SlideShare a Scribd company logo
1 of 9
Multireaction Stoichiometry 
Jika terdapat dua atau lebih proses reaksi , maka digunakan ; 
νi,j : the stoichiometric number of species i in reaction j. 
the change of the moles of a species ni 
i i jdn v d , 
j 
j 
i i i j n  n v  0 , 
 
 
n  n   v  
0 i , 
j  
j i , j   
i 
j 
j 
j 
j i 
 
 
 
Dimana : (i= 1,2,….,N) 
j n  n v  0 
j 
j 
 
j 
 
n  
v 
i 0 i , 
j 
j 
j 
j 
j 
i n v 
y 
 
 
 
 
0 
integration 
summation 
total stoichiometric number
Example 13.3 
Consider a system in which the following reactions occur, 
4 2 2 CH  H OCO 3H 4 2 2 2 CH  2H OCO  4H 
if there are present initially 2 mol CH4 and 3 mol H2O, determine expressions for the yi as 
functions of ε1 and ε2 . 
i CH4 H2O CO CO2 H2 
j νj 
1 -1 -1 1 0 3 2 
2 -1 -2 0 1 4 2 
 
j 
 
n  
v 
i 0 i , 
j 
j 
j 
j 
j 
i n v 
y 
 
 
 
 
0 
  
  
1 2 
5  2  
2 
1 2 
2 
 CH y 
4   
3   
2 
  
1 2 
2 5  2   
2 
 
1 2 
 H O y 
 
1 
3   
4 
 
  
1 2 
5 2 2 
2   
 
 CO y 1 2 
5  2  
2 
1 2 
2 
2 5  2   
2  
 CO y 
1 2 
 H y
Application of equilibrium criteria 
to chemical reactions 
Total enargi gibbs dari sistem tertutup pada P dan T konstan 
dengan asumsi proses ireversible didapatkan. Pada keadaan 
setimbang adalah 
 dG 
t  0 
T,P
Application of equilibrium criteria 
to chemical reactions 
• ε is the single variable that characterizes the 
progress of the reaction 
• the total Gibbs energy at constant T and P is 
determined by ε 
• if not in chemical equilibrium, any reaction leads to a 
decrease in the total Gibbs energy of the system 
• The condition for equilibrium: 
• the total Gibbs energy is a minimum 
• Its differential is zero  dG 
t  0 
T,P G f ( ) t 
Standard Gibbs energy change 
and the equilibrium constant 
Dasar dari persamaan sistem single phase, 
   
i i d(nG) (nV)dP (nS)dT  dn 
i 
dn v d i i  
Replaced by the product 
   
i id(nG) (nV)dP (nS)dT   d 
i 
0 
Persamaan differensial 
 
nG G 
  
( ) ( ) 
 
        
 
 
 
  
, , 
 
 
 
 
 
  at equilibrium 
T P 
t 
  
i i 
i T P
The fugacity of a species in solution: 
i i i    (T) RTln fˆ 
o 
i G   (T)  RT ln f 
For pure species i in its standard state: o 
i i 
ˆ 
f 
o i 
o 
i 
G RT 
   ln 
i i f 
 
  
 0 i i i 
0 
ˆ 
 
 
 
f 
o i 
ln  
 
 
 
 
  
 G RT 
 
i 
o 
i 
i i f 
0 
ˆ 
 
  
 
f 
o i 
 
 
ln  
 
 
   
i i 
v 
o 
i 
i i 
i 
f 
 G RT 
 
K 
  
G 
f 
i 
 
o G  G 
 ˆ  
 
f i 
RT 
G 
f 
o 
i i 
 
i 
v 
i 
o 
i 
i  
 
 
 
  
 
  
 
ln 
  
 
  
 
 
RT 
K 
o 
exp 
f 
i 
v 
o 
i 
i 
 
 
 
 
 
 
 
 
ˆ 
  
i 
o 
i i 
Equlibrium state =0 
exponential
 
  
 
  
  
 
 
G 
RT 
K 
o 
The equilibrium constant for the reaction, f(T) exp 
o The standard Gibbs energy change of reaction, f(T) G  G 
   
i 
o 
i i 
o Other standard property changes of reaction : M  M 
   
i 
o 
i i 
RT 
G 
dT 
d 
H RT 
o 
i 
o 
i 
 
 
 
 
 
 
  2 
dT 
RT 
G 
d 
H RT 
i 
o 
i i 
i 
o 
i i 
 
 
  
