BIN REPACKING SCHEDULING 
IN 
VIRTUALIZED DATACENTERS 
Fabien HERMENIER, FLUX, U. Utah & OASIS, INRIA/CNRS, U. Nice 
Sophi...
CONTEXT 
datacenters and virtualization 
2
DATACENTERS 
interconnected servers 
hosting 
distributed applications 
3
RESOURCES 
server 
capacities 
application 
requirements 
4
VIRTUALIZATION 
applications embedded in 
Virtual Machines 
colocated on any server 
manipulable 
1 datacenter 
4 servers,...
ACTION 
• stop/suspend 
• launch/resume 
• migrate live 
has a known duration 
consumes resources 
impacts VM performance ...
ACTION 
live migration 
has a known duration 
consumes resources 
impacts VM performance 
6
DYNAMIC SYSTEM 
Applications Servers 
• submission 
• removal (complete, crash) 
• requirement change (load 
spikes) 
• ad...
DYNAMIC 
RECONFIGURATION 
8
RECONFIGURATION PLAN 
migrate S1 - S2 migrate S4 - S1 launch S4 
time 
t=0 
9
RECONFIGURATION 
PROBLEM 
given an initial configuration and new requirements: 
• find a new viable configuration 
• assoc...
+ USER REQUIREMENTS 
Clients Administrators 
• fault-tolerance w. replication 
• performance w. isolation 
• resource matc...
ENTROPY 
an autonomous VM manager 
12
PLAN MODULE 
• reconfiguration problem: vector packing + cumulative 
scheduling + side constraints (NP-hard) 
Constraint 
...
ABSTRACTION 
•1VM = 0 or 1 action 
•min Σ end(A) 
actions A 
•full resource requirements 
at transition 
14
Compound CP model 
Packing + Scheduling 
decomposition degrades the objective and may result 
in a feasible packing withou...
Producer/Consumer 
1 action = 2 tasks / no-wait 
home-made cumulatives in every dimension 
16
SIDE CONSTRAINTS 
ban unary 
fence unary 
spread alldifferent + precedences 
lonely disjoint 
capacity gcc 
among element ...
REPAIR 
candidate VMs 
fixed 
heuristically 
resource+placement constraints come with a new service: 
return a feasible su...
EVALUATION 
19
PROTOCOL 
500 - 2,500 homogeneous servers 
2,000 - 10,000 heterogeneous VMs 
extra-large/high-memory EC2 instances 
3-tier...
LOAD 
solving time 1,000 servers 
70% = standard average consolidation ratio 
21
SCALABILITY 
solving time 5 VMs : 1 server 
2,000 servers = standard capacity of a container 
22
field to investigate for packing+scheduling 
≠ usages to optimize: CPU, energy, revenue 
side constraints important for us...
user constraint catalog 
routing and application topology constraints 
soft/explained user constraints 
new results availa...
Prochain SlideShare
Chargement dans…5
×

Bin repacking scheduling in virtualized datacenters

322 vues

Publié le

Fabien Hermenier, Sophie Demassey, and Xavier Lorca.
In Proceedings of the 17th international conference on Principles and practice of constraint programming (CP'11). Springer-Verlag, Berlin, Heidelberg, pages 27-41.

Publié dans : Logiciels
0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
322
Sur SlideShare
0
Issues des intégrations
0
Intégrations
3
Actions
Partages
0
Téléchargements
4
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Bin repacking scheduling in virtualized datacenters

  1. 1. BIN REPACKING SCHEDULING IN VIRTUALIZED DATACENTERS Fabien HERMENIER, FLUX, U. Utah & OASIS, INRIA/CNRS, U. Nice Sophie DEMASSEY, TASC, INRIA/CNRS, Mines Nantes Xavier LORCA, TASC, INRIA/CNRS, Mines Nantes 1
  2. 2. CONTEXT datacenters and virtualization 2
  3. 3. DATACENTERS interconnected servers hosting distributed applications 3
  4. 4. RESOURCES server capacities application requirements 4
  5. 5. VIRTUALIZATION applications embedded in Virtual Machines colocated on any server manipulable 1 datacenter 4 servers, 3 apps 5
  6. 6. ACTION • stop/suspend • launch/resume • migrate live has a known duration consumes resources impacts VM performance 6
  7. 7. ACTION live migration has a known duration consumes resources impacts VM performance 6
  8. 8. DYNAMIC SYSTEM Applications Servers • submission • removal (complete, crash) • requirement change (load spikes) • addition • removal (power off, crash) • availability change 7
  9. 9. DYNAMIC RECONFIGURATION 8
  10. 10. RECONFIGURATION PLAN migrate S1 - S2 migrate S4 - S1 launch S4 time t=0 9
  11. 11. RECONFIGURATION PROBLEM given an initial configuration and new requirements: • find a new viable configuration • associate actions to VMs • schedule the actions to resolve violations and dependencies s.t every action is complete as early as possible 10
  12. 12. + USER REQUIREMENTS Clients Administrators • fault-tolerance w. replication • performance w. isolation • resource matchmaking • maintenance • security w. isolation • shared resource control to satisfy at any time during the reconfiguration 11
  13. 13. ENTROPY an autonomous VM manager 12
  14. 14. PLAN MODULE • reconfiguration problem: vector packing + cumulative scheduling + side constraints (NP-hard) Constraint Programming • trade-off fast+good • composable online • easily adaptable offline 13
  15. 15. ABSTRACTION •1VM = 0 or 1 action •min Σ end(A) actions A •full resource requirements at transition 14
  16. 16. Compound CP model Packing + Scheduling decomposition degrades the objective and may result in a feasible packing without reconfiguration plan shared constraints resource+side separated branching heuristic 1-packing 2-scheduling 15
  17. 17. Producer/Consumer 1 action = 2 tasks / no-wait home-made cumulatives in every dimension 16
  18. 18. SIDE CONSTRAINTS ban unary fence unary spread alldifferent + precedences lonely disjoint capacity gcc among element gather allequals mostly spread nvalue 17
  19. 19. REPAIR candidate VMs fixed heuristically resource+placement constraints come with a new service: return a feasible sub-configuration 18
  20. 20. EVALUATION 19
  21. 21. PROTOCOL 500 - 2,500 homogeneous servers 2,000 - 10,000 heterogeneous VMs extra-large/high-memory EC2 instances 3-tiers HA web applications with replica 50% VM grow 30% uCPU 4% VM launch, 2% VM stop 1% server stop 20
  22. 22. LOAD solving time 1,000 servers 70% = standard average consolidation ratio 21
  23. 23. SCALABILITY solving time 5 VMs : 1 server 2,000 servers = standard capacity of a container 22
  24. 24. field to investigate for packing+scheduling ≠ usages to optimize: CPU, energy, revenue side constraints important for users Entropy: CP-based resource manager, fast, scalable, generic, composable, flexible, easy to maintain http://entropy.gforge.inria.fr/ CONCLUSION 23
  25. 25. user constraint catalog routing and application topology constraints soft/explained user constraints new results available: http://sites.google.com/site/hermenierfabien/ PERSPECTIVES 24

×