronchodilators
Follow-up after discharge from hospital
Follow-up at 4-6 weeks after discharge
At every visit,
due emphasis should be laid on smoking
cessation, the inhaler technique checked, and the
effectiveness of each medication monitored
For patients who are hypoxemic during an
exacerbation,
arterial blood gases, and/or pulse oximetry
should be evaluated prior to hospital discharge
and in the following 3-6 weeks.
If the patient remains hypoxemic, long-term
supplemental oxygen therapy may be required
Thank you

Contenu connexe

Tendances (20)

01.copd
01.copd01.copd
01.copd
 
interstitial lung diseases
interstitial lung diseasesinterstitial lung diseases
interstitial lung diseases
 
Non resolving pneumonia
Non resolving pneumoniaNon resolving pneumonia
Non resolving pneumonia
 
RESPIRATORY SYSTEM: EMPHYSEMA, CHRONIC BRONCHITIS
RESPIRATORY SYSTEM: EMPHYSEMA, CHRONIC BRONCHITISRESPIRATORY SYSTEM: EMPHYSEMA, CHRONIC BRONCHITIS
RESPIRATORY SYSTEM: EMPHYSEMA, CHRONIC BRONCHITIS
 
Community Acquired Pneumonia
Community Acquired PneumoniaCommunity Acquired Pneumonia
Community Acquired Pneumonia
 
Pneumonia
PneumoniaPneumonia
Pneumonia
 
Status asthmaticus
Status asthmaticusStatus asthmaticus
Status asthmaticus
 
COPD ppt
COPD pptCOPD ppt
COPD ppt
 
Idiopathic pulmonary fibrosis copy
Idiopathic pulmonary fibrosis   copyIdiopathic pulmonary fibrosis   copy
Idiopathic pulmonary fibrosis copy
 
Community acquired pneumonia
Community acquired pneumoniaCommunity acquired pneumonia
Community acquired pneumonia
 
Copd 2012
Copd 2012Copd 2012
Copd 2012
 
Pulmonology
PulmonologyPulmonology
Pulmonology
 
Asthma
AsthmaAsthma
Asthma
 
Bronchial asthma
Bronchial asthmaBronchial asthma
Bronchial asthma
 
Allergic Broncho Pulmonary Aspergillosis (ABPA) by Dr.Tinku Joseph
Allergic Broncho Pulmonary Aspergillosis (ABPA) by Dr.Tinku JosephAllergic Broncho Pulmonary Aspergillosis (ABPA) by Dr.Tinku Joseph
Allergic Broncho Pulmonary Aspergillosis (ABPA) by Dr.Tinku Joseph
 
Copd
CopdCopd
Copd
 
Pulmonary hypertension
Pulmonary hypertensionPulmonary hypertension
Pulmonary hypertension
 
Chronic obstructive pulmonary disease2
Chronic obstructive pulmonary disease2Chronic obstructive pulmonary disease2
Chronic obstructive pulmonary disease2
 
Pneumonia by Dr. Sookun Rajeev Kumar
Pneumonia by Dr. Sookun Rajeev KumarPneumonia by Dr. Sookun Rajeev Kumar
Pneumonia by Dr. Sookun Rajeev Kumar
 
Bronchial asthma
Bronchial asthmaBronchial asthma
Bronchial asthma
 

Similaire à Indian guidelines for COPD

Indian guidelines for copd
Indian guidelines for copd Indian guidelines for copd
Indian guidelines for copd raghu srikanti
 
COPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATION
COPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATIONCOPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATION
COPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATIONDr.RMLIMS lucknow
 
Chronic Obstructive Pulmonary Disease (COPD) by Dr Kemi Dele
Chronic Obstructive Pulmonary Disease (COPD) by Dr Kemi DeleChronic Obstructive Pulmonary Disease (COPD) by Dr Kemi Dele
Chronic Obstructive Pulmonary Disease (COPD) by Dr Kemi DeleKemi Dele-Ijagbulu
 
Gold pocket 2015_feb18
Gold pocket 2015_feb18Gold pocket 2015_feb18
Gold pocket 2015_feb18Vũ Nhân
 
Gold pocket 2015_feb18
Gold pocket 2015_feb18Gold pocket 2015_feb18
Gold pocket 2015_feb18FJ QB
 
PULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASE
PULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASEPULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASE
PULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASEHassamKhan57
 
Gold - global initiative against COPD
Gold - global initiative against COPDGold - global initiative against COPD
Gold - global initiative against COPDadithya2115
 
