Successfully reported this slideshow.
BOTTARI: Location based Social Media Analysis with Semantic Web Emanuele Della Valle Joint work with: CEFRIEL : Irene Celi...
Watch this first :-) 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany http://www.youtube.com/watch?v=c1FmZUz5BOo
<ul><li>An augmented reality application for personalized  recommendation of restaurants  in Seoul </li></ul>What have you...
<ul><li>Yes and no! </li></ul><ul><li>Same use case, more “democratic” </li></ul><ul><li>We do “reality mining” by listeni...
Architecture 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany out Query Rewriter Query Evaluator RDF2Matrix Plug-i...
Sentiment Mining <ul><li>Precision tests: </li></ul><ul><ul><li>Auto-generated rules ≈ 70% </li></ul></ul><ul><ul><li>Manu...
SOR - Geo-Spatial KB 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
C-SPARQL and  Streaming Linked Data Server 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
<ul><li>A machine learning framework for  inductive materialization </li></ul><ul><ul><li>Detects interesting data pattern...
<ul><li>SELECT DISTINCT ?poi ?name ?lat ?long ?numPos ?prob  </li></ul><ul><li>WHERE {  </li></ul><ul><li>?poi a ns:NamedP...
LarKC At Work 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany PULL: Query Initiated PUSH: Data Initiated SPARQL a...
Evaluation - Efficacy 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany 5  10  15  20  25  30  0,7 random knnItem e...
Evaluation - Efficiency 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany Hardware: 2.66 GHz Intel Core 2 Duo with ...
Evaluation – Scalability  26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany Number of concurrent users Query Latenc...
<ul><li>End-user application </li></ul><ul><li>Attractive and functional interface </li></ul><ul><li>Real-world dynamic da...
Emanuele Della Valle Joint work with: CEFRIEL : Irene Celino, Daniele Dell ’ Aglio, Marco Balduini  SALTLUX : Tony Lee, Se...
Prochain SlideShare
Chargement dans…5
×

BOTTARI: Location based Social Media Analysis with Semantic Web

2 223 vues

Publié le

Bottari is a LarKC application http://www.larkc.eu/. It offers a real-time personalized recommendation service for restaurants in Insa-dong(Seoul) listening to the reputation of the restaurants on social media. Social media anlytics is powered by LarKC inductive and deductive stream reasoning solution. Learn more at http://larkc.cefriel.it/lbsma/bottari/ .

