1. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 1
UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
2009
GUÍAS
LABORATORIO
MECÁNICA DE FLUIDOS
Realizado por:
Ing Jairo Pedraza
Ing Luis Salamanca
Laura Garavito
2. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 2
LABORATORIO Nº 1: PROPIEDADES DE LOS FLUIDOS
1.1OBJETIVOS
Determinar la densidad del agua, aceite, alcohol y glicerina. Por medio de
diferentes métodos y a temperatura ambiente.
Calcular la tensión superficial del agua por medio de tubos y placas capilares.
Determinar la viscosidad del aceite y la glicerina a temperatura ambiente por medio
del equipo de viscosímetro de caída de bola.
Comparar los resultados obtenidos, con los valores numéricos encontrados en
tablas y Determinar el error porcentual.
1.2EQUIPOS Y ELEMENTOS
Balanza.
Baso metálico o Eureka.
Beaker.
Cilindro guía.
Cronometro.
Esferas metálicas.
Picnómetro.
Probeta.
Regla.
Solido de geometría regular.
Termómetro.
Tubos y placas de capilaridad.
1.3 MATERIALES.
Aceite de cocina.
Agua.
Alcohol.
Glicerina.
1.4PROCEDIMIENTOS
Prueba Nº 1: Densidad
Para determinar la densidad de un líquido es necesario medir la masa de un volumen
conocido.
3. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 3
A través de 3 métodos calcularemos las densidades para los siguientes fluidos:
Agua de grifo.
Alcohol antiséptico.
Aceite de cocina.
Glicerina.
Método Nº 1: Medición con el beaker.
a. Pese el beaker vacío.
b. Llene el beaker con cada uno de los fluidos y lea el volumen.
c. Pese el beaker + fluido
Método Nº 2: Principio de Arquímedes.
a. Tome un objeto sólido que encaje en el recipiente metálico (Eureka) de la prueba, por
ejemplo un cilindro o un cubo, y mida las dimensiones necesarias para el calcular el
volumen.
b. Llene el vaso metálico hasta el nivel de rebose.
c. Pese un beaker vacio.
d. Coloque el Beaker junto al recipiente metálico, permitiendo que el fluido que rebose se
deposite en el Beaker.
e. Sumerja el sólido en el recipiente metálico.
f. Pese el conjunto Beaker + fluido.
Método Nº 3. Botella de densidad.
a. Pese el picnómetro (incluyendo el tapón).
b. Llene el picnómetro con el fluido.
c. Manipule el tapón del picnómetro para que funcione como una pipeta, buscando
desalojar el fluido en exceso por encima del cuello de la botella.
d. Seque la superficie externa del picnómetro y pese el conjunto picnómetro + fluido.
Prueba Nº 2: Capilaridad
a. Llene el tanque de prueba con agua hasta aproximadamente las ¾ partes.
b. Mida la temperatura del fluido.
c. Coloque y asegure los tubos capilares.
d. Tome lecturas de las lecturas capilares en cada tubo.
e. Repita los pasos descritos con las placas de vidrio, separándolas mediante cintas
plásticas.
4. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 4
Figura No.1 Aparato para pruebas de capilaridad.
Prueba Nº 3: Viscosímetro de caída de bola
a. Llene la probeta con glicerina o aceite y coloque el cilindro guía.
b. Coloque bajo el cilindro guía las bandas de caucho separadas a una distancia de 200
mm.
c. Introduzca dentro del cilindra guía cada una de las esferas.
d. Mida el tiempo que tarda la esfera en descender la distancia entre las bandas de caucho.
e. Repita el procedimiento el otro fluido.
Figura No. 2 Viscosímetro de Caída de Bola.
5. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 5
1.5 FUNDAMENTACIÓN TEÓRICA.
Densidad.
La densidad se define como la masa de una sustancia contenida en una unidad de volumen.
La unidad de densidad en el SI es el kilogramo por metro cúbico y se denota por р
mlvolumen
grmasa
Rta: (Kg/m3)
En cuerpos homogéneos, la densidad es una propiedad que se refiere a todas las partes del
cuerpo. Si estos son heterogéneos, la densidad varía de un punto a otro
Densidad relativa
El peso específico (o densidad relativa) es una medida relativa de la densidad, como la
presión tiene un efecto insignificante sobre la densidad de los líquidos,
la temperatura es la única variable que debe ser tenida en cuenta al sentar las bases para el
peso específico. La densidad relativa de un líquido es la relación de su densidad a cierta
temperatura, con respecto al agua a una temperatura normalizada.
𝑆 =
𝑝 𝑐𝑖𝑒𝑟𝑡𝑎 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎
p agua
Capilaridad
En la superficie de contacto entre líquido y gas parece formarse en el liquido una película o
capa especial, debida en apariencia a la atracción de las moléculas del liquido situado por
debajo de la superficie. Esta propiedad de la película superficial de ejercer una tensión se
llama tensión superficial y es la fuerza necesaria para mantener la unidad de longitud de la
película en equilibrio.
gD
ht
4
gD
hp
2
Donde:
ht: la altura en el tubo capilar (m).
hp: Altura entre placas.(m)
6. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 6
= Tensión superficial en (N/m)
= Densidad del fluido en (Kg/m3)
g = Aceleración de la gravedad en (m/s2)
D = Diámetro del tubo capilar en (m)
b = Separación entre placas en (m)
Viscosidad.
La viscosidad es la propiedad de un fluido mediante la cual se ofrece resistencia al
corte. La viscosidad es una manifestación del movimiento
Molecular dentro del fluido.
El coeficiente de viscosidad es constante, en el sentido de que no depende de la
velocidad. Sin embargo, depende de otros factores físicos, en particular de la
presión y de la temperatura. Esta dependencia se explica al considerar la interpretación
microscópica-molecular de la viscosidad.