YUVA THANJAVUR COPD DAY.pptx
YUVA THANJAVUR COPD DAY.pptxYUVA THANJAVUR COPD DAY.pptx
YUVA THANJAVUR COPD DAY.pptxYuvarajanSiva1
 
Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...
Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...
Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...NHS Improvement
 
CHRONIC OBSTRUCTIVE PULMONARY.pptx
CHRONIC OBSTRUCTIVE PULMONARY.pptxCHRONIC OBSTRUCTIVE PULMONARY.pptx
CHRONIC OBSTRUCTIVE PULMONARY.pptxImanuIliyas
 
Chronic obstructive airway disease (coad)
Chronic obstructive airway disease (coad)Chronic obstructive airway disease (coad)
Chronic obstructive airway disease (coad)Nandinii Ramasenderan
 
Ae copd 27.5.20
Ae copd  27.5.20Ae copd  27.5.20
Ae copd 27.5.20quehuongLX
 
COPD-Differential-Diagnosis-Module (1).ppt
COPD-Differential-Diagnosis-Module (1).pptCOPD-Differential-Diagnosis-Module (1).ppt
COPD-Differential-Diagnosis-Module (1).pptDangerDoctor
 
COPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHE
COPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHECOPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHE
COPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHEDevawrat Buche
 

Similaire à Indian guidelines for COPD (20)

Indian guidelines for copd
Indian guidelines for copd Indian guidelines for copd
Indian guidelines for copd
 
COPD 2014
COPD 2014COPD 2014
COPD 2014
 
COPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATION
COPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATIONCOPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATION
COPD:CLINICAL REVIEW AND ANESTHESIA CONSIDERATION
 
Chronic Obstructive Pulmonary Disease (COPD) by Dr Kemi Dele
Chronic Obstructive Pulmonary Disease (COPD) by Dr Kemi DeleChronic Obstructive Pulmonary Disease (COPD) by Dr Kemi Dele
Chronic Obstructive Pulmonary Disease (COPD) by Dr Kemi Dele
 
Copd 2006
Copd 2006Copd 2006
Copd 2006
 
Gold pocket 2015_feb18
Gold pocket 2015_feb18Gold pocket 2015_feb18
Gold pocket 2015_feb18
 
Gold pocket 2015_feb18
Gold pocket 2015_feb18Gold pocket 2015_feb18
Gold pocket 2015_feb18
 
PULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASE
PULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASEPULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASE
PULMONOLOGY CHRONIC OBSTRUCTIVE PULMONARY DISEASE
 
Gold - global initiative against COPD
Gold - global initiative against COPDGold - global initiative against COPD
Gold - global initiative against COPD
 
COPD TALK CIPLA.pptx
COPD TALK CIPLA.pptxCOPD TALK CIPLA.pptx
COPD TALK CIPLA.pptx
 
YUVA THANJAVUR COPD DAY.pptx
YUVA THANJAVUR COPD DAY.pptxYUVA THANJAVUR COPD DAY.pptx
YUVA THANJAVUR COPD DAY.pptx
 
COPD - Ldh Jan 2010.ppt
COPD - Ldh Jan 2010.pptCOPD - Ldh Jan 2010.ppt
COPD - Ldh Jan 2010.ppt
 
Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...
Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...
Breakout 1.2 Assessing competence in practice: Quality assured diagnostic spi...
 
CHRONIC OBSTRUCTIVE PULMONARY.pptx
CHRONIC OBSTRUCTIVE PULMONARY.pptxCHRONIC OBSTRUCTIVE PULMONARY.pptx
CHRONIC OBSTRUCTIVE PULMONARY.pptx
 
Ers Ats Copd Guidelines
Ers Ats Copd GuidelinesErs Ats Copd Guidelines
Ers Ats Copd Guidelines
 
The Gold 2003 Update
The Gold 2003 UpdateThe Gold 2003 Update
The Gold 2003 Update
 
Chronic obstructive airway disease (coad)
Chronic obstructive airway disease (coad)Chronic obstructive airway disease (coad)
Chronic obstructive airway disease (coad)
 
Ae copd 27.5.20
Ae copd  27.5.20Ae copd  27.5.20
Ae copd 27.5.20
 
COPD-Differential-Diagnosis-Module (1).ppt
COPD-Differential-Diagnosis-Module (1).pptCOPD-Differential-Diagnosis-Module (1).ppt
COPD-Differential-Diagnosis-Module (1).ppt
 
COPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHE
COPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHECOPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHE
COPD AND ICU MANAGEMENT : DR DEVAWRAT BUCHE
 

Dernier

Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...JojoEDelaCruz
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsManeerUddin
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxVanesaIglesias10
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 

Dernier (20)

Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
ENG 5 Q4 WEEk 1 DAY 1 Restate sentences heard in one’s own words. Use appropr...
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
Food processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture honsFood processing presentation for bsc agriculture hons
Food processing presentation for bsc agriculture hons
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptxROLES IN A STAGE PRODUCTION in arts.pptx
ROLES IN A STAGE PRODUCTION in arts.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 

Indian guidelines for COPD

  • 1. Dr. S. Raghu MD (chest) Associate professor, Dept. of TB&CD, Guntur medical college, Chest physician, Govt Fever Hospital, Guntur. drraghus@gmail.com
  • 2.
  • 3. Introduction • COPD poses enormous burden in terms of morbidity and mortality globally and in India. • COPD is a major public health problem in India. • Although several International guidelines for diagnosis and management of COPD are available, yet there are lot of gaps in recognition and management of COPD in India due to vast differences in availability and affordability of healthcare facilities across the country.
  • 4.
  • 5. FORMULATION OF GUIDELINES • The process of development of guidelines for diagnosis and management of patients of COPD in India was undertaken as a joint exercise ICS and NCCP, by the Department of Pulmonary Medicine, PGIMER, Chandigarh.
  • 6. • The search was conducted under five subgroups: (a) definitions, epidemiology, and disease burden; (b) disease assessment and diagnosis; (c) pharmacologic management of stable COPD; (d) management of acute exacerbations; and (e) non-pharmacologic and preventive measures.
  • 7.
  • 8. • Important questions were framed on the basis of discussions on issues with reference to the Indian context. • Final decisions in the joint group were based on a consensus approach on the majority voting.
  • 9. Classification of level of evidence and grading of recommendation • The modified grade system was used for classifying the quality of evidence as 1, 2, 3, or usual practice point (UPP). • The strength of recommendation was graded as A or B depending upon the level of evidence
  • 10. Classification of level of evidence Level 1 High-quality evidence backed by consistent results from well-performed randomized controlled trials, or overwhelming evidence from well-executed observational studies with strong effects Level 2 Moderate-quality evidence from randomized trials (that suffer from flaws in conduct, inconsistency, indirectness, imprecise estimates, reporting bias, or other limitations) Level 3 Low-quality evidence from observational evidence or from controlled trials with several serious limitations Useful practice point Not backed by sufficient evidence; however, a consensus reached by working group, based on clinical experience and expertise
  • 11. Grading of recommendation based on the quality of evidence Grade A Strong recommendation to do (or not to do) where the benefits clearly outweigh the risk (or vice versa) for most, if not all patients Grade B Weaker recommendation where benefits and risk are more closely balanced or are more certain
  • 12. • Grade A recommendations in the guidelines should be interpreted as “recommended” and the grade B recommendations as “suggested”. • While making a recommendation, the issues of practicality, costs, and feasibility in the country at different levels of healthcare was also taken into consideration.
  • 13. Burden of COPD Worldwide • Affects more than 400 million people • Causes 3 million deaths per year – the 3rd leading cause of death In India • Affects about 15 million people • Causes about 0. 5 million (5 lakh) deaths per year • Causes more deaths than TB and pneumonia
  • 15. • The GOLD definition in its latest edition is comprehensive and elaborate, but complex. • Retaining the key components of various definitions and using simple terms, ICS & NCCP recommend the following definition of COPD “Chronic Obstructive Pulmonary Disease (COPD) is a common, preventable lung disorder characterized by progressive, poorly reversible airflow limitation often with systemic manifestations, in response to tobacco smoke and/or other harmful inhalational exposures.”
  • 17. Risk factors for COPD Established • Tobacco smoking • Environmental tobacco smoke • Exposure to biomass fuel smoke • Occupational exposure • Alpha-1 antitrypsin deficiency Probable • Outdoor air pollution • Pulmonary tuberculosis • Poorly treated asthma • Intrauterine growth retardation • Poor nourishment • Repeated lower respiratory infections • during childhood • Others • Age • Male gender • Low socioeconomic status
  • 18.
