SlideShare une entreprise Scribd logo
1  sur  32
Télécharger pour lire hors ligne
CIVIL ENGINEERING
GEOTECHNICAL                                                         Q      = KH(Nf /Nd) (for flow nets, Q per unit width),
Definitions                                                                   where
                                                                     K      = coefficient permeability,
c = cohesion
                                                                     H      = total hydraulic head (potential),
cc = coefficient of curvature or gradation
                                                                     Nf     = number of flow tubes, and
    = (D30)2/[(D60)(D10)], where
                                                                     Nd     = number of potential drops.
D10, D30, D60 = particle diameter corresponding to 10%,
                30%, and 60% finer on grain-size curve.              γ      =   total unit weight of soil = W/V
cu   =   uniformity coefficient = D60 /D10                           γd     =   dry unit weight of soil = Ws /V
e    =   void ratio = Vv /Vs, where                                         =   Gγw /(1 + e) = γ /(1 + w), where
Vv   =   volume of voids, and                                        Gw     =   Se
Vs   =   volume of the solids.                                       γs     =   unit weight of solid = Ws / Vs
K    =   coefficient of permeability = hydraulic conductivity        n      =   porosity = Vv /V = e/(1 + e)
     =   Q/(iA) (from Darcy's equation), where                       τ      =   general shear strength = c + σtan φ, where
Q    =   discharge rate                                              φ      =   angle of internal friction,
i    =   hydraulic gradient = dH/dx,                                 σ      =   normal stress = P/A,
H    =   hydraulic head,                                             P      =   force, and
A    =   cross-sectional area.                                       A      =   area.
qu   =   unconfined compressive strength = 2c
                                                                     Ka     =   coefficient of active earth pressure
w    =   water content (%) = (Ww /Ws) ×100, where
Ww   =   weight of water, and                                               =   tan2(45 – φ/2)
Ws   =   weight of solids.                                           Kp     =   coefficient of passive earth pressure
                                                                            =   tan2(45 + φ/2)
Cc = compression index = ∆e/∆log p                                   Pa     =   active resultant force = 0.5γH 2Ka, where
    = (e1 – e2)/(log p2 – log p1), where                             H      =   height of wall.
e1 and e2 = void ratio, and
p1 and p2 = pressure.                                                qult  = bearing capacity equation
                                                                           = cNc + γDf Nq + 0.5γBNγ , where
Dr = relative density (%)                                            Nc, Nq, and Nγ = bearing capacity factors
     = [(emax – e)/(emax – emin)] ×100                               B     = width of strip footing, and
     = [(1/γmin – 1/γd) /(1/γmin – 1/γmax)] × 100, where             Df    = depth of footing below surface.
emax and emin = maximum and minimum void ratio, and
γmax and γmin = maximum and minimum unit dry weight.                 FS     = factor of safety (slope stability)
                                                                               cL + Wcosα tanφ
                                                                            =                     , where
Gs = specific gravity = Ws /(Vsγw), where                                           W sinα
γw = unit weight of water (62.4 lb/ft3 or 1,000 kg/m3).              L      = length of slip plane,
∆H =     settlement = H [Cc /(1 + ei)] log [(pi + ∆p)/pi]            α      = slope of slip plane,
   =     H∆e/(1 + ei), where                                         φ      = angle of friction, and
H =      thickness of soil layer                                     W      = total weight of soil above slip plane.
∆e =     change in void ratio, and                                   Cv     = coefficient of consolidation = TH 2/t, where
p =      pressure.                                                   T      = time factor,
PI = plasticity index = LL – PL, where                               t      = consolidation time.
LL = liquid limit, and                                               Hdr    =   length of drainage path
PL = plasticity limit.                                               n      =   number of drainage layers
                                                                     Cc     =   compression index for normally consolidated clay
S = degree of saturation (%) = (Vw /Vv) × 100, where
Vw = volume of water,                                                       =   0.009 (LL – 10)
Vv = volume of voids.                                                σ′     =   effective stress = σ – u, where
                                                                     σ      =   normal stress, and
                                                                     u      =   pore water pressure.




                                                                93
CIVIL ENGINEERING (continued)

UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D-2487)
                                                                                                                                                                                    Group
                                                                       Major Divisions                                                                                                                       Typical Names                                                                                                                             Laboratory Classification Criteria
                                                                                                                                                                                   Symbols
                                                                                                                                                                                                                                                                                                                                                                       D 60
                                                                         (More than half of coarse fraction is larger than No.