Ley de Stokes
Debido a la existencia de la viscosidad, cuando un fluido se mueve alrededor de un cuerpo o
cuando se desplaza en el seno de un fluido, se produce una fuerza de arrastre sobre dicho
cuerpo. Si este cuerpo es, una esfera, la fuerza de arrastre esta dada por la siguiente
expresión:
Fa = 6. Ѵ.r.v
Donde:
Ѵ: es la viscosidad del fluido.
r: es el radio de la esfera.
v: es la velocidad de la esfera respecto al fluido.
Esta relación fue deducida por George Stokes en 1845, y se denomina ley de Stokes. En
base a la ley mencionada anteriormente, si se deja caer una esfera en un recipiente el cual
contiene un fluido, debe existir una relación entre el tiempo empleado en recorrer una
determinada distancia y la viscosidad de dicho fluido.
Para determinar la viscosidad absoluta a través del viscosímetro de caída de bola, se
requiere primero conocer la velocidad observada y la velocidad corregida.
Velocidad observada:
7. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 7
t
y
Vo Donde:
Vo = Velocidad observada de caída de la esfera (m/s).
y = Distancia recorrida por la esfera (m)
t = tiempo para recorrer (s)
Velocidad corregida:
2
2
)4(
)9(
4
9
1
Dt
De
Dt
De
VoV
Donde:
V = Velocidad corregida. (m/s)
De = Diámetro de la esfera (m)
Dt = Diámetro del tubo (m)
Viscosidad Absoluta o dinámica :
V
De e
18
12
Donde:
= Viscosidad absoluta o dinámica.
De = Diámetro de la esfera.
e = Peso específico de la esfera.
1 = Peso específico del líquido de trabajo.
V = Velocidad corregida.
Viscosidad Cinemática:
Donde:
= Viscosidad cinemática.
= Viscosidad absoluta o dinámica.
= Densidad del cuerpo.
1.6 CUESTIONARIO.
PRUEBA Nº 1: DENSIDAD
8. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 8
La exactitud del método de Arquímedes mejoraría si midiéramos con:
Un vaso estrecho y profundo, o
Un vaso ancho y poco profundo. Porque?
¿Cuál de los anteriores métodos demuestra una manera más fundamental de medir el
volumen de un líquido? Porqué?
¿Cuál cree usted que es el procedimiento más exacto? Porque?
¿Cuál cree usted que es el procedimiento menos preciso? Porque?
Con el valor que considere mas preciso de densidad, obtenida para cada fluido, calcule la
densidad relativa. Justifique su respuesta.
Comparar los valores obtenidos con los establecidos en los textos.
Enunciar las variables que tienen mayor influencia en la densidad.
PRUEBA Nº 2: CAPILARIDAD
Calcule la tensión superficial con las alturas, separaciones entre placas, diámetro del
tubo capilar y la densidad mas precisa que halló en la prueba de densidad, teniendo en
cuenta la temperatura del fluido.
Realice la gráfica de altura capilar vs diámetro, y de altura en la placa vs separación,
haga una interpretación de la gráfica y explique como afecta el diámetro o la separación.
en la elevación del fluido.
Hasta donde llegaría el nivel del agua si se tuviese una serie de tubos de diferentes
diámetros, interconectados entre sí?
PRUEBA Nº 3: VISCOSIDAD
Calcular la viscosidad dinámica y cinemática de los fluidos empleados.
Comparar los resultados obtenidos con los valores establecidos en los diferentes
textos.
Enunciar las variables que tienen influencia en la viscosidad.
Cuál es la viscosidad dinámica de un liquido en reposo?
9. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 9
FORMATOS DE TOMA DE DATOS.
FIRMA LABORATORISTA: _____________________________________________________ FECHA: _____ /______/________
NOMBRES CÓDIGOS FIRMAS
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
PRUEBA Nº 1: DENSIDAD
Método 1. Beaker
FLUIDO
Peso beaker
(gr)
Volumen del
fluido (cm³)
Peso beaker +
fluido (gr)
Densidad
(kg/m³)
Agua de grifo
Aceite
Alcohol
Glicerina
Método 2: Principio de Arquímedes.
FLUIDO
Peso beaker
(gr)
Volumen del
fluido (cm³)
Peso beaker +
fluido (gr)
Densidad
(kg/m³)
Agua de grifo
Aceite
Alcohol
Glicerina
Método 2: Botella de Densidad.
FLUIDO
Peso beaker
(gr)
Volumen del
fluido (cm³)
Peso beaker +
fluido (gr)
Densidad
(kg/m³)
Agua de grifo
Aceite
Alcohol
Glicerina
10. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 1. Propiedades de los fluidos. Página 10
PRUEBA Nº 2: CAPILARIDAD
a) Tubos
DIÁMETRO
(mm)
ht (cm)
Densidad
(kg/cm3)
Tensión superficial
(N/m)
0.3
1
b) Placas
SEPARACIÓN
(mm)
hp (cm)
Densidad
(kg/cm3)
Tensión superficial
(N/m)
0.025 (dos)
0.045 (una) Roja
PRUEBA Nº 3: VISCOSIDAD
GLICERINA 1/52” 2/36” 3/16”
Distancia (cm)
Densidad del fluido (Kg/m³)
Densidad de la esfera (Kg/m³)
Tiempo 1 (seg)
Tiempo 2 (seg)
Tiempo 3 (seg)
Promedio Tiempo (seg)
Viscosidad Dinámica (Kg.seg/m2)
Viscosidad Cinemática (m2/s)
ACEITE DE COCINA 1/52” 2/36” 3/16”
Distancia (cm)
Densidad del fluido (Kg/m³)
Densidad de la esfera (Kg/m³)
Tiempo 1 (seg)
Tiempo 2 (seg)
Tiempo 3 (seg)
Promedio Tiempo (seg)
Viscosidad Dinámica (Kg.seg/m2)
Viscosidad Cinemática (m2/s)
11. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 11
LABORATORIO Nº 2: FUERZAS SOBRE SUPERFICIES PLANAS “CENTROS DE
PRESIONES”
2.1. OBJETIVOS
Aplicar por medio del tanque cuadrante del banco de pruebas hidráulicas los
principios hidrostáticos que rigen las fuerzas sobre las superficies en contacto,
comprobando el comportamiento con áreas, total y parcialmente sumergidas.
