Chapitre 1

490 vues

Publié le

ok

Publié dans : Formation
0 commentaire
1 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

Aucun téléchargement
Vues
Nombre de vues
490
Sur SlideShare
0
Issues des intégrations
0
Intégrations
4
Actions
Partages
0
Téléchargements
40
Commentaires
0
J’aime
1
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Chapitre 1

  1. 1. Les solutions Caract´eristiques quantitatives des solutions Biophysique des solutions N.cheriet Universit´e de Batna, Facult´e de M´edecine, D´epartement de M´edecine 29 Septembre 2014 N.cheriet Biophysique des solutions
  2. 2. Les solutions Caract´eristiques quantitatives des solutions Chapitre 1 N.cheriet Biophysique des solutions
  3. 3. Les solutions Caract´eristiques quantitatives des solutions G´en´eralit´es sur les solutions N.cheriet Biophysique des solutions
  4. 4. Les solutions Caract´eristiques quantitatives des solutions Plan 1 Les solutions D´efinition Classification des solutions Exemples 2 Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente N.cheriet Biophysique des solutions
  5. 5. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions N.cheriet Biophysique des solutions
  6. 6. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions D´efinition Une solution d´efinit tout m´elange homog`ene en une seule phase de deux ou plusieurs constituants. N.cheriet Biophysique des solutions
  7. 7. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions D´efinition Une solution d´efinit tout m´elange homog`ene en une seule phase de deux ou plusieurs constituants. Le constituant majoritaire est appel´e solvant. N.cheriet Biophysique des solutions
  8. 8. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions D´efinition Une solution d´efinit tout m´elange homog`ene en une seule phase de deux ou plusieurs constituants. Le constituant majoritaire est appel´e solvant. Les autres constituants de la solution sont appel´es solut´es N.cheriet Biophysique des solutions
  9. 9. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions D´efinition Une solution d´efinit tout m´elange homog`ene en une seule phase de deux ou plusieurs constituants. Le constituant majoritaire est appel´e solvant. Les autres constituants de la solution sont appel´es solut´es Remarques N.cheriet Biophysique des solutions
  10. 10. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions D´efinition Une solution d´efinit tout m´elange homog`ene en une seule phase de deux ou plusieurs constituants. Le constituant majoritaire est appel´e solvant. Les autres constituants de la solution sont appel´es solut´es Remarques 1 Le solut´e peut ˆetre solide, liquide ou gazeux, mol´eculaires ou ioniques. N.cheriet Biophysique des solutions
  11. 11. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions D´efinition Une solution d´efinit tout m´elange homog`ene en une seule phase de deux ou plusieurs constituants. Le constituant majoritaire est appel´e solvant. Les autres constituants de la solution sont appel´es solut´es Remarques 1 Le solut´e peut ˆetre solide, liquide ou gazeux, mol´eculaires ou ioniques. 2 Il existe une limite `a la quantit´e de solut´e que le solvant peut dissoudre. Lorsque cette limite est atteinte on dit que la solution est satur´ee. N.cheriet Biophysique des solutions
  12. 12. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Les solutions D´efinition Une solution d´efinit tout m´elange homog`ene en une seule phase de deux ou plusieurs constituants. Le constituant majoritaire est appel´e solvant. Les autres constituants de la solution sont appel´es solut´es Remarques 1 Le solut´e peut ˆetre solide, liquide ou gazeux, mol´eculaires ou ioniques. 2 Il existe une limite `a la quantit´e de solut´e que le solvant peut dissoudre. Lorsque cette limite est atteinte on dit que la solution est satur´ee. 3 Si le solvant est l’eau la solution, est appel´ee solution aqueuse. N.cheriet Biophysique des solutions
  13. 13. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions N.cheriet Biophysique des solutions
  14. 14. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions N.cheriet Biophysique des solutions
  15. 15. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions N.cheriet Biophysique des solutions
  16. 16. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions 1 Selon que les particules du corps dissous sont ´electriquement neutres ou charg´ees. N.cheriet Biophysique des solutions
  17. 17. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions 1 Selon que les particules du corps dissous sont ´electriquement neutres ou charg´ees. Les solutions neutres (mol´ecules). N.cheriet Biophysique des solutions