                                                                                                                                                                                                                                               Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are
                                                                                                                                        Clean gravels (Little or no
                                                                                                                                                                                                                                                                                                                                                                cu =               greater than 4;
                                                                                                                                                                                                                                                                                                                                                                       D10
                                                                                                                                                                                                    Well-graded gravels, gravel-sand
                                                                                                                                                                                    GW
                                                                                                                                                                                                      mixtures, little or no fines
                                                                                                                                                                                                                                                                                                                                                                        (D )       2


                                                                                                                                                  fines)
                                                                                                                                                                                                                                                                                                                                                                cc =
                                                                                                                                                                                                                                                                                                                                                                              30
                                                                                                                                                                                                                                                                                                                                                                                        between 1 and 3
                                                                                                                                                                                                                                                                                                                                                                       D 10 × D 60




                                                                                                                                                                                                                                                                 Determine percentages of sand and gravel from grain-size curve.
                                                                                             4 sieve size)
    (More than half of material is larger than No. 200 sieve size)


                                                                                               Gravels




                                                                                                                                                                                                   Poorly-graded gravels, gravel-sand
                                                                                                                                                                                     GP                                                                                                                                                                    Not meeting all gradiation requirements for GW
                                                                                                                                                                                                       mixtures, little or no fines

                                                                                                                                                                                             d
                                                                                                                                        Gravels with fines




                                                                                                                                                                                  GMa                                                                                                                                                                                                          Above "A" line
                                                                                                                                        amount of fines)




                                                                                                                                                                                                  Silty gravels, gravel-sand-silt mixtures                                                                                                                Atterberg limits below "A"
                                                                                                                                          (Appreciable




                                                                                                                                                                                             u                                                                                                                                                                                                with PI between 4
                                                                                                                                                                                                                                                                                                                                                             line or PI less than 4
                                                                                                                                                                                                                                                                                                                                                                                                  and 7 are




                                                                                                                                                                                                                                                                                       classified as follows:
                        Coarse-grained soils




                                                                                                                                                                                                                                                                                                                                                                                              borderline cases




                                                                                                                                                                                                                                              5 to 12 percent: Borderline cases requiring dual symbolsb
                                                                                                                                                                                                     Clayey gravels, gravel-sand-clay                                                                                                                                                          requiring use of
                                                                                                                                                                                     GC                                                                                                                                                                   Atterberg limits above "A"
                                                                                                                                                                                                                mixtures                                                                                                                                                                        dual symbols
                                                                                                                                                                                                                                                                                                                                                          line with PI greater than 7

                                                                                                                                                                                                                                                                                                                                                                       D 60
                                                                         (More than half of coarse fraction is smaller



                                                                                                                                                      Clean sands (Little or no




                                                                                                                                                                                                                                                                                                                                                                cu =               greater than 6;




                                                                                                                                                                                                                                              More than 12 percent: GM, GC, SM, SC
                                                                                                                                                                                                                                                                                                                                                                       D10
                                                                                                                                                                                                 Well-graded sands, gravelly sands, little




                                                                                                                                                                                                                                              Less than 5 percent: GW, GP, SW, SP
                                                                                                                                                                                     SW
                                                                                                                                                                                                               or no fines
                                                                                                                                                                                                                                                                                                                                                                        (D )2
                                                                                                                                                               fines)
                                                                                    than No. 4 sieve size)




                                                                                                                                                                                                                                                                                                                                                                cc =
                                                                                                                                                                                                                                                                                                                                                                              30
                                                                                                                                                                                                                                                                                                                                                                                        between 1 and 3
                                                                                                                                                                                                                                                                                                                                                                       D 10 × D 60
                                                                                            Sands




                                                                                                                                                                                                 Poorly graded sand, gravelly sands, little
                                                                                                                                                                                        SP                                                                                                                                                                  Not meeting all gradation requirements for SW
                                                                                                                                                                                                               or no fines
                                                                                                                                                                                             d                                                                                                                                                                                                Limits plotting in
                                                                                                                                                                                                                                                                                                                                                          Atterberg limits below "A"
                                                                                                                                    (Appreciable




                                                                                                                                                                                  SMa                 Silty sands, sand-silt mixtures                                                                                                                                                        hatched zone with
                                                                                                                                     Sands with