Calcular centros de presión de forma experimental y teórica para superficies total y
parcialmente sumergidas a diferentes ángulos de inclinación.
2.2. EQUIPO Y ELEMENTOS DE LABORATORIO
Banco de pruebas hidráulicas.
Tanque cuadrante.
Beaker.
Juego de pesas
Regla.
12. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 12
2.3. FUNDAMENTO TEÓRICO.
El centro de presión es el punto de un plano en el que puede asumirse que el empuje total
del fluido actúa en dirección normal al plano. El tanque cuadrante del banco de pruebas
hidráulicas permite medir directamente el momento debido al empuje total del fluido sobre
una superficie total o parcialmente sumergida y compararlo con el análisis teórico.
El agua está contenida en un tanque cuadrante montado como parte de una balanza. Los
lados cilíndricos del cuadrante tienen sus radios coincidiendo con el centro de rotación
de tanque y de este modo la presión total del fluido que actúa sobre estas superficies no
ejerce momento alrededor del centro de rotación. El único momento presente es el que se
debe a la presión del fluido actuando sobre la superficie plana. Este momento se mide
experimentalmente colocando pesas en el soporte dispuesto en el extremo del brazo
opuesto al tanque cuadrante. Un segundo tanque situado en el mismo lado del brazo de la
balanza, proporciona la facilidad de equilibrar el sistema. La escala en el tanque cuadrante
se usa para medir la altura “h” del nivel del agua por debajo del pivote. La fuerza debida a la
presión hidrostática en el centro de presión CP, a una distancia Ycp desde O’. Esta se mide a
lo largo del plano de la superficie rectangular inclinada.
Fuerzas de Presión
Considerando la definición de presión como una fuerza por unidad de área, se deduce que
la fuerza ejercida por un fluido sobre una superficie corresponde a la integral de la presión
en el área estudiada. Estudiemos el caso en que es válida la ley hidrostática, es decir, el
líquido se encuentra sometido solamente al efecto de la gravedad. Es posible distinguir
varios casos que dependen de la geometría de la superficie estudiada: superficies planas e
inclinadas y superficies curvas. En esta guía se estudiará solamente los casos de las
superficies planas rectangulares, inclinadas y verticales.
En el caso de una superficie plana vertical, se sabe que la presión aumenta linealmente con
la profundidad. Para este caso, se utilizará el concepto del prisma de presiones para
determinar la fuerza de presión horizontal, la que corresponde al volumen de dicho prisma.
El punto de aplicación de esta fuerza es el centro de gravedad del prisma de presiones.
Para el caso de una superficie inclinada, si ésta es plana, la fuerza de presión que ejerce el
líquido es normal a la superficie y también se puede calcular como el volumen del prisma
de presiones asociado. El punto de aplicación corresponde también al centro de gravedad
de éste.
Determinación teórica del Ycp.
13. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 13
La expresión teórica de la distancia del centro de presión es:
Ycg
AYcg
Icg
Ycp
*
(Teórico)
Donde:
Icg: Segundo momento de área (momento de inercia) de la superficie sumergida con
respecto al eje horizontal que pasa por el centro de gravedad CG.
Ycg: Distancia desde O’ (intersección del plano del nivel del agua con el plano de la
superficie sumergida) al centro de gravedad de misma superficie.
Determinación experimental del Ycp.
Para la posición de equilibrio del aparato, tomando momentos alrededor del pivote O, se
tienen:
F*Y = m*g*R2*cos
= ángulo de inclinación de la superficie sumergida.
Y = distancia del pivote al centro de presión.
(m) = masa de las pesas necesarias para el equilibrio.
R2= distancia del pivote al centro de las pesas.
(g) = aceleración de la gravedad.
F
Rgm
Y 2..
También por geometría resulta que:
cos
1
1
h
RYcpY
cos
1
1
h
RYYcp Donde:
R1= radio menor del tanque cuadrante.
h = profundidad del agua hasta el extremo superior del agua.
EXPRESIONES A USAR PARA SUPERFICIES TOTALMENTE SUMERGIDA
senRhRh .cos.cos. 111
senRhRh .cos.cos. 122
14. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 14
Profundidad al centro de gravedad:
Fuerza sobre el área:
Donde A = B * L
Cálculo del Ycp experimentalmente:
EXPRESIONES A USAR PARA SUPERFICIES PARCIALMENTE SUMERGIDA.
Longitud sumergida:
O
Área sumergida:
Profundidad al centro de gravedad:
Fuerza sobre el área:
2
21 hh
hcg
AhcgF )..(
F
Rgm
Y
cos... 2
12
. 3
LB
Icg
)(exp
cos
1
1 erimental
h
RYYcp
cos
hcg
Ycg
senRhh .cos'. 1
senRhRh .cos'.cos. 122
cos
2
h
Rl
cos
2h
l
cos
2
h
Rl
BlA .
2
cos. l
hcg
).(. hcgAF
15. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 15
Cálculo del Ycp experimentalmente:
Cálculo del Ycp teóricamente:
2.4. PROCEDIMIENTO.
Prueba Nº 1. ÁREA TOTALMENTE SUMERGIDA
Equilibra el aparato de tal forma que la pared plana del tanque se encuentre en
posición vertical.
Verter agua sobre el tanque cuadrante de tal forma que el nivel del agua se
encuentre por encima del radio de 100mm, es decir que el nivel del agua debe sobre
pasar el nivel de la cara plana.
Equilibra el sistema agregando pesas de 200 y 50gr en el soporte dispuesto en el
extremo del brazo opuesto al tanque cuadrante.
Medir la altura desde el pivote hasta el nivel del agua.
Repetir el procedimiento anterior para 7 lecturas en donde el sistema se encuentre
en equilibrio (Θ=0) y para seis ángulos diferentes.
Prueba Nº 2. ÁREA PARCIALMENTE SUMERGIDA
Equilibra el aparato de tal forma que la pared plana del tanque se encuentre en
posición vertical.