  • 19. The bigger risk factor? > 70% use biomass fuel for cooking 25% smoke Exposure to biomass fuel may be a bigger risk factor for COPD in India SmokingChullah smoke
  • 20.
  • 21. • Both smokeless and smoking forms of tobacco are associated with serious health hazards, although only smoking tobacco is primarily responsible for COPD. (1A) • Bidi and other indigenous forms of tobacco smoking are at least as (or even more) harmful than cigarette smoking. (1A) • Low tar or filtered cigarettes are not “less harmful”. (2B) • There is no minimum number of cigarettes/bidi per day below which the risk for COPD decreases. (1A) Smoking • Tobacco smoking is the most well established risk factor for COPD. (1A)
  • 22.  Exposure to environmental tobacco smoke (ETS) is a definitive risk factor for COPD. (1A)  Exposure to biomass fuel smoke is a strong risk factor for COPD. (1A)  There is limited data on the association of ambient air pollution and COPD, and its causative role in COPD needs further evaluation.  There is insufficient evidence to attribute an etiological role of pulmonary tuberculosis in causing COPD.  A subgroup of chronic asthma may clinically behave like COPD; whether it is true COPD remains to be established. (UPP)
  • 23.
  • 25. The 4 typical ways of case presentation 1. With one or more of the characteristic respiratory symptoms of chronic progressive breathlessness, cough, sputum production, wheezing, and/or chest tightness 2. Without respiratory symptoms like breathlessness, because patients might have reduced their physical activity unknowingly to very low levels. They might just complain of fatigue 3. With symptoms attributed to complications of the disease like weight loss (COPD related cachexia) or leg swelling (due to cor pulmonale) 4. With an exacerbation With respiratory symptoms Without resp. symptoms, just fatigue Symptoms due to complications Exacerbation
  • 26.
  • 27. Useful physical signs in the diagnosis of COPD Percussion Palpation Auscultation Inspection Special maneuver Pursed-lip breathing Use of accessory muscles of respiration Jugular venous distension during expiration Retraction of suprasternal, supraclavicular and intercostal spaces during inspiration Short trachea Pulsus paradoxus Increased anteroposterior diameter of the chest (barrel-shaped chest) Reduced chest movements Peripheral edema Dyspnea-relieving posture Muscle wasting Restricted chest expansion Subxiphoid shift of maximum impulse of the heart Chest hyperresona nce Obliteration of cardiac dullness Lower level of liver dullness Lower diaphragmati c levels Diminished breath sounds Early inspiratory crackles Loud pulmonic component of second heart sound Forced expiratory time Snider’s match test FET: Forced expiratory time
  • 28. • A diagnosis of COPD should be considered in persons having chronic symptoms of cough, sputum production, shortness of breath, and/or wheezing, especially among those with prolonged exposure to risk factors for the disease. (1A) • A diagnosis of COPD should not be excluded in the absence of physical signs. (2A) • Forced expiratory time (FET) of more than six seconds is suggestive of airflow obstruction. (2B)
  • 29. ROLE OF SPIROMETRY IN DIAGNOSIS ?
  • 30.
  • 31. • Spirometry should be performed in all patients suspected of having COPD. (1A) • In the absence of availability of spirometry, patients suspected of having COPD should be referred for spirometric evaluation to a center with the facility. (UPP)
  • 32. • A post-bronchodilator forced expiratory volume in first second (FEV1)/forced vital capacity (FVC) below the LLN (lower fifth percentile of values from a reference population) should be preferably used as the criterion for diagnosis of airflow obstruction. (1A) • However, in the absence of reference equations for LLN, FEV1/FVC < 0.7 may be used as the cutoff for defining airflow obstruction. (1A)
  • 34. • Absence of bronchodilator reversibility does not differentiate COPD from asthma, and its presence does not predict the response to treatment. (1A) • However, all FEV1 values should be reported post-bronchodilator.
  • 36.
  • 37. • Spirometry should not be used as a screening tool in asymptomatic individuals to detect airflow obstruction. (2A)
  • 39.
  • 40. • PEF should not be routinely used for screening, diagnosis, or monitoring of COPD. (1A)
  • 42. • Classification of severity of the disease should be done for all COPD patients based on the FEV1 and exacerbation frequency. (1A)
  • 43. Classification of severity of COPD Severity * Post- bronchodilator FEV1, % predicted mMRC grade Exacerbation Frequency † Complicatio ns ‡ Mild ≥80 <2 <2 No Moderate 50-79 ≥2 <2 No Severe <50 ≥2 ≥2 Yes *The category with the worst value should be used for severity classification, †number of exacerbations in the last year, ‡complications include respiratory failure (defined by pO2 < 60 mmHg and/or SpO2 < 88% and/or pCO2 > 50 mmHg), cor pulmonale, and secondary polycythemia (hematocrit 55%)