                                                                                                                                     amount of




                                                                                                                                                                                             u                                                                                                                                                               line or PI less than 4
                                                                                                                                       fines)




                                                                                                                                                                                                                                                                                                                                                                                             PI between 4 and 7
                                                                                                                                        fines




                                                                                                                                                                                                                                                                                                                                                                                                are borderline
                                                                                                                                                                                                                                                                                                                                                          Atterberg limits above "A"         cases requiring use
                                                                                                                                                                                        SC          Clayey sands, sand-clay mixtures
                                                                                                                                                                                                                                                                                                                                                          line with PI greater than 7          of dual symbols
                                                                                                                                                                                                 Inorganic silts and very fine sands, rock
                                                                                                                                                                                     ML             flour, silty or clayey fine sands, or
                                                                                                                     (Liquid limit less
                                                                                                                      Silts and clays




                                                                                                                                                                                                      clayey silts with slight plasticity
             (More than half material is smaller than No. 200 sieve)




                                                                                                                         than 50)




                                                                                                                                                                                                     Inorganic clays of low to medium
                                                                                                                                                                                     CL           plasticity, gravelly clays, sandy clays,
                                                                                                                                                                                                            silty clays, lean clays
                                                                                                                                                                                                  Organic silts and organic silty clays of
                                                                                                                                                                                     OL
                                                                                                                                                                                                                 low plasticity
                                                                                                                                                                                                        Inorganic silts, micaceous or
                              Fine-grained soils




                                                                                                                     greater than 50)




                                                                                                                                                                                    MH            diatomaceous fine sandy or silty soils,
                                                                                                                      Silts and clays
                                                                                                                       (Liquid limit




                                                                                                                                                                                                                  elastic silts
                                                                                                                                                                                                   Inorganic clays of high plasticity, fat
                                                                                                                                                                                     CH
                                                                                                                                                                                                                     clays
                                                                                                                                                                                                     Organic clays of medium to high
                                                                                                                                                                                     OH
                                                                                                                                                                                                           plasticity, organic silts
                                                                                                                                 Highly organic




                                                                                                                                                                                                    Peat and other highly organic soils
                                                                                                                                     soils




                                                                                                                                                                                        Pt



a
     Division of GM and SM groups into subdivisions of d and u are for roads and airfields only. Subdivision is based on
     Atterberg limits; suffix d used when LL is 28 or less and the PI is 6 or less; the suffix u used when LL is greater than 28.
b
     Borderline classification, used for soils possessing characteristics of two groups, are designated by combinations of group
     symbols. For example GW-GC, well-graded gravel-sand mixture with clay binder.




                                                                                                                                                                                                                               94
CIVIL ENGINEERING (continued)

STRUCTURAL ANALYSIS
Influence Lines                                                               α = coefficient of thermal expansion
An influence diagram shows the variation of a function                        L    = member length
(reaction, shear, bending moment) as a single unit load                       Fp = member force due to external load
moves across the structure. An influence line is used to (1)
determine the position of load where a maximum quantity                       A    = cross-sectional area of member
will occur and (2) determine the maximum value of the                         E    = modulus of elasticity
quantity.                                                                     ∆T = T–TO; T = final temperature, and TO = initial
Deflection of Trusses                                                              temperature
Principle of virtual work as applied to trusses
    ∆   = ΣfQδL                                                          Deflection of Frames
    ∆   = deflection at point of interest                                The principle of virtual work as applied to frames:

    fQ = member force due to virtual unit load applied at                                ­ L mM ½
                                                                                   ∆ = ¦ ®³O    dx ¾
         the point of interest                                                           ¯   EI    ¿
    δL = change in member length                                         m =       bending moment as a funtion of x due to virtual
                                                                                   unit load applied at the point of interest
        = αL(∆T) for temperature
                                                                         M =       bending moment as a function of x due to external
        = FpL/AE for external load
                                                                                   loads


                                           BEAM FIXED-END MOMENT FORMULAS


                                          Pab 2                               Pa 2 b
                             FEM AB =                              FEM BA =
                                           L2                                  L2




                                           w o L2                             w o L2
                             FEM AB =                              FEM BA =
                                            12                                 12




                                           w o L2                             w o L2
                             FEM AB =                              FEM BA =
                                            30                                 20




Live Load Reduction
The live load applied to a structure member can be reduced as the loaded area supported by the member is increased. A typical
reduction model (as used in ASCE 7 and in building codes) for a column supporting two or more floors is:

                             §         15       ·
         Lreduced = Lnominal ¨ 0.25 +           ¸ ≥ 0.4 L                          Columns:   kLL = 4
                             ¨        k LL AT   ¸        nominal
                             ©                  ¹
                                                                                   Beams:     kLL = 2

where Lnominal is the nominal live load (as given in a load standard or building code), AT is the floor tributary area(s) supported
by the member, and kLL is the ratio of the area of influence to the tributary area.