Verter agua sobre el tanque cuadrante de tal forma que el nivel del agua se
encuentre por debajo del radio de 100mm, es decir que el nivel del agua no debe
sobre pasar el nivel de la cara plana.
Equilibra el sistema agregando pesas de 200 y 50gr en el soporte dispuesto en el
extremo del brazo opuesto al tanque cuadrante.
Medir la altura desde el pivote hasta el nivel del agua.
Repetir el procedimiento anterior para 7 lecturas en donde el sistema se encuentre
en equilibrio (Θ=0) y para seis ángulos diferentes.
cos
cos.. 2 h
F
RW
Ycp
)(
.
teóricoYcg
AYcg
Icg
Ycp
cos
hcg
Ycg
16. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 16
2.5. CUESTIONARIO.
Prueba Nº 1. Área totalmente sumergida.
Analizar Variación del centro de presión con respecto a la profundidad (h)
Determinar y comparar las distancias del centro de presión Ycp de forma teórica y
experimental, para la condición de la superficie plana totalmente sumergida y para
ocho combinaciones de ángulo ().
Elaborar la gráfica de Ycp vs h para los datos tomados de área totalmente sumergida
en condición de = 0°.
Prueba Nº 2. Área parcialmente sumergida.
Analizar Variación del centro de presión con respecto a la profundidad (h)
Determinar y comparar las distancias del centro de presión Ycp de forma teórica y
experimental, para la condición de la superficie plana parcialmente sumergida y para
ocho combinaciones de ángulo ().
Elaborar la gráfica de Ycp vs h para los datos tomados de área parcialmente sumergida
en condición de = 0°.
Consultar.
¿Qué es la cabeza de presión?
¿Qué es presión atmosférica?
¿Qué es presión parcial o relativa?
¿Cuál es el principio fundamental de la hidrostática, conocida también como la ley de
Steven?
¿Cree usted que el valor de la presión sobre una superficie dentro de un líquido es
independiente de la orientación de esta? Explíquelo.
¿Qué inclinación tiene la resultante de las fuerzas hidrostáticas sobre una superficie
con respecto a esta?
¿Por qué en un líquido en reposo no existen esfuerzos cortantes?
¿En qué consiste la paradoja hidrostática? Explíquela.
En forma breve comente en qué consiste el principio de Pascal y la prensa hidráulica.
Enuncie cinco cosas en las que el conocimiento de las fuerzas y presiones sobre las
superficies sea aplicable a la Ingeniería.
17. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 17
SUPERFICIEPARCIALMENTESUMERGIDA
200mm
R1:100mm
R2:200mm
O?
W
100mm
Y
h
hcg
hcpCG
CP
y
ycp
ycg
18. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 18
SUPERFICIETOTALMENTESUMERGIDA
200mm
R1:100mm
R2:200mm
O?
h2
h1
100 mm
W
Y
Ycp
Ycg
y
dy
CP
CGdF
F
h
19. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 19
FORMATOS TOMA DE DATOS.
FIRMA LABORATORISTA: _____________________________________________________ FECHA: _____ /______/________
NOMBRES CÓDIGOS FIRMAS
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
Area parcialmente sumergida Area totalmente sumergida
θ
h
(mm)
Masa
(Kg)
θ
h
(mm)
Masa
(Kg)
θ
h
(mm)
Masa
(Kg)
θ
h
(mm)
Masa
(Kg)
0 5 0 5
0 10 0 10
0 15 0 15
0 20 0 20
0 25 0 25
0 30 0 30
20. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 2. Fuerzas sobre superficies planas. Página 20
FORMATO CÁLCULOS
ÁREA TOTALMENTE SUMERGIDAS A DIFERENTES ÁNGULOS
ө
h
(mm)
h1
(mm)
h2
(mm)
hcg
(mm)
M
(kg)
F (N)
Ycg
(mm)
Ycp
(mm)
teórico
Y
(mm)
h1
cosΘ
Ycp
(mm)
exp
ÁREA PARCIALMENTE
ө h (mm)
Masa
(kg)
l
(mm)
hcg
(mm)
F
(N)
Ycp (mm)
exp
Ycg (mm)
Icg
(mm4)
Ycp (mm)
teórico
ÁREA PARCIALMENTE SUMERGIDA A CERO GRADOS
Ensayo h (mm)
Masa
(kg)
l
(mm)
hcg
(mm)
F
(N)
Ycp (mm)
exp
Ycg (mm)
Icg
(mm4)
Ycp (mm)
teórico
ÁREA PARCIALMENTE SUMERGIDA A CERO GRADOS
Ensayo h (mm) Masa (kg) hcg (mm) F (N)
Ycp (mm)
experimental
21. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 3. Empuje y flotación. Página 21
3. EMPUJE Y FLOTACIÓN
3.1 OBJETIVOS
Ilustrar las más importantes leyes de la hidrostática como lo son la ley de Pascal y la
ley de Arquímedes.
Intentar realizar por medios prácticos y sencillos las pruebas que muy
seguramente tuvieron que ejecutar estos dos grandes formadores de la ciencia para
poder justificar sus logros científicos.
3.2 EQUIPOS.
Banco de pruebas hidrostáticas
Tubos verticales de diferentes tamaños
Cilindro
Balanza
Barco de flotación
3.3 FUNDAMENTOS TEÓRICOS.
Presión Hidrostática.
Se entiende por presión a la razón entre la resultante de las fuerzas moleculares que se
ejercen a través de un elemento plano y el área de éste. La presión hidrostática sobre un
punto situado en el interior de un líquido, es proporcional a la profundidad y al peso
específico de líquido, la cual está universalmente definida por la siguiente expresión:
hgP ..
Un segundo punto en consideración se conoce como el Principio de Pascal: “En un punto de
un fluido en equilibrio, las presiones sobre todos los planos de cualquier orientación que
pasan por ese punto, son de igual magnitud”, es decir, la presión en un punto actúa en todas
las direcciones.
Se puede demostrar que la distribución de presiones en el fluido, es decir, cómo varía la
presión al interior de un volumen de fluido en reposo o en equilibrio estático, se debe
exclusivamente a los efectos de las fuerzas másicas que actúan sobre un elemento de
volumen. El caso de mayor interés práctico lo presentan los fluidos sometidos al campo
gravitacional terrestre, es decir, a su propio peso, como única fuerza exterior.
22. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 3. Empuje y flotación. Página 22
Estabilidad de un cuerpo flotante.
Cualquier cuerpo que se encuentra total o parcialmente sumergido en un líquido, se ve
sometido a 2 fuerzas principales que actúan en sentidos opuestos. La primera corresponde
al peso del cuerpo (W), mientras que la segunda es el empuje (E), resultante de las fuerzas
de presión que ejerce el fluido sobre el cuerpo, y actúa en sentido contrario a la gravedad.
Si consideramos al sólido como un cuerpo de densidad constante, el peso corresponde al
volumen de éste, V, multiplicado por su peso específico, γS, mientras que si se considera
que el fluido es incompresible, la magnitud del empuje corresponde al peso específico del
líquido, γL, multiplicado por el volumen del líquido desplazado o volumen de carena, VC.
Respecto a los puntos de aplicación, el peso actúa en el centro de gravedad del cuerpo, G,
mientras que el empuje actúa en el centro de gravedad del volumen de carena o centro de
carena, C.
Para que un cuerpo flote, la condición que se debe cumplir es que el empuje cuando todo el
cuerpo está sumergido sea mayor que el peso, lo que se traduce en que la densidad de éste
debe ser menor que la densidad del líquido.
GM: Altura metacéntrica
radmm
d
dXj
donde
d
dXj
W
wj
GM /.
BM: Altura metacéntrica sobre el centro de flotación
BM: GM+ BG BG: OG - OB
OG: Altura del centro de gravedad medida desde la base
OB: OC/2
OC: V/A
V: W/ρ
W: Peso barco + peso ajustable
A: L* D
Yj
wi
O
C
B
G
M
wi
B B`
M
G G`
23. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 3. Empuje y flotación. Página 23
3.4 PROCEDIMIENTO.
Prueba Nº 1: Ley de Pascal.
El aparato para la observación del nivel de un líquido consiste en una serie de tubos
verticales de diferentes tamaños, formas y sección transversal. Estos tubos están unidos en
su base por un tubo horizontal. El aparato está permanentemente conectado al tanque
superior del banco de pruebas.
Cerrar la válvula de drenaje del banco de pruebas.
Llenar el tanque superior del banco de pruebas al cual se encuentran unidos los
tubos de diferente geometría.
Observar los niveles de los tubos y responder el cuestionario.
Abra la válvula de drenaje del banco de pruebas y observe el comportamiento del
fluido.
Prueba Nº 2. Ley de Arquímedes (Empuje de un fluido).
Medir el diámetro del cilindro.
Colocar el cilindro en el soporte del banco de pruebas hidráulicas, sobre la balanza.
Deslizar el cuerpo cilíndrico desde su posición normal hasta que quede enfrentado sobre
el plato de la balanza, habiendo medido antes su diámetro.
Ubicar el cuerpo dentro de un beaker girándolo 90°, y acondicionar el conjunto para que
el beaker descanse sobre el plato de la balanza.
Llenar con agua el beaker de tal forma que el cuerpo quede inmerso,
Agitar con cuidado el beaker para eliminar las burbujas que quedan atrapadas por
debajo del cilindro.
Registrar el peso promedio del conjunto en la balanza.
Leer la altura del líquido en la escala suspendida del eje.
Repetir los pasos anteriores hasta que el vaso esté lleno, aproximadamente en seis
etapas,
Prueba Nº 3: Análisis de Flotación.
Ubicar un beaker vació sobre agua en posición Horizontal y vertical.
Agregar un peso aproximado al beaker de tal manera que se encuentre estable en
posición vertical.
Agregar un peso aproximado al beaker de tal manera que el cuerpo flotante se sumerja.
Prueba Nº 4: Estabilidad de un cuerpo flotante.
El siguiente experimento lo trabajaremos con el barco de flotación con el cual realizaremos
24. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 3. Empuje y flotación. Página 24
los siguientes pasos:
Tomar el peso total del aparato “W” que incluye el peso ajustable “w”, y los dos pesos
magnéticos registrados en la parte superior de la escala de ángulos.
Tomar el peso ajustable “w”.
Medir la longitud y el ancho del flotador del barco, así como también el espesor de la
lámina que lo constituye, (aproximadamente de 2 mm).
Parte a
Amarrar el cordón grueso con la plomada a través del hueco en el tablero de
acondicionamiento del peso, verificando que la plomada quede libre para indicar la
intersección con la línea central marcada en el mástil.
Sujetar el peso ajustable dentro de la hendidura en “V”, sobre la línea central de la hilera
más baja y suspender el conjunto flotador y peso del extremo libre del cordón.
Marcar el punto donde la línea de la plomada intercepta la línea central, medir esta altura
a partir de la base externa del flotador.
Repetir el paso anterior para las otras cinco hileras.
Parte b.
Introducir el barco flotante en el banco de pruebas.
Nivelar el flotador acomodando el peso ajustable en el centro del barco, sobre cualquier
nivel con la ayuda de los pesos magnéticos, de tal forma que el ángulo marcado indique
cero.
Mover el peso ajustable hacia la izquierda o hacia la derecha en cada una de las hileras
cada 15mm, tomando el desplazamiento por ángulo formado entre la línea de la plomada y
la línea central.
3.5 CUESTIONARIO
Prueba Nº 1: Ley de Pascal
Por qué se observan variaciones en los niveles de los tubos? (si estos ocurren).
Cómo se comportarán los niveles si en el tubo que los une, el agua estuviera fluyendo?
Físicamente a que equivale la presión en la base de los tubos?
Cómo se transmite la presión con un fluido en reposo dentro de un tubo inclinado con
relación a como ocurre en un tubo en posición vertical?.
Deduzca una expresión para la presión en un punto dentro de un fluido, analizando el
diagrama de sólido libre.
Cómo cree usted que el peso unitario del fluido afecta la presión sobre el punto
anteriormente analizado.
25. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 3. Empuje y flotación. Página 25
Cuál es el valor de la presión atmosférica expresada en mm de mercurio, mts de
columna de agua, kgf/cm2 y en Psi.
Cite cinco casos prácticos en su vida como ingeniero, en la que el análisis de las
presiones de los fluidos, será importante para su desempeño profesional.
Prueba Nº 2: Principio de Arquímedes (Empuje).
Del volumen de agua desplazado por el cilindro, la altura del líquido y el peso resultante
en la balanza, puede verificarse el principio de Arquímedes. Obtener por medio de un
cuadro de cálculos, el empuje para los seis niveles en el beaker.
Basándose en el anterior experimento responda el siguiente cuestionario:
Qué utilidad encuentra usted en el experimento?
Qué importancia tiene el conocer la fuerza que ejerce un fluido sobre un objeto que se
sumerge dentro de este?
Cómo cree que sería el empuje del fluido si este tuviera diferentes pesos específicos,
viscosidades, y temperaturas?
Cite cinco casos prácticos en los que el empuje ejercido por un fluido sea útil en la vida
ingenieril.
Prueba Nº 3: Análisis de Flotación.
Porque no flota en posición vertical el beaker vacio cuando es colocado sobre agua?
Compruebe en forma teórica hasta que peso será estable el beaker y hasta que peso se
hundirá, copare los valores obtenidos experimentalmente y los obtenidos teóricamente.
Cree usted que la capacidad de flotación también depende del área en contacto con el
agua y del tamaño del recipiente?
Debido a que razón o explicación lógica los cuerpos que presentan mayor altura y por
ende mayor inercia en el eje Y, son menos estables que los recipientes anchos y bajos?
Prueba Nº 4: Estabilidad de un cuerpo flotante.
Elaborar el gráfico de valores de Xj vs la lista de ángulos para los diferentes niveles en
los que se sitúa el peso ajustable.
Calcular la pendiente de cada una de las rectas obtenidas (dXj/d).
Obtener la altura metacéntrica.
Calcular la distancia BM.
Qué sugerencias haría usted para mejorar el experimento o el aparato?
Piensa que el movimiento de la plomada que marca los ángulos en el flotador, por efecto
de su propio peso afecta los resultados en alguna forma?
Como cree usted que sería la estabilidad del barco si la base del recipiente fuera curva, y
no plana como realmente lo es?
26. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 3. Empuje y flotación. Página 26
3.5 FORMATO DE TOMA DATOS
FIRMA LABORATORISTA: _____________________________________________________ FECHA: _____ /______/________
NOMBRES CÓDIGOS FIRMAS
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
Empuje de un fluido
ENSAYO ALTURA
INICIAL
(mm)
ALTURA
FINAL
(mm)
MASA
INICIAL
(Kg)
MASA
FINAL
(Kg)
1
2
3
4
5
6
INCLINACIÓN DE UN CUERPO FLOTANTE
Altura Donde Se Encuentra El Peso
Ajustable Medido Desde La Base
Altura Donde Se Encuentra El Centro De
Gravedad Medido Desde La Base (Yn)
Yj Y1
Yj Y2
Yj Y3
Yj Y4
Yj Y5
ESTABILIDAD DE UN CUERPO FLOTANTE
Yn
(mm)
ANGULO EN GRADOS
-60 -45 -30 -15 0 15 30 45 60
27. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 3. Empuje y flotación. Página 27
3.5 FORMATO DE CÁLCULOS
EMPUJE DE UN FLUIDO
ENSAYO
ALTURA
INICIAL
(m)
ALTURA
FINAL
(m)
MASA
INICIAL
(Kg)
MASA
FINAL
(Kg)
VOLUMEN
m³
EMPUJE
N
1
2
3
4
5
6
ESTABILIDAD DE UN CUERPO FLOTANTE
Yn
dXj
d
(mm/rad)
GM
(mm)
OG
(mm)
OC
(mm)
OB
(mm)
BG
(mm)
BM
(mm)
28. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 4. Medidor de flujo “Venturí”. Página 28
4. MEDIDORES DE FLUJO- VENTURIMETRO.
4.1 OBJETIVOS.
Reconocer y practicar el manejo del venturímetro, y su respectiva aplicación en el
aforo de los fluidos en movimiento.
Encontrar la constante de descarga del venturímetro e indicar su significado.
Hallar el valor del caudal teórico y del caudal real o experimental, y hacer una
comparación entre ellos.
Aplicar las ecuaciones de energía y de continuidad en la obtención de los resultados.
4.2 EQUIPOS.
Banco de pruebas.
Venturí.
Pesas.
4.3 FUNDAMENTOS TEÓRICOS.
Asumiendo que no hay pérdidas de energía a lo largo del tubo, y que la velocidad y las
alturas piezométricas son constantes a través de cada una de las secciones consideradas,
entonces de la ecuación de energía tenemos que:
n
n
h
g
V
h
g
V
h
g
V
222
2
2
2
2
1
2
1
(1)
en donde: V1, V2 y Vn son las velocidades del flujo a través de las secciones 1, 2 y n. La
ecuación de continuidad para esta situación es:
QAVAVAV nn ... 2211 (2)
Remplazando en la ecuación (1) para V1 proveniente de la ecuación (2)
2
2
2
1
2
1
2
2
2
22
h
g
V
h
A
A
g
V
29. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 4. Medidor de flujo “Venturí”. Página 29
y resolviendo esta ecuación para V2 :
2
1
2
21
2
1
)(2
A
A
hhg
V
ℎ1: 𝐴𝑙𝑡𝑢𝑟𝑎 𝑃𝑖𝑒𝑧𝑜𝑚𝑒𝑡𝑟𝑜 𝑒𝑛 𝑙𝑎 𝐸𝑛𝑡𝑟𝑎𝑑𝑎 𝐴 ℎ2: 𝐴𝑙𝑡𝑢𝑟𝑎 𝑃𝑖𝑒𝑧𝑜𝑚𝑒𝑡𝑟𝑜 𝑒𝑛 𝑙𝑎 𝐺𝑎𝑟𝑔𝑎𝑛𝑡𝑎 𝐷
Reemplazando (2):
22.AVQ
2
1
2
21
2
1
)(2
*
A
A
hhg
AQ
(3)
En la práctica, hay pérdidas de energía entre la sección 1 y 2 y la velocidad no es
absolutamente constante entre cada una de esas secciones. Como resultado, los valores de
Q medidos usualmente son menores que los calculados de la ecuación (3) por lo que se
introduce el concepto de un coeficiente que relaciona el caudal real con el teórico. Este
coeficiente es determinado experimentalmente y varía con el tipo de venturímetro
utilizado así como también con la descarga, pero usualmente está entre un rango de 0.92 a
0.99
2
1
2
21
2
1
)(2
*.