  • 44. • Level of patient’s disability due to symptoms should be assessed using modified Medical Research Council (mMRC) dyspnea questionnaire or the COPD assessment test (CAT) and recorded at each clinical visit. (1A)
  • 45. mMRC grading of breathlessness “I only get breathless with strenuous exercise” “I get short of breath when hurrying on the level or walking up a slight hill” “I walk slower than people of the same age on the level because of breathlessness or have to stop for breath when walking at my own pace on the level” “I stop for breath after walking about 100 yards or after a few minutes on the level” “I am too breathless to leave the house” or “I am breathless when dressing or undressing” 0 1 2 3 4
  • 47.  All new COPD suspects with cough of more than 2 weeks’ duration should undergo sputum smear examination for acid fast bacilli to rule out pulmonary tuberculosis as per the standard practice of Revised National Tuberculosis Control Program (RNTCP). (UPP)  Pulse oximetry should be used to screen for hypoxemia in stable disease with FEV1 < 50% and in the presence of clinical suspicion of hypoxemia. (3A)
  • 48. • An arterial blood gas analysis should be done if arterial saturation by pulse oximetry is less than 90%. (2A) • Diagnosis of COPD should not be made on the basis of a chest radiograph. (2A) • Chest radiograph may be done during the initial evaluation of COPD to look for comorbidities, complications, and alternative diagnoses. (2B)
  • 49.
  • 50. • Special investigations like high-resolution computed tomography (HRCT) scan, lung volumes, diffusing capacity for carbon monoxide (DLCO), and exercise testing should be done in situations of diagnostic difficulty or whenever clinically indicated. (2A) • 6MWT may be used for monitoring of exercise capacity in COPD. (1A) • Testing for alpha-1 antitrypsin deficiency may be done in young patients with lower lobe emphysema. (UPP)
  • 51.
  • 52. Differential diagnosis of COPD Features Asthma Early age of onset Episodic symptoms with asymptomatic periods in between Wide variation of symptoms day to day Symptoms worse at night/early morning Chronic productive cough is uncommon History of atopy may be present Family history of asthma may be present Reversibility of airway obstruction Increased diffusing capacity for carbon monoxide (DLCO) Congestive heart failure Cardiomegaly/pulmonary edema in chest X-ray PFT suggestive of restrictive abnormality Bronchiectasis Copious purulent sputum Clubbing, coarse crackles HRCT shows bronchial dilatation and bronchial wall thickening
  • 53. Differential diagnosis of COPD Features Tuberculosis Fever, anorexia, weight loss Chest X-ray opacity, fibrocavitary disease Microbiological diagnosis Constrictive bronchiolitis Non-smoker, young age History of rheumatoid arthritis, fume exposure, lung/bone marrow transplantation HRCT shows mosaic attenuation Diffuse panbronchiolitis Non-smoker Association with chronic sinusitis HRCT shows centrilobular nodules, hyperinflation and air-trapping
  • 54.
  • 55.
  • 56.
  • 58. • Composite scores including BODE (body mass index (BMI), obstruction, dyspnea, exercise capacity) and DOSE (dyspnea, obstruction, smoking, exacerbation) should not be used to assess severity or prognosis in COPD unless they are validated in Indian patients. (2A)
  • 60. • Comorbid diseases in COPD are independently associated with a higher risk of hospitalization and mortality. • COPD patients should be routinely evaluated and appropriately treated for comorbid conditions. (2A)
  • 62.
  • 63. Treatment goals in stable COPD • Relief in breathlessness and other symptoms • Improvement in exercise tolerance • Improvement in overall health-related quality of life Reduction in current symptoms • Prevention (or slowing down) of disease progression • Prevention of disease exacerbations • Reduction in disease-related mortality Reduction of future risk Minimizing adverse effects from treatment
  • 64.
  • 65. Commonly used drugs Inhaled agents Oral agents – Anticholinergics • Short-acting • Long-acting – Beta-agonists • Short-acting • Long-acting – Corticosteroids – Beta-agonists – Methylxanthines – Selective PDE4 inhibitors
  • 66. Treating patients of stable COPD Category Initial therapy Add-on therapy (if patient continues to have symptoms) First choice Alternative choice Mild SABA or SAMA Methyl xanthines - Moderate LAMA LABA Methylxanthine s to LAMA/LABA Severe ICS plus LABA LAMA Methylxanthine s to LAMA or ICS plus LABA
  • 67.