                                                                    95
CIVIL ENGINEERING (continued)

REINFORCED CONCRETE DESIGN                        ACI 318-02
US Customary units                                                        ASTM STANDARD REINFORCING BARS

 Definitions                                                          BAR SIZE        DIAMETER, IN           AREA, IN2            WEIGHT, LB/FT
 a   = depth of equivalent rectangular stress block, in
                                                                           #3                 0.375             0.11                    0.376
 Ag = gross area of column, in2
                                                                           #4                 0.500             0.20                    0.668
 As = area of tension reinforcement, in2                                   #5                 0.625             0.31                    1.043
 As' = area of compression reinforcement, in2                              #6                 0.750             0.44                    1.502
 Ast = total area of longitudinal reinforcement, in2                       #7                 0.875             0.60                    2.044
 Av = area of shear reinforcment within a distance s, in                   #8                 1.000             0.79                    2.670
                                                                           #9                 1.128             1.00                    3.400
 b   = width of compression face of member, in                             #10                1.270             1.27                    4.303
 be = effective compression flange width, in                               #11                1.410             1.56                    5.313
 bw = web width, in                                                        #14                1.693             2.25                    7.650
                                                                           #18                2.257             4.00                   13.60
 β1 = ratio of depth of rectangular stress block, a, to depth
          to neutral axis, c
                              § f c ' − 4,000 ·
       =   0.85 ≥ 0.85 – 0.05 ¨
                              ¨               ¸ ≥ 0.65
                                              ¸
                              © 1,000 ¹                              LOAD FACTORS FOR REQUIRED STRENGTH
 c     =   distance from extreme compression fiber to neutral             U = 1.4 D
           axis, in                                                       U = 1.2 D + 1.6 L
 d     =   distance from extreme compression fiber to centroid
           of nonprestressed tension reinforcement, in
                                                                          SELECTED ACI MOMENT COEFFICIENTS
 dt    =   distance from extreme tension fiber to extreme
                                                                     Approximate moments in continuous beams of three or
           tension steel, in
                                                                     more spans, provided:
 Ec    =   modulus of elasticity = 33 wc1.5      f c ' , psi         1.    Span lengths approximately equal (length of
 εt    =   net tensile strain in extreme tension steel at nominal          longer adjacent span within 20% of shorter)
           strength                                                  2.    Uniformly distributed load
 fc'   =   compressive strength of concrete, psi                     3.    Live load not more than three times dead load
 fy    =   yield strength of steel reinforcement, psi                Mu = coefficient * wu * Ln2
 hf    =   T-beam flange thickness, in                                  wu = factored load per unit beam length
 Mc    =   factored column moment, including slenderness                Ln = clear span for positive moment; average
           effect, in-lb                                                         adjacent clear spans for negative moment
 Mn    =   nominal moment strength at section, in-lb
 φMn   =   design moment strength at section, in-lb                  Column                    1                          1
                                                                                          +                          +
 Mu    =   factored moment at section, in-lb                                                  14                         16
 Pn    =   nominal axial load strength at given eccentricity, lb
                                                                                      1                 1        1                 1
 φPn   =   design axial load strength at given                                   −                 −        −                 −
           eccentricity, lb                                                          16                10       11                11
 Pu    =   factored axial force at section, lb                                                Ln
 ρg    =   ratio of total reinforcement area to cross-sectional
           area of column = Ast/Ag                                   Spandrel
                                                                                               1                      1
 s     =   spacing of shear ties measured along longitudinal         beam                 +                      +
                                                                                              14                     16
           axis of member, in
 Vc    =   nominal shear strength provided by concrete, lb                            1                 1        1                 1
                                                                                 −                 −        −                 −
 Vn    =   nominal shear strength at section, lb                                     24                10       11                11
 φVn   =   design shear strength at section, lb
 Vs    =   nominal shear strength provided by reinforcement,                                  1                       1
 lb                                                                  Unrestrained +                              +
                                                                                    11                               16
 Vu    =   factored shear force at section, lb                       end
                                                                                                        1        1                 1
                                                                                                   −        −                 −
                                                                                                       10       11                11
                                                                                     End span                 Interior span
                                                                96
CIVIL ENGINEERING (continued)