  18. 18. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions 1 Selon que les particules du corps dissous sont ´electriquement neutres ou charg´ees. Les solutions neutres (mol´ecules). Les solutions ´electrolytiques(ions). N.cheriet Biophysique des solutions
  19. 19. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions 1 Selon que les particules du corps dissous sont ´electriquement neutres ou charg´ees. Les solutions neutres (mol´ecules). Les solutions ´electrolytiques(ions). N.cheriet Biophysique des solutions
  20. 20. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions 1 Selon que les particules du corps dissous sont ´electriquement neutres ou charg´ees. Les solutions neutres (mol´ecules). Les solutions ´electrolytiques(ions). 2 Selon la taille des particules N.cheriet Biophysique des solutions
  21. 21. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions 1 Selon que les particules du corps dissous sont ´electriquement neutres ou charg´ees. Les solutions neutres (mol´ecules). Les solutions ´electrolytiques(ions). 2 Selon la taille des particules Les cristallo¨ıdes ou Les solutions micromol´eculaires N.cheriet Biophysique des solutions
  22. 22. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Classification des solutions 1 Selon que les particules du corps dissous sont ´electriquement neutres ou charg´ees. Les solutions neutres (mol´ecules). Les solutions ´electrolytiques(ions). 2 Selon la taille des particules Les cristallo¨ıdes ou Les solutions micromol´eculaires les solution macromol´eculaires ou collo¨ıdes (entre 103 et 109 atomes). N.cheriet Biophysique des solutions
  23. 23. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Exemples N.cheriet Biophysique des solutions
  24. 24. Les solutions Caract´eristiques quantitatives des solutions D´efinition Classification des solutions Exemples Exemples Solution Composition en solut´e pour 100 ml d’eau S´erum physiologique 0, 9% 0,9 g de Nacl S´erum sal´e hypertonique `a 7, 5% 7,5 g de Nacl S´erum glucos´e hypotonique `a 2, 5% 2,5 g de glucose S´erum glucos´e isotonique `a 5% 5 g de glucose S´erum glucos´e hypertonique `a 10% 10 g de glucose Bicarbonate de sodium (NaHCO3) `a 1, 4% 1,4 g de (NaHCO3) N.cheriet Biophysique des solutions
  25. 25. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Fraction molaire N.cheriet Biophysique des solutions
  26. 26. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Fraction molaire D´efinition La fraction molaire Fi d’un constituant i est ´egale au rapport du nombre de mole Ni de ce constituant, sur le nombre total Ntot de moles de la solution. N.cheriet Biophysique des solutions
  27. 27. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Fraction molaire D´efinition La fraction molaire Fi d’un constituant i est ´egale au rapport du nombre de mole Ni de ce constituant, sur le nombre total Ntot de moles de la solution. Fi = Ni Ntot N.cheriet Biophysique des solutions
  28. 28. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Fraction molaire D´efinition La fraction molaire Fi d’un constituant i est ´egale au rapport du nombre de mole Ni de ce constituant, sur le nombre total Ntot de moles de la solution. Fi = Ni Ntot Remarque la somme des fractions molaires de tous les constituants d’une solution est ´egale `a l’unit´e. N.cheriet Biophysique des solutions
  29. 29. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5%
  30. 30. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant).
  31. 31. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant). 1 Le solvant repr´esente une quantit´e de mati`ere de :
  32. 32. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant). 1 Le solvant repr´esente une quantit´e de mati`ere de : neau = 100 18 = 5, 555mol
  33. 33. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant). 1 Le solvant repr´esente une quantit´e de mati`ere de : neau = 100 18 = 5, 555mol 2 La quantit´e de mati`ere dissoute en solut´e est :
  34. 34. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant). 1 Le solvant repr´esente une quantit´e de mati`ere de : neau = 100 18 = 5, 555mol 2 La quantit´e de mati`ere dissoute en solut´e est : nglucose = 5 180 = 0, 027mol
  35. 35. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant). 1 Le solvant repr´esente une quantit´e de mati`ere de : neau = 100 18 = 5, 555mol 2 La quantit´e de mati`ere dissoute en solut´e est : nglucose = 5 180 = 0, 027mol Les fractions molaires sont donc :