  • 69. • Short-acting antimuscarinic agent (SAMA) can be used as rescue medication to relieve patient symptoms. (1A) • Long term SAMA monotherapy on regular basis is not recommended. (1A) • Long-acting antimuscarinic agents (LAMA) are useful in stable COPD (FEV1 < 80%) to control symptoms and decrease the risk of exacerbations. (1A) • LAMA should be preferred over SAMA. (1A) • We suggest close monitoring of patients with coronary artery disease who are treated with LAMA. (UPP)
  • 70. • Short-acting beta-agonist (SABA) can be used to relieve symptoms of dyspnea as and when needed. (1A) • Long term SABA monotherapy on regular basis is not recommended. (2A) • Long-acting beta-agonist (LABA) monotherapy can relieve symptoms and decrease the exacerbation rate in patients with stable COPD (FEV1 < 80%). (1A) • Patients with symptomatic coronary artery disease receiving inhaled beta-agonists should be closely monitored. (UPP)
  • 71. • ICS have a beneficial effect in subgroup of COPD patients with FEV1 < 50%. (1A) • ICS have a beneficial effect in subgroup of COPD patients with frequent exacerbations (≥ 2 exacerbations/ year). (1A) • The risk-benefit profile favors use of ICS in patients with severe COPD. (1A) • ICS monotherapy should not be used. (1A)
  • 72. • LAMA is superior to LABA monotherapy. (1A) • SABA and SAMA are equally effective when used for COPD. (2A) • LAMA plus LABA may be used in patients who continue to have symptoms on monotherapy, except for those with frequent exacerbations. (1A)
  • 73. • LABA plus ICS should be preferred over LABA alone in patients with FEV1 < 50% or those having frequent exacerbations. (1A) • In patients of severe COPD (FEV1 < 50%), triple therapy may be used in those who are symptomatic despite single or dual bronchodilator therapy. (1B) • There is lack of sufficient data to recommend ICS-LABA or ICS-LAMA combination over LAMA monotherapy.
  • 74. ROLE OF ORAL BRONCHODILATORS IN STABLE COPD?
  • 75. Oral methylxanthines - Not recommended as first line therapy in patients with COPD. (1A) - Can be used a. As alternative in patients noncompliant with inhalers for any reason. (1B) b. As add-on therapy in patients continuing to have symptoms despite optimum inhaled therapy. (3A) - Patients on oral methylxanthines need to be monitored for side effects and drug interactions. (UPP)
  • 76. • Roflumilast (PDE4 inhibitor) may be used in frequent exacerbators as an add-on or substitute to ICS. (2B) • Routine use of mucolytic agents is not recommended in patients with COPD. (2A)
  • 77. Vaccination for COPD • Influenza & Pneumococcal vaccination is likely to be beneficial patients with severe COPD and/or frequent exacerbations (UPP)
  • 78. Smoking cessation  A smoking history, including pack years or smoking index should be documented for all patients with COPD (UPP)  All COPD patients, regardless of age, should be encouraged to stop smoking, and offered help to do so, at every opportunity (1A)  Nicotine replacement therapies (varenicline or bupropion), combined with an appropriate support program, should be offered to people who are planning to stop smoking (1A)
  • 79.
  • 80. Topics for patient education  Risks and benefits of stopping smoking and cessation strategies  Avoidance of potential risk factors in nonsmokers  The concept of normal lung function  Inhaler use  Use of other medications, including oxygen  Nutrition  Adequate physical exercise, especially if the patient is not enrolled in a pulmonary rehabilitation program  Breathing strategies  Advice related to travel and sexuality  End of life planning
  • 81. Non-pharmacological management of stable COPD • Pulmonary rehabilitation • Oxygen therapy • Non-invasive ventilation • Bronchoscopic techniques • Surgery
  • 82. Pulmonary rehabilitation Components include: (a) Patient selection and assessment (b) exercise (c) nutritional support (d) psychosocial support (e) education
  • 83. Pulmonary rehabilitation in stable COPD  Structured programs should be set up where feasible (1A)  In the absence of structured programs, patients should be advised regarding unsupervised daily physical activity (3A)  All patients should be assessed for nutritional status at least by BMI at the initial visit and followed-up by serial BMI estimation at every visit. Any patient found to be malnourished should be referred for nutritional advice to a specialist (UPP)
  • 84. Aerobic exercises – increase amount of oxygen delivered to muscles which allows them to work longer. Lower body exercises – Improve lower body muscle strength and endurance, help move around easily for longer period. knee extension Leg lift Step - ups PULMONARY REHABILITATION
  • 85. Upper body exercises – increase strength in shoulder muscles that support ribcage and improve breathing. Arm extension Elbow circles Elbow breathing Breathing exercises – reduces hyper inflation of the chest. Education–Self-management strategies Psychological and behavioral intervention – Support groups for stress management