 
 
 
  
 
  
 
 
 
 2 
  
dT 
RT 
d G 
H RT 
o 
o 
 
   2 
Ho ln 
d K 
dT 
RT 
2  

For a chemical species in its standard state: 
o 
i 
o 
Gi  H TS 
o 
i 
o 
    
i 
o 
i i i 
i i i 
o 
i i  G  H T  S 
o o o G  H TS 
summation 
 
C 
 
    
T 
T 
o 
o o P dT 
R 
H H R 
0 
0 
 
C 
 
    
T 
T 
o 
o o P 
dT 
T 
R 
S S R 
0 
0 
H G 
0 0 
0 T 
0 
S 
o o 
o   
  
C 
    
C 
 
 
 
T 
       
T 
T 
o 
P 
T 
T 
o 
o o o o P 
dT 
T 
R 
dT RT 
R 
H G R 
T 
G H 
0 0 
0 0 
0 
0
C 
    
C 
 
 
 
T 
       
T 
T 
o 
P 
T 
T 
o 
o o o o P 
dT 
T 
R 
dT RT 
R 
H G R 
T 
G H 
0 0 
0 0 
0 
0 
G 
RT 
K 
o   
ln  
Readily calculated at any temperature from the standard 
heat of reaction and the standard Gibbs energy change of 
reaction at a reference temperature 
0 1 2 K  K K K 
 
 
 
 
   
 
 
 
 
G 
0 
0 
0 exp 
RT 
K 
o 
 
 
 
 
 
 
 
1 exp 1 
 
 
 
 
 
 
 
 
H 
 
 
T 
T 
0 
RT 
K 
o 
0 
0 
 
  
 
  
  
 
 
C 
 
T 
    
T 
o 
P 
T 
T 
o 
P 
dT 
T 
C 
R 
dT 
R 
T 
K 
0 0 
1 
exp 2

More Related Content

Viewers also liked

Thomas corporate presentation
Thomas corporate presentationThomas corporate presentation
Thomas corporate presentation
lloydf
 
Strategic Diagnosis and Action Plan example
Strategic Diagnosis and Action Plan exampleStrategic Diagnosis and Action Plan example
Strategic Diagnosis and Action Plan example
John Coulter MBA
 
Bab 1-ting-4
Bab 1-ting-4Bab 1-ting-4
Bab 1-ting-4
fasila114
 
Februrary 2013 time management
Februrary 2013   time managementFebrurary 2013   time management
Februrary 2013 time management
nctcmedia12
 
Toolkit - Slide Deck
Toolkit - Slide DeckToolkit - Slide Deck
Toolkit - Slide Deck
Juan Mullerat
 
演示文稿
演示文稿演示文稿
演示文稿
Koo Ei
 

Viewers also liked (20)

Pkt edit
Pkt editPkt edit
Pkt edit
 
Diary of make
Diary of makeDiary of make
Diary of make
 
69613193 pete-y-pat-2011-2012-1
69613193 pete-y-pat-2011-2012-169613193 pete-y-pat-2011-2012-1
69613193 pete-y-pat-2011-2012-1
 
Thomas corporate presentation
Thomas corporate presentationThomas corporate presentation
Thomas corporate presentation
 
Memorandum and letters
Memorandum and lettersMemorandum and letters
Memorandum and letters
 
Strategic Diagnosis and Action Plan example
Strategic Diagnosis and Action Plan exampleStrategic Diagnosis and Action Plan example
Strategic Diagnosis and Action Plan example
 
Question 6
Question 6Question 6
Question 6
 
Grant Thornton/ICAEW Business Confidence Monitor Q2 2014
Grant Thornton/ICAEW Business Confidence Monitor Q2 2014Grant Thornton/ICAEW Business Confidence Monitor Q2 2014
Grant Thornton/ICAEW Business Confidence Monitor Q2 2014
 
Conferenza stampa del 15 Dicembre 2011
Conferenza stampa del 15 Dicembre 2011Conferenza stampa del 15 Dicembre 2011
Conferenza stampa del 15 Dicembre 2011
 
Bab 1-ting-4
Bab 1-ting-4Bab 1-ting-4
Bab 1-ting-4
 
Februrary 2013 time management
Februrary 2013   time managementFebrurary 2013   time management
Februrary 2013 time management
 