  36. 36. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant). 1 Le solvant repr´esente une quantit´e de mati`ere de : neau = 100 18 = 5, 555mol 2 La quantit´e de mati`ere dissoute en solut´e est : nglucose = 5 180 = 0, 027mol Les fractions molaires sont donc : Fglucose = nglucose neau + nglucose = 0, 0048 = 0, 48%
  37. 37. Exemple D´eterminer la fraction molaire du solut´e puis celle du solvant dans le s´erum glucos´e `a 5% la composition de la solution est : 5 gramme de glucose (solut´e) et 100 ml d’eau (solvant). 1 Le solvant repr´esente une quantit´e de mati`ere de : neau = 100 18 = 5, 555mol 2 La quantit´e de mati`ere dissoute en solut´e est : nglucose = 5 180 = 0, 027mol Les fractions molaires sont donc : Fglucose = nglucose neau + nglucose = 0, 0048 = 0, 48% Feau = neau neau + nglucose = 0, 9952 = 99, 52%
  38. 38. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire N.cheriet Biophysique des solutions
  39. 39. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire D´efinition La Concentration molaire CM (ou molarit´e) pour un solut´e donn´e : est le nombre de moles du solut´e par litre de solution. CM = N1 V N.cheriet Biophysique des solutions
  40. 40. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire D´efinition La Concentration molaire CM (ou molarit´e) pour un solut´e donn´e : est le nombre de moles du solut´e par litre de solution. CM = N1 V N1 d´esigne le nombre de moles du solut´e exprim´e en Mol. N.cheriet Biophysique des solutions
  41. 41. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire D´efinition La Concentration molaire CM (ou molarit´e) pour un solut´e donn´e : est le nombre de moles du solut´e par litre de solution. CM = N1 V N1 d´esigne le nombre de moles du solut´e exprim´e en Mol. et, V d´esigne le volume de la solution en litre. N.cheriet Biophysique des solutions
  42. 42. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire D´efinition La Concentration molaire CM (ou molarit´e) pour un solut´e donn´e : est le nombre de moles du solut´e par litre de solution. CM = N1 V N1 d´esigne le nombre de moles du solut´e exprim´e en Mol. et, V d´esigne le volume de la solution en litre. Unit´e : Mol/l, mMol/l, N.cheriet Biophysique des solutions
  43. 43. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire D´efinition La Concentration molaire CM (ou molarit´e) pour un solut´e donn´e : est le nombre de moles du solut´e par litre de solution. CM = N1 V N1 d´esigne le nombre de moles du solut´e exprim´e en Mol. et, V d´esigne le volume de la solution en litre. Unit´e : Mol/l, mMol/l, Remarques N.cheriet Biophysique des solutions
  44. 44. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire D´efinition La Concentration molaire CM (ou molarit´e) pour un solut´e donn´e : est le nombre de moles du solut´e par litre de solution. CM = N1 V N1 d´esigne le nombre de moles du solut´e exprim´e en Mol. et, V d´esigne le volume de la solution en litre. Unit´e : Mol/l, mMol/l, Remarques Une solution est dite molaire lorsque CM = 1Mol/l N.cheriet Biophysique des solutions
  45. 45. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire D´efinition La Concentration molaire CM (ou molarit´e) pour un solut´e donn´e : est le nombre de moles du solut´e par litre de solution. CM = N1 V N1 d´esigne le nombre de moles du solut´e exprim´e en Mol. et, V d´esigne le volume de la solution en litre. Unit´e : Mol/l, mMol/l, Remarques Une solution est dite molaire lorsque CM = 1Mol/l Elle est dite d´ecimolaire lorsque CM = 10−1 Mol/l N.cheriet Biophysique des solutions
  46. 46. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire N.cheriet Biophysique des solutions
  47. 47. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire Exemple Deux litres d’une solution aqueuse contenant une masse m = 17, 55 g de NaCl de masse molaire M = 58.5 g/Mol. Calculer la molarit´e de la solution. N.cheriet Biophysique des solutions
  48. 48. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire Exemple Deux litres d’une solution aqueuse contenant une masse m = 17, 55 g de NaCl de masse molaire M = 58.5 g/Mol. Calculer la molarit´e de la solution. le nombre total de moles de NaCl est n = m M = 17,55 58,5 = 0, 30 Mol N.cheriet Biophysique des solutions
  49. 49. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire Exemple Deux litres d’une solution aqueuse contenant une masse m = 17, 55 g de NaCl de masse molaire M = 58.5 g/Mol. Calculer la molarit´e de la solution. le nombre total de moles de NaCl est n = m M = 17,55 58,5 = 0, 30 Mol le volume de la solution est V = 2L = 2.10−1 m3 N.cheriet Biophysique des solutions