            UNIFIED DESIGN PROVISIONS                                                         BEAMS − FLEXURE: φMN ≥ MU


              Internal Forces and Strains                                         For all beams
                                d'        Comp.strain                             Net tensile strain: a = β1 c
     Mu                                                                                        0.003 ( dt − c )      0.003 ( β1 dt − a )
                                                                       ε's             εt =                       =
            A's                C c C s'               c                                               c                       a
Pu                                          d                                     Design moment strength: φMn
                                                 dt
            As                                                                        where: φ        = 0.9 [εt ≥ 0.005]
                               Ts
                                                                                                 φ    = 0.48 + 83εt [0.004 ≤ εt < 0.005]
                                             Net tensile strain:   εt             Reinforcement limits:
                                                                                      AS, max εt = 0.004 @ Mn
                    Strain Conditions                                                                   ­       ′
                                                                                                        ° 3 f c bw d    200 b d
                                                                                                                             w
                          0.003      0.003                    0.003                    AS ,min = larger ®            or
                                                                                                              f           f
                                                                                                        °       y           y
                                                                                                        ¯
                  c                   c                                                              As,min limits need not be applied if
      A's                                             c
                                                                                                     As (provided ≥ 1.33 As (required)
             dt
      As
                                                                                  Singly-reinforced beams
                                                                                                 0.85 f c ' β 1 b § 3 d t   ·
                                                                                      As,max =                    ¨
                                                                                                                  ¨ 7       ¸
                                                                                                                            ¸
                  εt ≥ 0.005     0.005> εt >0.002         εt ≤ 0.002                                  fy          ©         ¹
            Tension-                Transition        Compression-                           As f y
                                                                                      a=
            controlled              section           controlled                           0.85 f c′ b
            section:                                  section:
            c ≤ 0.375 dt                                                                                           a               a
                                                      c ≥ 0.6 dt                      Mn = 0.85 fc' a b (d −         ) = As fy (d − )
                                                                                                                   2               2
                                                                                  Doubly-reinforced beams
             Balanced Strain: εt = εy                                             Compression steel yields if:
                                                           0.003                                 0.85 β1 f c′ d' b § 87,000           ·
                                                                                      A s − A s' ≥                 ¨                  ¸
A's                                                                                                     fy         ¨ 87,000 + f y     ¸
                                                                                                                   ©                  ¹
                                           dt                                     If compression steel yields:
As                                                                                               0.85 f c′ β1 b § 3 d t ·
                                                                                      As,max =                  ¨            ′
                                                                                                                        ¸ − As
                                                      fy                                             fy         © 7 ¹
                                          εt = εy =         = 0.002
                                                      Es                                             ′
                                                                                             ( As − As ) f y
                                                                                       a =
                                                                                               0.85 f c ' b
                                                                                                ª            §      a·                    º
                                                                                       Mn = fy « ( As − As ) ¨ d − ¸ + As ( d − d ' ) »
                                                                                                         ′                    ′
            RESISTANCE FACTORS, φ                                                               ¬            ©      2¹                    ¼
                                                                                  If compression steel does not yield (four steps):
Tension-controlled sections ( εt ≥ 0.005 ):     φ = 0.9
                                                                                  1. Solve for c:
Compression-controlled sections ( εt ≤ 0.002 ):
   Members with spiral reinforcement          φ = 0.70                                      § (87,000 − 0.85 f c ' ) As ' − As f y ·
                                                                                       c2 + ¨
                                                                                            ¨
                                                                                                                                   ¸c
                                                                                                                                   ¸
   Members with tied reinforcement            φ = 0.65                                      ©           0.85 f c ' β1 b            ¹
Transition sections ( 0.002 < εt < 0.005 ):                                                                                  87,000 As ' d '
   Members w/ spiral reinforcement      φ = 0.57 + 67εt                                                                   −                  =0
                                                                                                                             0.85 f c ' β1 b
   Members w/ tied reinforcement        φ = 0.48 + 83εt
Shear and torsion                             φ = 0.75
Bearing on concrete                           φ = 0.65