A
A
hhg
ACQ
(4)
La distribución ideal de presiones a lo largo de la tubería convergente-divergente puede
determinarse de la ecuación (1) y está dada por:
2
2
22
1
2
2
1
2
V
VV
g
V
hh nn
Sustituyendo a en el segundo término de la expresión la relación de áreas en lugar de la
relación de velocidades proveniente de la ecuación de continuidad (2), la distribución ideal
de presiones será:
2
2
2
1
2
2
2
1
2
n
n
A
A
A
A
g
V
hh
(5)
30. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 4. Medidor de flujo “Venturí”. Página 30
Distancia entre manómetro y diámetro del venturi en mm.
4.4 PROCEDIMIENTO
Instalación del equipo.
Colocar el medidor de venturí sobre el banco hidráulico.
Conectar la manguera de salida del banco a la entrada del aparato.
Conectar la salida del aparato a una manguera y colocar el extremo libre dentro del
tanque de medición.
Calibración de los manómetros.
Abrir las válvulas (aparato y banco) a 1/3 de sus posiciones totalmente abiertas.
Verificar que la válvula de purga este bien cerrada.
Poner a funcionar la bomba, eliminar el aire atrapado como burbujas en los
manómetros.
Regular las alturas en los manómetros por medio de la inyección de aire con la
bomba de mano, por la válvula de purga.
Procedimiento experimental.
Abrir la válvula de purga.
Registrar las lecturas manométricas.
Tomar el caudal a través del banco de pruebas.
Repetir los procedimientos enunciados, para 10 diferentes caudales.
4.5 CUESTIONARIO.
26
23,2
18,4
16
16,79
18,47
20,16
21,84
23,53
25,21
26
A
(1)
B C D
(2)
E F G H J K L
20 12 14 15 15 15 15 15 15 20
31. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 4. Medidor de flujo “Venturí”. Página 31
Obtención de la expresión para la velocidad en la garganta (sobre el esquema de un
venturímetro inclinado ° con la horizontal), utilizando las tres formas de la ecuación de
Bernoulli. Incluir manómetro de mercurio.
Análisis de cada uno de los términos de la ecuación de Bernoulli explicando el tipo de
energía que representa cada uno de ellos.
Revisión bibliográfica breve sobre los siguientes instrumentos utilizados para
determinar la velocidad de un fluido en movimiento: Tubo de Pitot, tubo de Prandtl,
orificio en un depósito, anemómetros (tipos), Molinete (o correntómetro), anemómetro
de hilo caliente, sifón, eyector.
Calcular la distribución ideal de presiones como una fracción de la cabeza de velocidad
en la garganta
g
V
hhn
2
2
2
1
.
Graficar para cada caudal experimental: la distribución ideal de presiones vs distancias
a las que se encuentran los diferentes piezómetros. Y además graficar la distribución
ideal de presiones obtenida en el numeral 1.
Calcular el Caudal Teórico (QT).
Graficar Q experimental Vs Q teórico. Ajustar la curva y obtener el coeficiente C.
Calcular el coeficiente C para con cada uno de los caudales a partir de Q y (h1- h2)1/2.
Graficar Q vs (h1- h2)1/2. Ajustar la curva y obtener C.
Graficar los diferentes coeficientes vs diferentes caudales (C vs Q) Ajustar.
Para uno de los caudales con que se presente presión negativa en la garganta dibujar la
línea piezométrica y la línea de energía.
Obtener las pérdidas de energía del fluido al pasar por todo el venturímetro.
Obtener las pérdidas de energía entre cada par de piezómetros.
Analizar el comportamiento de las diferentes variables para cada uno de las gráficas.
Comentar.
Preguntas
¿Qué sugerencias harían para mejorar el aparato?
¿Cuál sería el efecto en los resultados si el venturímetro no estuviera horizontal? ¿Habría
que hacer corrección a las lecturas del piezómetro si la escala de medida estaba
montada con su eje vertical?.
Usando el valor de C obtenido experimentalmente, determine el diámetro de la garganta
del Venturi que mediría un flujo de 0.4 m3/s en una tubería de 0.6 m de diámetro con
una cabeza del diferencial de (0.37m aproximadamente)
Si se desea agregar una solución química de igual densidad a la del fluido instalando un
tubo de 1cm de diámetro en la garganta del venturi, indicar la distancia “Z” hasta el nivel
del depósito y el caudal que entraría.
32. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 4. Medidor de flujo “Venturí”. Página 32
FORMATO TOMA DE DATOS
FIRMA LABORATORISTA: _____________________________________________________ FECHA: _____ /______/________
NOMBRES CÓDIGOS FIRMAS
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
Q
Alturas Piezometricas (mm)
A B C D E F G H I J K L
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
CAUDAL REAL
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Masa
Tiempo
Caudal
(m³/seg)
33. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 4. Medidor de flujo “Venturí”. Página 33
FORMATO CÁLCULOS
Nº
M
(Kg)
T
(sg)
Q Exp
(m³/sg)
VD (ha-hd)
.5
Q Teor A-
D
(m³/sg)
Cd Re
N
g
V
hhn
2
2
2
1
A B C D E F G H J K L
N
PRESIÓN (Pa)
A B C D E F G H J K L
N
PERDIDA CABEZA DE VELOCIDAD (m)
A B C D E F G H J K L
N
PERDIDA DE ENERGÍA (m)
A-B B-C C-D D-E E-F F-G G-H H-J J-K K-L A-L
34. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 5. Impacto de chorro Página 34
5. IMPACTO DE UN CHORRO
5.1 OBJETIVOS
Determinar la magnitud de la fuerza de impacto de un chorro de agua al salir por un orificio y
chocar con un alabe de diferentes formas: plano, hemisférico, copa cónica.