  50. 50. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molaire Exemple Deux litres d’une solution aqueuse contenant une masse m = 17, 55 g de NaCl de masse molaire M = 58.5 g/Mol. Calculer la molarit´e de la solution. le nombre total de moles de NaCl est n = m M = 17,55 58,5 = 0, 30 Mol le volume de la solution est V = 2L = 2.10−1 m3 la molarit´e de la solution est CM = n v = 0,30 2 = 0, 15 Mol/l = 0, 15.103 Mol/m3 N.cheriet Biophysique des solutions
  51. 51. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration massique N.cheriet Biophysique des solutions
  52. 52. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration massique D´efinition La Concentration massique Cp ou concentration pond´erale : est la masse du solut´e dans 1 litre de solution. N.cheriet Biophysique des solutions
  53. 53. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration massique D´efinition La Concentration massique Cp ou concentration pond´erale : est la masse du solut´e dans 1 litre de solution. Cp = m1 V N.cheriet Biophysique des solutions
  54. 54. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration massique D´efinition La Concentration massique Cp ou concentration pond´erale : est la masse du solut´e dans 1 litre de solution. Cp = m1 V m1 d´esigne la masse du solut´e en gramme. N.cheriet Biophysique des solutions
  55. 55. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration massique D´efinition La Concentration massique Cp ou concentration pond´erale : est la masse du solut´e dans 1 litre de solution. Cp = m1 V m1 d´esigne la masse du solut´e en gramme. et, V d´esigne le volume de la solution en litre. Unit´e : g/l N.cheriet Biophysique des solutions
  56. 56. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Relation entre Cp etCm N.cheriet Biophysique des solutions
  57. 57. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Relation entre Cp etCm Cp = m1 v (1) Cm = n1 v (2) N.cheriet Biophysique des solutions
  58. 58. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Relation entre Cp etCm Cp = m1 v (1) Cm = n1 v (2) Divisons membre `a membre les deux ´equations on obtient : N.cheriet Biophysique des solutions
  59. 59. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Relation entre Cp etCm Cp = m1 v (1) Cm = n1 v (2) Divisons membre `a membre les deux ´equations on obtient : Cp Cm = m1 n1 N.cheriet Biophysique des solutions
  60. 60. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Relation entre Cp etCm Cp = m1 v (1) Cm = n1 v (2) Divisons membre `a membre les deux ´equations on obtient : Cp Cm = m1 n1 = M N.cheriet Biophysique des solutions
  61. 61. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Relation entre Cp etCm Cp = m1 v (1) Cm = n1 v (2) Divisons membre `a membre les deux ´equations on obtient : Cp Cm = m1 n1 = M M est la masse molaire du solut´e. Cp = M.Cm N.cheriet Biophysique des solutions
  62. 62. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molale N.cheriet Biophysique des solutions
  63. 63. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molale D´efinition La Concentration molale CL ou molalit´e : est le nombre de moles du solut´e par unit´e de masse du solvant. N.cheriet Biophysique des solutions
  64. 64. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molale D´efinition La Concentration molale CL ou molalit´e : est le nombre de moles du solut´e par unit´e de masse du solvant. CL = n1 m0 N.cheriet Biophysique des solutions
  65. 65. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molale D´efinition La Concentration molale CL ou molalit´e : est le nombre de moles du solut´e par unit´e de masse du solvant. CL = n1 m0 n1 d´esigne le nombre de moles du solut´e exprim´e en Mol. N.cheriet Biophysique des solutions
  66. 66. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molale D´efinition La Concentration molale CL ou molalit´e : est le nombre de moles du solut´e par unit´e de masse du solvant. CL = n1 m0 n1 d´esigne le nombre de moles du solut´e exprim´e en Mol. et, m0 d´esigne la masse du solvant en kilo-gramme. N.cheriet Biophysique des solutions
  67. 67. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration molale D´efinition La Concentration molale CL ou molalit´e : est le nombre de moles du solut´e par unit´e de masse du solvant. CL = n1 m0 n1 d´esigne le nombre de moles du solut´e exprim´e en Mol. et, m0 d´esigne la masse du solvant en kilo-gramme. Unit´e : Mol/kg N.cheriet Biophysique des solutions