Confira na íntegra a decisão que afastou Eduardo Cunha da Câmara
Confira na íntegra a decisão que afastou Eduardo Cunha da CâmaraConfira na íntegra a decisão que afastou Eduardo Cunha da Câmara
Confira na íntegra a decisão que afastou Eduardo Cunha da Câmara
 
Toolkit - Slide Deck
Toolkit - Slide DeckToolkit - Slide Deck
Toolkit - Slide Deck
 
AHA Parent Information Session
AHA Parent Information SessionAHA Parent Information Session
AHA Parent Information Session
 
Modulo 1 pdf
Modulo 1 pdfModulo 1 pdf
Modulo 1 pdf
 
Vim入門 20130210
Vim入門 20130210Vim入門 20130210
Vim入門 20130210
 
Slideshare
SlideshareSlideshare
Slideshare
 
How to transform your entire life in just 55 m
How to transform your entire life in just 55 mHow to transform your entire life in just 55 m
How to transform your entire life in just 55 m
 
演示文稿
演示文稿演示文稿
演示文稿
 
alliantgroup LP
alliantgroup LPalliantgroup LP
alliantgroup LP
 

Similar to Tugas persentasi pak kuswandi

AP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample ExercisesAP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample Exercises
Jane Hamze
 
12 Entropy
12 Entropy12 Entropy
12 Entropy
janetra
 
Entropy ok1294987599
Entropy    ok1294987599Entropy    ok1294987599
Entropy ok1294987599
Navin Joshi
 
Ch16 z5e free energy
Ch16 z5e free energyCh16 z5e free energy
Ch16 z5e free energy
blachman
 
POSTER [Compatibility Mode]2
POSTER [Compatibility Mode]2POSTER [Compatibility Mode]2
POSTER [Compatibility Mode]2
AMIT PATHAK
 
Capitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICACapitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICA
Gynna Sierra
 
2012 15 3 and 15 4
2012 15 3 and 15 42012 15 3 and 15 4
2012 15 3 and 15 4
David Young
 

Similar to Tugas persentasi pak kuswandi (20)

4 PCh Lecture.ppt
4 PCh Lecture.ppt4 PCh Lecture.ppt
4 PCh Lecture.ppt
 
Apchapt16 (1)
Apchapt16 (1)Apchapt16 (1)
Apchapt16 (1)
 
F y b. sc. chemical equilibria
F y b. sc. chemical equilibriaF y b. sc. chemical equilibria
F y b. sc. chemical equilibria
 
CHAPTER 6- CHEMICAL REACTIAN EQUILIBRIA.PPT
CHAPTER 6- CHEMICAL REACTIAN EQUILIBRIA.PPTCHAPTER 6- CHEMICAL REACTIAN EQUILIBRIA.PPT
CHAPTER 6- CHEMICAL REACTIAN EQUILIBRIA.PPT
 
Introductory physical chemistry lecture note
Introductory physical chemistry lecture noteIntroductory physical chemistry lecture note
Introductory physical chemistry lecture note
 
AP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample ExercisesAP Chemistry Chapter 19 Sample Exercises
AP Chemistry Chapter 19 Sample Exercises
 
12 Entropy
12 Entropy12 Entropy
12 Entropy
 
Entropy ok1294987599
Entropy    ok1294987599Entropy    ok1294987599
Entropy ok1294987599
 
lec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsxlec 2 dr. marwa.ppsx
lec 2 dr. marwa.ppsx
 
Ch20
Ch20Ch20
Ch20
 
Ch16 z5e free energy
Ch16 z5e free energyCh16 z5e free energy
Ch16 z5e free energy
 
Entropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.pptEntropy A Measure of Disorder.ppt
Entropy A Measure of Disorder.ppt
 
Ch20 130105201707-phpapp02
Ch20 130105201707-phpapp02Ch20 130105201707-phpapp02
Ch20 130105201707-phpapp02
 
Introductory biological thermodynamics
Introductory biological thermodynamicsIntroductory biological thermodynamics
Introductory biological thermodynamics
 
Spontaneity entropy___free_energy
Spontaneity  entropy___free_energySpontaneity  entropy___free_energy
Spontaneity entropy___free_energy
 
POSTER [Compatibility Mode]2
POSTER [Compatibility Mode]2POSTER [Compatibility Mode]2
POSTER [Compatibility Mode]2
 
Chemical Reactions.ppt
Chemical Reactions.pptChemical Reactions.ppt
Chemical Reactions.ppt
 
Capitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICACapitulo 3 del libro TERMODINAMICA
Capitulo 3 del libro TERMODINAMICA
 
Chapter_7.pdf
Chapter_7.pdfChapter_7.pdf
Chapter_7.pdf
 
2012 15 3 and 15 4
2012 15 3 and 15 42012 15 3 and 15 4
2012 15 3 and 15 4
 

Tugas persentasi pak kuswandi

  • 1. Multireaction Stoichiometry Jika terdapat dua atau lebih proses reaksi , maka digunakan ; νi,j : the stoichiometric number of species i in reaction j. the change of the moles of a species ni i i jdn v d , j j i i i j n  n v  0 ,   n  n   v  0 i , j  j i , j   i j j j j i    Dimana : (i= 1,2,….,N) j n  n v  0 j j  j  n  v i 0 i , j j j j j i n v y     0 integration summation total stoichiometric number
  • 2. Example 13.3 Consider a system in which the following reactions occur, 4 2 2 CH  H OCO 3H 4 2 2 2 CH  2H OCO  4H if there are present initially 2 mol CH4 and 3 mol H2O, determine expressions for the yi as functions of ε1 and ε2 . i CH4 H2O CO CO2 H2 j νj 1 -1 -1 1 0 3 2 2 -1 -2 0 1 4 2  j  n  v i 0 i , j j j j j i n v y     0     1 2 5  2  2 1 2 2  CH y 4   3   2   1 2 2 5  2   2  1 2  H O y  1 3   4    1 2 5 2 2 2     CO y 1 2 5  2  2 1 2 2 2 5  2   2   CO y 1 2  H y
  • 3. Application of equilibrium criteria to chemical reactions Total enargi gibbs dari sistem tertutup pada P dan T konstan dengan asumsi proses ireversible didapatkan. Pada keadaan setimbang adalah  dG t  0 T,P
  • 4. Application of equilibrium criteria to chemical reactions • ε is the single variable that characterizes the progress of the reaction • the total Gibbs energy at constant T and P is determined by ε • if not in chemical equilibrium, any reaction leads to a decrease in the total Gibbs energy of the system • The condition for equilibrium: • the total Gibbs energy is a minimum • Its differential is zero  dG t  0 T,P G f ( ) t 
  • 5. Standard Gibbs energy change and the equilibrium constant Dasar dari persamaan sistem single phase,    i i d(nG) (nV)dP (nS)dT  dn i dn v d i i  Replaced by the product    i id(nG) (nV)dP (nS)dT   d i 0 Persamaan differensial  nG G   ( ) ( )               , ,        at equilibrium T P t   i i i T P
  • 6. The fugacity of a species in solution: i i i    (T) RTln fˆ o i G   (T)  RT ln f For pure species i in its standard state: o i i ˆ f o i o i G RT    ln i i f     0 i i i 0 ˆ    f o i ln         G RT  i o i i i f 0 ˆ     f o i   ln       i i v o i i i i f  G RT  K   G f i  o G  G  ˆ   f i RT G f o i i  i v i o i i           ln        RT K o exp f i v o i i         ˆ   i o i i Equlibrium state =0 exponential
  • 7.           G RT K o The equilibrium constant for the reaction, f(T) exp o The standard Gibbs energy change of reaction, f(T) G  G    i o i i o Other standard property changes of reaction : M  M    i o i i RT G dT d H RT o i o i         2 dT RT G d H RT i o i i i o i i                 2   dT RT d G H RT o o     2 Ho ln d K dT RT 2  
  • 8. For a chemical species in its standard state: o i o Gi  H TS o i o     i o i i i i i i o i i  G  H T  S o o o G  H TS summation  C      T T o o o P dT R H H R 0 0  C      T T o o o P dT T R S S R 0 0 H G 0 0 0 T 0 S o o o     C     C    T        T T o P T T o o o o o P dT T R dT RT R H G R T G H 0 0 0 0 0 0
  • 9. C     C    T        T T o P T T o o o o o P dT T R dT RT R H G R T G H 0 0 0 0 0 0 G RT K o   ln  Readily calculated at any temperature from the standard heat of reaction and the standard Gibbs energy change of reaction at a reference temperature 0 1 2 K  K K K            G 0 0 0 exp RT K o        1 exp 1         H   T T 0 RT K o 0 0           C  T     T o P T T o P dT T C R dT R T K 0 0 1 exp 2