  • 86. Oxygen therapy Long-term supplemental oxygen therapy is indicated for those with severe daytime resting hypoxemia (1A) defined as: a) PaO2 of < 55 mmHg (or pulse oxygen saturation of < 88%), or b) PaO2 of 56-60 mmHg (or pulse oxygen saturation of 88-92%) with evidence of end-organ dysfunction such as pulmonary hypertension, congestive cardiac failure, and erythrocytosis with hematocrit > 55% c) Determined on two occasions at least 3 weeks apart in the stable patient.
  • 87. Recommendations for oxygen therapy  The role of oxygen supplementation in other situations is currently not clear and should be decided on a case to case basis (2B)  Supplemental oxygen should be titrated to achieve a pulse oximetric saturation of 90-92% or a PaO2 of 60- 65 mmHg (3A)  Patients should breathe supplemental oxygen for at least 16 hours a day (1A)  Patients on long-term oxygen therapy should be reviewed at regular intervals with either pulse oximetry or arterial blood gas analysis as indicated (UPP)
  • 88. NIV in stable COPD Indications: 1. Documentation of the diagnosis of COPD by a physician, optimization of other therapies, and exclusion of sleep apnea if required. 2. Presence of both symptoms (such as fatigue, dyspnea, morning headache, etc.) and physiologic criteria (one of the following): a. PaCO2 ≥ 55 mmHg or PaCO2 of 50-54 mmHg and nocturnal desaturation (oxygen saturation by pulse oximeter ≤ 88% for continuous 5 min while receiving oxygen therapy at 2 L/min) b. PaCO2 of 50-54 mmHg and hospitalization related to recurrent (≥ 2 in a 12-month period) episodes of hypercapnic respiratory failure.
  • 89. Recommendations for NIV 1. NIV may be used in patients with recurrent exacerbations who require frequent use of mechanical and noninvasive ventilation during the acute episodes; the patient should be referred to a specialist center for management (3A) 2. The choice of the machine for NIV depends on the presence of coexistent sleep apnea syndromes (UPP)
  • 90. Indications for surgical treatments for COPD Bullectomy • presence of single large bullae compressing the remaining lung, • breathlessness due to the bullae, • hemoptysis, • reduction in the FEV1 to < 50%. Lung Volume Reduction Surgery • predominantly upper lobe emphysema and • low post-rehabilitation exercise capacity Lung transplantation • BODE index of 7- 10 with an FEV1 < 20% predicted, • or a DLCO < 20% and homogenous emphysema or cor pulmonale
  • 91. Surgical treatments for COPD Bullectomy may be carried out in properly selected patients in appropriate centers (3A) LVRS may be offered to properly selected patients at centers capable of performing the procedure (1A) Lung transplantation may be offered to properly selected patients at centers capable of doing the procedure (1A)
  • 92. PROPHYLACTIC ANTIBIOTICS IN COPD • Antibiotics should not be prescribed as a routine for the prevention of exacerbations of COPD. (2A)
  • 93. ADVICE REGARDING AIR- TRAVEL • Patients with severe COPD and those on long-term oxygen therapy should be assessed before air travel by a specialist. (UPP)
  • 95. DEFINITION OF AECOPD • An exacerbation of COPD is an acute event characterized by sustained worsening of any of the patient’s respiratory symptoms (cough, sputum quantity and/or character, dyspnea) that is beyond normal day-to-day variation and leads to a change in medication, and where other causes of acute breathlessness have been clinically excluded.
  • 97. • No investigations apart from pulse oximetry are routinely required in patients with acute exacerbations managed in an outpatient setting. (IIA) • In those hospitalized with AECOPD, serum electrolytes, LFT, RFT, CBP, CXR, ECG, ABG (if available) should be performed. (IA) • If an infectious exacerbation does not respond to the initial antibiotic treatment, a sputum culture and an antibiotic sensitivity test should be performed. (IIA)
  • 98. Differential diagnosis of AECOPD • You need to exclude the 6 P’s –Pneumonia –Pulmonary embolism –Pneumothorax –Pleural effusion –Pulmonary edema (heart failure) –Paroxysmal atrial tachycardia (arrhythmias)
  • 99. Causes of AECOPD Infectious (60-80% of all exacerbations) • Frequent (70-85% of all infectious • exacerbations) • Viruses (influenza and parainfluenza • viruses, rhinoviruses, coronaviruses) • Haemophilus influenzae • Streptococcus pneumoniae • Moraxella catarrhalis • Infrequent (15-30% of all infectious • exacerbations) • Pseudomonas aeruginosa • Opportunistic gram-negative species • Staphylococcus aureus • Chlamydophila pneumoniae • Mycoplasma pneumoniae Environmental factors • Air pollution • Non-adherence to respiratory • medication • Cold air • Allergens • Tobacco smoking