  68. 68. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire N.cheriet Biophysique des solutions
  69. 69. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM N.cheriet Biophysique des solutions
  70. 70. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. N.cheriet Biophysique des solutions
  71. 71. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : N.cheriet Biophysique des solutions
  72. 72. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− N.cheriet Biophysique des solutions
  73. 73. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− ........... ν = 2 N.cheriet Biophysique des solutions
  74. 74. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− ........... ν = 2 Cacl2 − −− > Ca++ + 2cl− N.cheriet Biophysique des solutions
  75. 75. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− ........... ν = 2 Cacl2 − −− > Ca++ + 2cl− ....... ν = 3 N.cheriet Biophysique des solutions
  76. 76. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− ........... ν = 2 Cacl2 − −− > Ca++ + 2cl− ....... ν = 3 Et α le degr´e de dissociation du solut´e dans le solvant consid´er´e. N.cheriet Biophysique des solutions
  77. 77. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− ........... ν = 2 Cacl2 − −− > Ca++ + 2cl− ....... ν = 3 Et α le degr´e de dissociation du solut´e dans le solvant consid´er´e. α = Nd N0 N.cheriet Biophysique des solutions
  78. 78. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− ........... ν = 2 Cacl2 − −− > Ca++ + 2cl− ....... ν = 3 Et α le degr´e de dissociation du solut´e dans le solvant consid´er´e. α = Nd N0 Nd le nombre de mol´ecule dissoci´ees. N.cheriet Biophysique des solutions
  79. 79. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Consid´erons une solution ´electrolytique contenant un seul solut´e `a la concentration molaire CM Soit ν le nombre d’ions fournis par la dissociation d’une seule mol´ecule de solut´e. Exemples : Nacl − −− > Na+ + cl− ........... ν = 2 Cacl2 − −− > Ca++ + 2cl− ....... ν = 3 Et α le degr´e de dissociation du solut´e dans le solvant consid´er´e. α = Nd N0 Nd le nombre de mol´ecule dissoci´ees. N0 le nombre total de mol´ecules initiales. N.cheriet Biophysique des solutions
  80. 80. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire N.cheriet Biophysique des solutions
  81. 81. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques N.cheriet Biophysique des solutions
  82. 82. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. N.cheriet Biophysique des solutions
  83. 83. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. N.cheriet Biophysique des solutions
  84. 84. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. Calculons le nombre de moles particulaires (mol´ecules et ions) par litre de solution not´e ω N.cheriet Biophysique des solutions
  85. 85. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. Calculons le nombre de moles particulaires (mol´ecules et ions) par litre de solution not´e ω 1 Le nombre de moles du solut´e dissoci´ees : N.cheriet Biophysique des solutions
  86. 86. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. Calculons le nombre de moles particulaires (mol´ecules et ions) par litre de solution not´e ω 1 Le nombre de moles du solut´e dissoci´ees : αCM N.cheriet Biophysique des solutions
  87. 87. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. Calculons le nombre de moles particulaires (mol´ecules et ions) par litre de solution not´e ω 1 Le nombre de moles du solut´e dissoci´ees : αCM 2 Le nombre de moles d’ions dans la solution : N.cheriet Biophysique des solutions
  88. 88. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. Calculons le nombre de moles particulaires (mol´ecules et ions) par litre de solution not´e ω 1 Le nombre de moles du solut´e dissoci´ees : αCM 2 Le nombre de moles d’ions dans la solution : ναCM N.cheriet Biophysique des solutions
  89. 89. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. Calculons le nombre de moles particulaires (mol´ecules et ions) par litre de solution not´e ω 1 Le nombre de moles du solut´e dissoci´ees : αCM 2 Le nombre de moles d’ions dans la solution : ναCM 3 Le nombre de moles du solut´e non dissoci´ees : N.cheriet Biophysique des solutions
  90. 90. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarques 1 Si α 1 La dissociation est partielle et la solution contient des ions et des mol´ecules non dissoci´ees. 2 Si α = 1 La dissociation est totale et la solution contient uniquement des ions. Calculons le nombre de moles particulaires (mol´ecules et ions) par litre de solution not´e ω 1 Le nombre de moles du solut´e dissoci´ees : αCM 2 Le nombre de moles d’ions dans la solution : ναCM 3 Le nombre de moles du solut´e non dissoci´ees : CM − αCM N.cheriet Biophysique des solutions
