Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Bin repacking scheduling in virtualized datacenters

Bin repacking scheduling in virtualized datacenters

Télécharger pour lire hors ligne

Fabien Hermenier, Sophie Demassey, and Xavier Lorca.
In Proceedings of the 17th international conference on Principles and practice of constraint programming (CP'11). Springer-Verlag, Berlin, Heidelberg, pages 27-41.

Fabien Hermenier, Sophie Demassey, and Xavier Lorca.
In Proceedings of the 17th international conference on Principles and practice of constraint programming (CP'11). Springer-Verlag, Berlin, Heidelberg, pages 27-41.

Plus De Contenu Connexe

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir

Bin repacking scheduling in virtualized datacenters

  1. 1. BIN REPACKING SCHEDULING IN VIRTUALIZED DATACENTERS Fabien HERMENIER, FLUX, U. Utah & OASIS, INRIA/CNRS, U. Nice Sophie DEMASSEY, TASC, INRIA/CNRS, Mines Nantes Xavier LORCA, TASC, INRIA/CNRS, Mines Nantes 1
  2. 2. CONTEXT datacenters and virtualization 2
  3. 3. DATACENTERS interconnected servers hosting distributed applications 3
  4. 4. RESOURCES server capacities application requirements 4
  5. 5. VIRTUALIZATION applications embedded in Virtual Machines colocated on any server manipulable 1 datacenter 4 servers, 3 apps 5
  6. 6. ACTION • stop/suspend • launch/resume • migrate live has a known duration consumes resources impacts VM performance 6
  7. 7. ACTION live migration has a known duration consumes resources impacts VM performance 6
  8. 8. DYNAMIC SYSTEM Applications Servers • submission • removal (complete, crash) • requirement change (load spikes) • addition • removal (power off, crash) • availability change 7
  9. 9. DYNAMIC RECONFIGURATION 8
  10. 10. RECONFIGURATION PLAN migrate S1 - S2 migrate S4 - S1 launch S4 time t=0 9
  11. 11. RECONFIGURATION PROBLEM given an initial configuration and new requirements: • find a new viable configuration • associate actions to VMs • schedule the actions to resolve violations and dependencies s.t every action is complete as early as possible 10
  12. 12. + USER REQUIREMENTS Clients Administrators • fault-tolerance w. replication • performance w. isolation • resource matchmaking • maintenance • security w. isolation • shared resource control to satisfy at any time during the reconfiguration 11
  13. 13. ENTROPY an autonomous VM manager 12
  14. 14. PLAN MODULE • reconfiguration problem: vector packing + cumulative scheduling + side constraints (NP-hard) Constraint Programming • trade-off fast+good • composable online • easily adaptable offline 13
  15. 15. ABSTRACTION •1VM = 0 or 1 action •min Σ end(A) actions A •full resource requirements at transition 14
  16. 16. Compound CP model Packing + Scheduling decomposition degrades the objective and may result in a feasible packing without reconfiguration plan shared constraints resource+side separated branching heuristic 1-packing 2-scheduling 15
  17. 17. Producer/Consumer 1 action = 2 tasks / no-wait home-made cumulatives in every dimension 16
  18. 18. SIDE CONSTRAINTS ban unary fence unary spread alldifferent + precedences lonely disjoint capacity gcc among element gather allequals mostly spread nvalue 17
  19. 19. REPAIR candidate VMs fixed heuristically resource+placement constraints come with a new service: return a feasible sub-configuration 18
  20. 20. EVALUATION 19
  21. 21. PROTOCOL 500 - 2,500 homogeneous servers 2,000 - 10,000 heterogeneous VMs extra-large/high-memory EC2 instances 3-tiers HA web applications with replica 50% VM grow 30% uCPU 4% VM launch, 2% VM stop 1% server stop 20
  22. 22. LOAD solving time 1,000 servers 70% = standard average consolidation ratio 21
  23. 23. SCALABILITY solving time 5 VMs : 1 server 2,000 servers = standard capacity of a container 22
  24. 24. field to investigate for packing+scheduling ≠ usages to optimize: CPU, energy, revenue side constraints important for users Entropy: CP-based resource manager, fast, scalable, generic, composable, flexible, easy to maintain http://entropy.gforge.inria.fr/ CONCLUSION 23
  25. 25. user constraint catalog routing and application topology constraints soft/explained user constraints new results available: http://sites.google.com/site/hermenierfabien/ PERSPECTIVES 24

×