  • 100. SITE OF MANAGEMENT OF AECOPD ?
  • 101. Severity assessment of COPD exacerbation Symptoms • Marked reduction in activity of daily living due to dyspnea • Altered sensorium • New onset cyanosis Signs • Use of accessory respiratory muscles • Paradoxical chest wall movements • Central cyanosis • Systolic blood pressure <90 mmHg • RR >30/min • Heart rate >110/min • Asterixis • Altered mental status Others • Presence of severe comorbid conditions • Lack of social support Pulse oximetry • SpO2<90%
  • 102.
  • 103. Algorithm for deciding place of management after hospitalization
  • 104. SHORT-ACTING BRONCHODILATORS IN AECOPD • Inhaled route is the preferred route of administering bronchodilators. (IA) • Inhaled SABAs should be used as the first-line agent because of quicker onset of action (IIIA). SAMAs are however, in no way inferior to SABAs. • Nebulized salbutamol at a dose of 2.5 mg every 20 min (or salbutamol pressurized metered dose inhaler (pMDI) 100 μg 2-4 puffs every 20 min) for 1 h can be given initially. (IIIA) Further dosing would depend on the clinical response, generally every 4-6 h. (IIIA)
  • 105. • If additional bronchodilatation is desired, a combination of ipratropium (500 μg nebulized or 20 μg 2-4 puffs with pMDI) and salbutamol (2.5 mg nebulized or salbutamol pMDI 100 μg 2-4 puffs) every 4-6 h can be used. (IIIA) • Nebulizer or pMDIs with spacer are equally effective. (IIA) • Nebulization should not be driven by oxygen; patients should receive oxygen separately through nasal cannula, with monitoring of oxygen saturation. (IIA)
  • 106. • Intravenous methyl xanthines should not be routinely used. (IA) • The use of intravenous or subcutaneous route of administering bronchodilators should be reserved in the most seriously ill mechanically ventilated patient demonstrating inadequate response to inhaled therapy. (IIIB)
  • 107. GLUCOCORTICOIDS IN AECOPD • Systemic steroids - shorten recovery time, - improve lung function, oxygenation, - reduce length of hospital stay - fewer treatment failures. (IA) • A short course of oral prednisolone (or equivalent) at a dose of 30-40 mg/day is recommended for managing acute exacerbations. (IIA)
  • 108. • The duration of systemic steroid therapy should be 5-10 days. (IIA) • Intravenous steroids should be given in patients who are being mechanically ventilated or cannot tolerate oral medication. (UPP) • ICS are not routinely recommended in management of AECOPD. (IA)
  • 109. ANTIBIOTICS IN AECOPD • Antibiotics should be prescribed for all exacerbations of COPD. (IIA) • The choice of antibiotics should be guided by local flora and sensitivity pattern. (IIA) • Fluoroquinolones should not be used routinely in treating AECOPD. (IA)
  • 110. • Patients with AECOPD being managed in the outpatient setting may be treated with first line antibiotics. (IIA) • Hospitalized patients or those requiring mechanical ventilation (noninvasive/invasive) should be treated with second line drugs. (IIA) • The duration of therapy should be 5-7 days. (IIA)
  • 111. PROCALCITONIN Any role in deciding for antibiotic therapy?
  • 112. • Biomarkers do not have any role in management of acute exacerbation of COPD. (IIA) • Procalcitonin should not be used routinely in guiding antibiotic usage in COPD. (IIA)
  • 113.
  • 114. When to use O2 in AECOPD • Oxygen should be prescribed to hypoxemic patients with a target SpO2 between 88-92%. (IA) • Oxygen should be delivered preferably by a Venturi mask, and by nasal cannula upon recovery. (IIA) • ABG monitoring is recommended in patients receiving oxygen therapy, wherever available. (IIA)
  • 115. Indication of NIV during AECOPD • NIV should be used early in the management of respiratory failure due to AECOPD. (IA) • NIV can be used even in settings where arterial blood gas monitoring is not routinely available. (UPP)
  • 116. Indications and protocol of invasive mechanical ventilation
  • 117. When should a patient be discharged from hospital?  Patient should be clinically stable for at least 24- 48 hours,  Should be able to eat and sleep comfortably,  Should be ambulatory for activities of daily living.  In addition,  minimal requirement of short-acting bronchodilators, and  the patient should be able to use long-acting bronchodilators
  • 118. Follow-up after discharge from hospital Follow-up at 4-6 weeks after discharge At every visit, due emphasis should be laid on smoking cessation, the inhaler technique checked, and the effectiveness of each medication monitored For patients who are hypoxemic during an exacerbation, arterial blood gases, and/or pulse oximetry should be evaluated prior to hospital discharge and in the following 3-6 weeks. If the patient remains hypoxemic, long-term supplemental oxygen therapy may be required
  • 119.