  91. 91. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire N.cheriet Biophysique des solutions
  92. 92. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire D´efinition On d´efinit la concentration molaire particulaire ou osmolarit´e ω comme ´etant Le nombre de moles particulaires ( mol´ecules et ions ) dissoutes par litre solution. N.cheriet Biophysique des solutions
  93. 93. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire D´efinition On d´efinit la concentration molaire particulaire ou osmolarit´e ω comme ´etant Le nombre de moles particulaires ( mol´ecules et ions ) dissoutes par litre solution. ω = cM {1 + α(ν − 1)} N.cheriet Biophysique des solutions
  94. 94. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire D´efinition On d´efinit la concentration molaire particulaire ou osmolarit´e ω comme ´etant Le nombre de moles particulaires ( mol´ecules et ions ) dissoutes par litre solution. ω = cM {1 + α(ν − 1)} Unit´e osmol/L, mosmol/L N.cheriet Biophysique des solutions
  95. 95. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire D´efinition On d´efinit la concentration molaire particulaire ou osmolarit´e ω comme ´etant Le nombre de moles particulaires ( mol´ecules et ions ) dissoutes par litre solution. ω = cM {1 + α(ν − 1)} Unit´e osmol/L, mosmol/L On pose i = 1 + α(ν − 1) N.cheriet Biophysique des solutions
  96. 96. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire D´efinition On d´efinit la concentration molaire particulaire ou osmolarit´e ω comme ´etant Le nombre de moles particulaires ( mol´ecules et ions ) dissoutes par litre solution. ω = cM {1 + α(ν − 1)} Unit´e osmol/L, mosmol/L On pose i = 1 + α(ν − 1) ω = icM N.cheriet Biophysique des solutions
  97. 97. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire D´efinition On d´efinit la concentration molaire particulaire ou osmolarit´e ω comme ´etant Le nombre de moles particulaires ( mol´ecules et ions ) dissoutes par litre solution. ω = cM {1 + α(ν − 1)} Unit´e osmol/L, mosmol/L On pose i = 1 + α(ν − 1) ω = icM i : est le coefficient d’ionisation de Van’t Hoof : il est d´efini comme le rapport entre le nombre de particules (mol´ecules et ions) et le nombre total initial de mol´ecules introduites dans le solvant. N.cheriet Biophysique des solutions
  98. 98. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire N.cheriet Biophysique des solutions
  99. 99. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarque 1 Pour une solution contenant un solut´e non ´electrolytique (neutre) de molarit´e cM . L’osmolarit´e de la solution est : N.cheriet Biophysique des solutions
  100. 100. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarque 1 Pour une solution contenant un solut´e non ´electrolytique (neutre) de molarit´e cM . L’osmolarit´e de la solution est : ωsol = cM . N.cheriet Biophysique des solutions
  101. 101. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarque 1 Pour une solution contenant un solut´e non ´electrolytique (neutre) de molarit´e cM . L’osmolarit´e de la solution est : ωsol = cM . Remarque 2 Pour une solution contenant plusieurs solut´es, l’osmolarit´e de la solution ωsol est la somme des concentrations osmolaires de tous les solut´es. N.cheriet Biophysique des solutions
  102. 102. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Remarque 1 Pour une solution contenant un solut´e non ´electrolytique (neutre) de molarit´e cM . L’osmolarit´e de la solution est : ωsol = cM . Remarque 2 Pour une solution contenant plusieurs solut´es, l’osmolarit´e de la solution ωsol est la somme des concentrations osmolaires de tous les solut´es. ωsol = j ωi ωj : l’osmolarit´e du solut´e j N.cheriet Biophysique des solutions
  103. 103. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult N.cheriet Biophysique des solutions
  104. 104. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult Si on introduit un solut´e dans un solvant pour former une solution, on observe que la temp´erature de cong´elation de la solution est abaiss´ee par rapport au solvant pur. N.cheriet Biophysique des solutions
  105. 105. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult Si on introduit un solut´e dans un solvant pour former une solution, on observe que la temp´erature de cong´elation de la solution est abaiss´ee par rapport au solvant pur. ∆θ : d´esigne l’abaissement du point de cong´elation. N.cheriet Biophysique des solutions