                                                                             97
CIVIL ENGINEERING (continued)




       BEAMS − FLEXURE: φMN ≥ MU (CONTINUED)                                          BEAMS − SHEAR:                    φVN ≥ Vu

Doubly-reinforced beams (continued)                                          Beam width used in shear equations:
Compression steel does not yield (continued)
                                                                                                     b (rectangular beams )
                 § c − d' ·                                                          bw =
2.    fs'=87,000 ¨        ¸                                                                          bw (T−beams)
                 © c ¹
                                                                             Nominal shear strength:
                0.85 f c 'β1 b § 3 d t ·        § f '·
3. As,max=                      ¨      ¸ − A s' ¨ s ¸                            Vn = Vc + Vs
                       fy       © 7 ¹           ¨ fy ¸
                                                ©    ¹                           Vc = 2 bw d f c '
              ( As f y − As ' f s ' )
4.    a =                                                                                 Av f y d
                    0.85 f c ' b                                                 Vs =                 [may not exceed 8 bw d        f c' ]
                                                                                             s
              ª § As f y     ·§               a·                    º        Required and maximum-permitted stirrup spacing, s
     Mn = fs' « ¨            ¸
                ¨ f ' − As ' ¸ ¨ d −           ¸ + As ' ( d − d ' ) »
              «© s
              ¬              ¹©               2¹                    »
                                                                    ¼                 φVc
                                                                                 Vu ≤     : No stirrups required
                                                                                       2
T-beams − tension reinforcement in stem                                               φVc
                                                                                 Vu >     : Use the following table ( Av given ):
                                                                                       2
Effective flange width:

                             1/4 • span length
      be      =              bw + 16 • hf                                                     φVc
                                                                                                  < Vu ≤ φVc                Vu > φVc
                                                                                               2
                    beam centerline spacing
                  smallest
Design moment strenth:                                                                        Smaller of:
                                                                                                                         Vs = Vu − φVc :
              As f y                                                                             Av f y
     a=                                                                                       s=
           0.85 f c ' be                                                                         50b w
                                                                              Required
                                                                                                                              φ Av f y d
If a ≤ hf :                                                                                             Av f y           s=
                                                                              spacing         s=                                 Vs
              0.85 f c ' β 1 be    § 3 dt ·                                                          0.75 bw     fc '
     As,max =                      ¨
                                   ¨ 7 ¸  ¸
                    fy             ©      ¹
                                   a
     Mn = 0.85 fc' a be (d-          )
                                   2
                                                                                                                         Vs ≤ 4 b w d      fc '

If a > hf :                                                                                                              Smaller of:
                                                                                                   Smaller of:               d
                  0.85 f c 'β1 be § 3 d t · 0.85 f c ' (be − bw ) h f                                                    s=      OR
     As,max =                     ¨       ¸+                                  Maximum                 d                      2
                       fy         © 7 ¹                 fy                    permitted
                                                                                                   s=
                                                                                                      2                  s =24"
                                                hf                            spacing
     Mn = 0.85 fc' [hf (be − bw) (d −                )                                                  OR
                                                 2                                                                       Vs > 4 b w d        fc '
                                                                                                   s =24"
                                                     a
                                          + a bw (d − )]                                                                 Smaller of:
                                                     2
                                                                                                                             d
                                                                                                                         s=
                                                                                                                             4
                                                                                                                         s =12"




                                                                        98
CIVIL ENGINEERING (continued)




SHORT COLUMNS:
Reinforcement limits:                                           Concentrically-loaded short columns: φPn ≥ Pu
         A                                                        M1 = M2 = 0
   ρ g = st
         Ag                                                        KL
                                                                      ≤ 22
   0.01 ≤ ρg ≤ 0.08                                                 r
                                                                  Design column strength, spiral columns: φ = 0.70
Definition of a short column:                                         φPn = 0.85φ [ 0.85 fc' ( Ag − Ast ) + Ast fy ]
   KL        12 M 1
      ≤ 34 −
    r         M2                                                  Design column strength, tied columns: φ = 0.65
   where:      KL = Lcol       clear height of column                 φPn = 0.80φ [ 0.85 fc' ( Ag − Ast ) + Ast fy ]
                               [assume K = 1.0]
                                                                Short columns with end moments:
       r = 0.288h rectangular column, h is side length            Mu = M2 or Mu = Pu e
                  perpendicular to buckling axis ( i.e.,          Use Load-moment strength interaction diagram to:
                  side length in the plane of buckling )               1. Obtain φPn at applied moment Mu
       r = 0.25h circular column, h = diameter                         2. Obtain φPn at eccentricity e
                                                                       3. Select As for Pu , Mu
       M1 = smaller end moment
       M2 = larger end moment
       M1
       M2