Publié dans : Formation, Business
  • Soyez le premier à commenter

BOTTARI: Location based Social Media Analysis with Semantic Web

  1. 1. BOTTARI: Location based Social Media Analysis with Semantic Web Emanuele Della Valle Joint work with: CEFRIEL : Irene Celino, Daniele Dell ’ Aglio, Marco Balduini SALTLUX : Tony Lee, Seonho Kim S IEMENS : Volker Tresp, Yi Huang
  2. 2. Watch this first :-) 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany http://www.youtube.com/watch?v=c1FmZUz5BOo
  3. 3. <ul><li>An augmented reality application for personalized recommendation of restaurants in Seoul </li></ul>What have you seen? 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
  4. 4. <ul><li>Yes and no! </li></ul><ul><li>Same use case, more “democratic” </li></ul><ul><li>We do “reality mining” by listening to the social media </li></ul>Yet another ? 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
  5. 5. Architecture 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany out Query Rewriter Query Evaluator RDF2Matrix Plug-in Streaming Linked Data Server SOR Invoker SOR geo-spatial KB Social Media Crawler and Sentiment Miner HTTP PULL: Query Initiated PUSH: Data Initiated SPARQL androjena
  6. 6. Sentiment Mining <ul><li>Precision tests: </li></ul><ul><ul><li>Auto-generated rules ≈ 70% </li></ul></ul><ul><ul><li>Manually-coded rules ≈ 90% </li></ul></ul><ul><ul><li>Syllable kernel ≈ 50~60% </li></ul></ul><ul><li>Our target > 85% </li></ul>26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany Micropost message Morphologically Analyzable? Rule based Analysis Auto generated rules Learned documents SVMs Syllable Kernel Sentiment of the tweet Yes No
  7. 7. SOR - Geo-Spatial KB 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
  8. 8. C-SPARQL and Streaming Linked Data Server 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
  9. 9. <ul><li>A machine learning framework for inductive materialization </li></ul><ul><ul><li>Detects interesting data patterns </li></ul></ul><ul><ul><li>Predics RDF-triples </li></ul></ul><ul><ul><ul><li>i.e., which restaurant a user will tweet positively about </li></ul></ul></ul><ul><li>Caractheristics </li></ul><ul><ul><li>Capability to deal with sparse, high-dimensional and incomplete data </li></ul></ul><ul><ul><li>Multivariate latent space based approach </li></ul></ul><ul><ul><li>Modularized approach for easily integrating contextual information </li></ul></ul>SUNS (Statistical Unit Node Sets) 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
  10. 10. <ul><li>SELECT DISTINCT ?poi ?name ?lat ?long ?numPos ?prob </li></ul><ul><li>WHERE { </li></ul><ul><li>?poi a ns:NamedPlace ; </li></ul><ul><li>ns:name ?name ; </li></ul><ul><li>geo:lat ?lat ; </li></ul><ul><li>geo:long ?long . </li></ul><ul><li>FILTER (f:within_distance( 37.5 , 126.9 , ?lat, ?long, 200 )) </li></ul><ul><li>FILTER (f:dest_point_viewing( 37.5 , 126.9 , ?lat, ?long, 90 , 200 )) </li></ul><ul><li>{ :someUser sioc:creator_of ?tweet . </li></ul><ul><li>?tweet twd:talksAboutPositively ?poi . </li></ul><ul><li>WITH PROBABILITY ?prob </li></ul><ul><li>ENSURE PROBABILITY [0.5..1) } </li></ul><ul><li>?poi twd:numberOfPositiveTweets ?numPos . </li></ul><ul><li>} </li></ul><ul><li>ORDER BY DESC(?numPos), ?prob, f:distance( 37.5 , 126.9 , ?lat, ?long) </li></ul><ul><li>LIMIT 10 </li></ul>Query Processing 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany GEO-SPATIAL PROBABILISTIC STREAMING
  11. 11. LarKC At Work 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany PULL: Query Initiated PUSH: Data Initiated SPARQL androjena Probabilistic part of the query to get personalized recommendations (the “ for me ” button in BOTTARI) Geo-Spatial part of the query to get POIs closer to user location Streaming part of the query to get trends in users' sentiment (the “ emerging ” button in BOTTARI) Input user query is split Results of the different computations are joined out Query Rewriter Query Evaluator RDF2Matrix Plug-in Streaming Linked Data Server SOR Invoker SOR geo-spatial KB Social Media Crawler and Sentiment Miner HTTP
  12. 12. Evaluation - Efficacy 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany 5 10 15 20 25 30 0,7 random knnItem emerging (C-SPARQL) for me (SUNS) SUNS + C-SPARQL 0,6 0,5 0,4 0,3 0,2 0,1
  13. 13. Evaluation - Efficiency 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany Hardware: 2.66 GHz Intel Core 2 Duo with 8 GB RAM
  14. 14. Evaluation – Scalability 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany Number of concurrent users Query Latency (sec)
  15. 15. <ul><li>End-user application </li></ul><ul><li>Attractive and functional interface </li></ul><ul><li>Real-world dynamic data </li></ul><ul><li>Fully based on Semantic Web technologogies </li></ul><ul><ul><li>RDF as common data format between heterogenous components </li></ul></ul><ul><ul><li>SPARQL as query language </li></ul></ul><ul><li>Rigorously evaluated </li></ul><ul><ul><li>Effective </li></ul></ul><ul><ul><li>High throughput for handling dynamic data </li></ul></ul><ul><ul><li>Scalable in number of concurrent users </li></ul></ul><ul><li>Commercial Potential </li></ul>Conclusions 26.10.2011 - SW Challenge 2011, ISWC 2011, Bonn, Germany
  16. 16. Emanuele Della Valle Joint work with: CEFRIEL : Irene Celino, Daniele Dell ’ Aglio, Marco Balduini SALTLUX : Tony Lee, Seonho Kim S IEMENS : Volker Tresp, Yi Huang Any question?

×