  106. 106. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult Si on introduit un solut´e dans un solvant pour former une solution, on observe que la temp´erature de cong´elation de la solution est abaiss´ee par rapport au solvant pur. ∆θ : d´esigne l’abaissement du point de cong´elation. ∆θ = θsolution − θsolvant N.cheriet Biophysique des solutions
  107. 107. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult Si on introduit un solut´e dans un solvant pour former une solution, on observe que la temp´erature de cong´elation de la solution est abaiss´ee par rapport au solvant pur. ∆θ : d´esigne l’abaissement du point de cong´elation. ∆θ = θsolution − θsolvant N.cheriet Biophysique des solutions
  108. 108. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult Si on introduit un solut´e dans un solvant pour former une solution, on observe que la temp´erature de cong´elation de la solution est abaiss´ee par rapport au solvant pur. ∆θ : d´esigne l’abaissement du point de cong´elation. ∆θ = θsolution − θsolvant θsolution : la temp´erature de cong´elation de la solution. N.cheriet Biophysique des solutions
  109. 109. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult Si on introduit un solut´e dans un solvant pour former une solution, on observe que la temp´erature de cong´elation de la solution est abaiss´ee par rapport au solvant pur. ∆θ : d´esigne l’abaissement du point de cong´elation. ∆θ = θsolution − θsolvant θsolution : la temp´erature de cong´elation de la solution. θsolvant : la temp´erature de cong´elation du solvant pur. N.cheriet Biophysique des solutions
  110. 110. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration osmolaire Loi de Raoult Si on introduit un solut´e dans un solvant pour former une solution, on observe que la temp´erature de cong´elation de la solution est abaiss´ee par rapport au solvant pur. ∆θ : d´esigne l’abaissement du point de cong´elation. ∆θ = θsolution − θsolvant θsolution : la temp´erature de cong´elation de la solution. θsolvant : la temp´erature de cong´elation du solvant pur. Loi de Raoult ∆θ = −kc .ω kc : constante cryoscopique du solvant. ω : osmolarit´e de la solution. N.cheriet Biophysique des solutions
  111. 111. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente N.cheriet Biophysique des solutions
  112. 112. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Le Faraday (F) : C’est la charge globale d’une mole de charges ´el´ementaires. N.cheriet Biophysique des solutions
  113. 113. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Le Faraday (F) : C’est la charge globale d’une mole de charges ´el´ementaires. 1F = NA.e = 6, 02.1023 .1, 6.10−19 = 96500 coulombs N.cheriet Biophysique des solutions
  114. 114. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Le Faraday (F) : C’est la charge globale d’une mole de charges ´el´ementaires. 1F = NA.e = 6, 02.1023 .1, 6.10−19 = 96500 coulombs L’´equivalent(Eq) : Repr´esente la quantit´e de mati`ere transportant une charge d’un Faraday. N.cheriet Biophysique des solutions
  115. 115. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Le Faraday (F) : C’est la charge globale d’une mole de charges ´el´ementaires. 1F = NA.e = 6, 02.1023 .1, 6.10−19 = 96500 coulombs L’´equivalent(Eq) : Repr´esente la quantit´e de mati`ere transportant une charge d’un Faraday. D´efinition La concentration ´equivalente Ceq : C’est le nombre d’´equivalents par litre de solution. Ceq = Neq V Si Neq d´esigne le nombre d’´equivalents dans la solution. et, V d´esigne le volume de la solution. N.cheriet Biophysique des solutions
  116. 116. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente N.cheriet Biophysique des solutions
  117. 117. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM N.cheriet Biophysique des solutions
  118. 118. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple N.cheriet Biophysique des solutions
  119. 119. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple Ions monovalents N.cheriet Biophysique des solutions
  120. 120. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple Ions monovalents...............Ceq = CM . N.cheriet Biophysique des solutions
  121. 121. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple Ions monovalents...............Ceq = CM . Ions bivalents N.cheriet Biophysique des solutions
  122. 122. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple Ions monovalents...............Ceq = CM . Ions bivalents.................Ceq = 2.CM . N.cheriet Biophysique des solutions