Calcular velocidad del chorro a la salida de la boquilla.
Analizar la relación existente entre la fuerza sobre el alabe y la cantidad de energía entregada
a este.
5.2 EQUIPO
Banco hidráulico
Equipo de impacto de chorro
Pesas
5.3 FUNDAMENTOS TEÓRICOS.
Una manera de producir trabajo mecánico por medio de un fluido bajo presión es la de
utilizar la presión para acelerar el fluido a una velocidad alta en un chorro dirigido sobre los
alabes instalados en el perímetro de una rueda. Un motor de reacción es una turbina la
cual gira por las fuerzas generadas en los alabes debido al cambio de momemtum o impulso
que tiene lugar cuando el agua golpea las alabes. Las turbinas que trabajan con este
principio de impulso han sido construidas con potencias del orden de 100.000 KW y
eficiencias mayores que el 90%.
Considerando la segunda ley de Newton:
𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑠 = 𝑚 ∗ 𝑎 =
𝑑 (𝑚 ∗ 𝑉)
𝑑𝑡
Donde (m· v) es el momentum del volumen de control. Considerando el Teorema del
Transporte de Reynolds se obtiene el Teorema de Cantidad de Movimiento:
35. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 5. Impacto de chorro Página 35
En este experimento, la fuerza generada por un chorro de agua cuando golpea una placa
plana o una taza hemisférica, puede medirse y puede compararse con la tasa de flujo de
momentum en el chorro.
Cuando el contrapeso es movido una distancia (y) en metros desde la posición cero, la fuerza
correspondiente (F) en N sobre el plato (placa) puede obtenerse tomando momentos respecto al
pivote: )).((6.0)15.0( ygF donde:
F = fuerza producida por el chorro.
s= la altura de la placa sobre el extremo de la boquilla; s = 35mm
y = Distancia del peso ajustable a partir de la posición de cero.
El flujo es medido como:
m = .A.V (kg/s) Caudal en masa.
La velocidad de salida del chorro en la boquilla es:
A
m
V
(m/s)
La velocidad Vo del chorro que es desviada por la placa o por la copa es menor que la velocidad
(V) en la salida de la boquilla por la desaceleración de la gravedad y se puede calcular con la
siguiente expresión:
)).(2(22
sgVVo )035.081.92(22
xxVVo 687.022
VVo
Do
Dc
Hc
36. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 5. Impacto de chorro Página 36
5.4 PROCEDIMIENTO
El aparato debe ser inicialmente nivelado, moviendo el peso ajustable colocado en la
barra superior o regleta, hasta cuando marque cero (0); esto se consigue cuando la
barrita que cuelga el resorte muestre sus ranuras, una por debajo y otra por encima de
la tapa del aparato.
Conectar el aparato y abrir la válvula. Luego se mueve el contrapeso sobre la ranura o
regleta una distancia determinada y se abre más la válvula para volver a nivelar,
tomamos la lectura en este nivel y luego tomamos masa de agua y tiempo.
Realizar el procedimiento anterior para 9 caudales mas.
Cambiar el alabe y repetir el procedimiento anotando los correspondientes valores.
5.5 CUESTIONARIO
Calcular la velocidad a la salida del orificio (V) y la velocidad del chorro (Vo).
Calcular la fuerza desarrollada sobre el alabe
Graficar la fuerza sobre el alabe (F) vs (Qm x Vo) . Analizar su comportamiento para
cada uno de los álabes Idealmente la pendiente de las gráficas de ser:
Plato llano = 1 Cono= 1.5 Hemisférico = 2
PREGUNTAS
¿Qué sugerencias tiene para mejorar la práctica?
¿Cuál sería el efecto sobre el valor del cálculo de la eficiencia en los siguientes errores
sistemáticos de medición?
Error de 1g en el peso ajustable.
Error de 1mm en la distancia del centro del orificio al nivel del pivote (L).
Si el experimento se realizara con un cono de 60°. ¿Cómo cree usted que serían los
resultados representados en las gráficas anteriores?
Si el alabe estuviera sometido a un desplazamiento con una velocidad constante, por
ejemplo en una turbina o rueda Pelton; como cree que sería la componente de la fuerza
resultante que opone el alabe y la velocidad de salida del chorro ya impactado.
REVISIÓN DE LITERATURA.
Establecer las componentes de las fuerzas generadas por un chorro sobre un alabe
curvo cuando está fijo y cuando se mueve con una velocidad V constante, considerando
que no hay fricción.
Hallar las componentes como en a) pero incluyendo pérdidas por fricción.
Describir en qué consiste la teoría de cascada.
Describir los tipos de turbinas hidráulicas de uso actual en hidroeléctricas.
37. UNIVERSIDAD PEDAGÓGICA Y TECNOLÓGICA DE COLOMBIA
FACULTAD DE INGENIERÍA
ESCUELA DE ING. CIVIL
MECÁNICA DE FLUIDOS
Laboratorio Nº 5. Impacto de chorro Página 37
FORMATO DE TABLA DE DATOS:
FIRMA LABORATORISTA: _____________________________________________________ FECHA: _____ /______/________
NOMBRES CÓDIGOS FIRMAS
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
__________________________________________ ______________ _________________________
ALABE PLANO
No. Distancia (mm) Masa (Kg) Tiempo (seg) V (m/s) Vo (m/s) Qm*V0 (N) F (N)
1
2
3
4
5
6
7
8
9
10
ALABE HEMISFÉRICO
No. Distancia (mm) Masa (Kg) Tiempo (seg) V (m/s) Vo (m/s) Qm*Vo (N) F (N)
1
2
3
4
5
6
7
8
9
10