  123. 123. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple Ions monovalents...............Ceq = CM . Ions bivalents.................Ceq = 2.CM . Mol´ecule non ionis´ee N.cheriet Biophysique des solutions
  124. 124. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple Ions monovalents...............Ceq = CM . Ions bivalents.................Ceq = 2.CM . Mol´ecule non ionis´ee...........Ceq = 0. N.cheriet Biophysique des solutions
  125. 125. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente L’unit´e : Eq/l, mEq/l Relation entre concentration ´equivalente et molarit´e : La concentration ´equivalente Ceq d’une esp`ece ionique de valence Z et de molarit´e CM est donn´ee par Ceq = |Z|.CM Exemple Ions monovalents...............Ceq = CM . Ions bivalents.................Ceq = 2.CM . Mol´ecule non ionis´ee...........Ceq = 0. Remarque Pour une solution contenant plusieurs esp`eces ioniques, la concentration ´equivalente totale est la somme des concentrations ´equivalentes de tous les esp`eces ioniques. N.cheriet Biophysique des solutions
  126. 126. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol N.cheriet Biophysique des solutions
  127. 127. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol la molarit´e de la solution est CM = m MNa2SO4 = 14,2 142 = 100mmol/l N.cheriet Biophysique des solutions
  128. 128. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol la molarit´e de la solution est CM = m MNa2SO4 = 14,2 142 = 100mmol/l la dissolution de Na2SO4 en solution : Na2SO4 − − > 2Na+ + SO2− 4 N.cheriet Biophysique des solutions
  129. 129. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol la molarit´e de la solution est CM = m MNa2SO4 = 14,2 142 = 100mmol/l la dissolution de Na2SO4 en solution : Na2SO4 − − > 2Na+ + SO2− 4 Ion CM Valence Ceq N.cheriet Biophysique des solutions
  130. 130. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol la molarit´e de la solution est CM = m MNa2SO4 = 14,2 142 = 100mmol/l la dissolution de Na2SO4 en solution : Na2SO4 − − > 2Na+ + SO2− 4 Ion CM Valence Ceq Na+ 200 mmol/l Z+ = +1 200 mEq/l N.cheriet Biophysique des solutions
  131. 131. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol la molarit´e de la solution est CM = m MNa2SO4 = 14,2 142 = 100mmol/l la dissolution de Na2SO4 en solution : Na2SO4 − − > 2Na+ + SO2− 4 Ion CM Valence Ceq Na+ 200 mmol/l Z+ = +1 200 mEq/l SO2− 4 100 mmol/l Z− = −2 200 mEq/l N.cheriet Biophysique des solutions
  132. 132. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol la molarit´e de la solution est CM = m MNa2SO4 = 14,2 142 = 100mmol/l la dissolution de Na2SO4 en solution : Na2SO4 − − > 2Na+ + SO2− 4 Ion CM Valence Ceq Na+ 200 mmol/l Z+ = +1 200 mEq/l SO2− 4 100 mmol/l Z− = −2 200 mEq/l La concentration ´equivalente de la solution est donc N.cheriet Biophysique des solutions
  133. 133. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 1 Consid´erons une solution de Na2SO4 obtenue apr`es dissolution d’une masse m = 14, 2g de cristaux Na2SO4 dans 1 litre d’eau. Calculer la concentration ´equivalente de la solution a . a. La masse molaire de Na2SO4 est de 142 g/mol la molarit´e de la solution est CM = m MNa2SO4 = 14,2 142 = 100mmol/l la dissolution de Na2SO4 en solution : Na2SO4 − − > 2Na+ + SO2− 4 Ion CM Valence Ceq Na+ 200 mmol/l Z+ = +1 200 mEq/l SO2− 4 100 mmol/l Z− = −2 200 mEq/l La concentration ´equivalente de la solution est donc : 400 mEq/l. N.cheriet Biophysique des solutions
  134. 134. Les solutions Caract´eristiques quantitatives des solutions Fraction molaire Concentration molaire Concentration massique Concentration molale Concentration osmolaire Concentration ´equivalente Concentration ´equivalente Exemple 2 On a dos´e dans le sang d’un patient l’ensemble des cations, le glucose, l’ur´ee et mesur´e l’abaissement cryoscopique de son s´erum. Les r´esultats obtenus sont : Na+ K+ Ca++ Mg++ Glucose Ur´ee 145 mmol/l 5 mmol/l 2,5 mmol/l 1,5mmol/l 1 g/l 1,8 g/l On donne ∆θ =-0,60 ˚C, Constante cryoscopique de l’eau : Kc = 1,86 ˚C.l.osmol−1 , les masses molaires de l’ur´ee et du glucose sont respectivement 60 et 180 g/mol. 1 Calculer la concentration ´equivalente totale du s´erum de ce patient ? 2 Calculer l’osmolarit´e du s´erum de ce patient ? N.cheriet Biophysique des solutions
  135. 135. C+ eq = 145mEq/l + 5mEq/l + 2, 5 ∗ 2mEq/l + 1, 5 ∗ 2mEq/l = 158mEq/l La solution est ´electriquement neutre : C+ eq = C− eq d’o`u la concentration ´equivalente totale : Ceq = 316mEq/l

×