LONG COLUMNS − Braced (non-sway) frames
Definition of a long column:                                     Long columns with end moments:
   KL        12 M 1                                                M1 = smaller end moment
      > 34 −
    r         M2                                                   M2 = larger end moment
                                                                    M1
Critical load:                                                         positive if M1 , M2 produce single curvature
                                                                    M2
             π2 E I     π2 E I
   Pc =              =                                                            0 .4 M 1
            ( KL ) 2   ( Lcol ) 2                                   C m = 0.6 +            ≥ 0.4
                                                                                     M2
       where: EI = 0.25 Ec Ig
                                                                            Cm M 2
                                                                    Mc =              ≥ M2
                                                                                Pu
Concentrically-loaded long columns:                                        1−
                                                                              0.75 Pc
  emin = (0.6 + 0.03h) minimum eccentricity
                                                                   Use Load-moment strength interaction diagram
  M1 = M2 = Pu emin (positive curvature)
                                                                   to design/analyze column for Pu , Mu
  KL
     > 22
   r
             M2
  Mc =
               Pu
          1−
             0.75 Pc
   Use Load-moment strength interaction diagram
   to design/analyze column for Pu , Mu




                                                           99
CIVIL ENGINEERING (continued)




GRAPH A.11
Column strength interaction diagram for rectangular section with bars on end faces and γ = 0.80 (for instructional use only).


Design of Concrete Structures, 13th Edition (2004), Nilson, Darwin, Dolan
McGraw-Hill ISBN 0-07-248305-9 GRAPH A.11, Page 762
Used by permission

                                                              100
CIVIL ENGINEERING (continued)




GRAPH A.15
Column strength interaction diagram for circular section γ = 0.80 (for instructional use only).


Design of Concrete Structures, 13th Edition (2004), Nilson, Darwin, Dolan
McGraw-Hill ISBN 0-07-248305-9 GRAPH A.15, Page 766
Used by permission

                                                               101
CIVIL ENGINEERING (continued)

STEEL STRUCTURES                                               References:       AISC LRFD Manual, 3rd Edition
                                                                                 AISC ASD Manual, 9th Edition
LOAD COMBINATIONS (LRFD)
      Floor systems: 1.4D                                      Roof systems:     1.2D + 1.6(Lr or S or R) + 0.8W
                     1.2D + 1.6L                                                 1.2D + 0.5(Lr or S or R) + 1.3W
                                                                           0.9D ± 1.3W
           where:             D = dead load due to the weight of the structure and permanent features
                              L      = live load due to occupancy and moveable equipment
                              L r = roof live load
                              S      = snow load
                              R      = load due to initial rainwater (excluding ponding) or ice
                              W = wind load
TENSION MEMBERS: flat plates, angles (bolted or welded)
      Gross area: Ag = bg t (use tabulated value for angles)
                                                   s2
           Net area:          An = (bg − ΣDh +        ) t across critical chain of holes
                                                   4g
           where:              bg = gross width
                               t = thickness
                               s = longitudinal center-to-center spacing (pitch) of two consecutive holes
                               g = transverse center-to-center spacing (gage) between fastener gage lines
                               Dh = bolt-hole diameter

           Effective area (bolted members):                                  Effective area (welded members):
                   U = 1.0 (flat bars)                                                          U = 1.0 (flat bars, L ≥ 2w)
Ae = UAn           U = 0.85 (angles with ≥ 3 bolts in line)                  Ae = UAg           U = 0.87 (flat bars, 2w > L ≥ 1.5w)
                   U = 0.75 (angles with 2 bolts in line)                                       U = 0.75 (flat bars, 1.5w > L ≥ w)
                                                                                                U = 0.85 (angles)
                                  LRFD

       Yielding:       φTn = φy Ag Fy = 0.9 Ag Fy                                                              ASD

       Fracture:       φTn = φf Ae Fu = 0.75 Ae Fu                                  Yielding:     Ta = Ag Ft = Ag (0.6 Fy)
       Block shear rupture (bolted tension members):                                Fracture:     Ta = Ae Ft = Ae (0.5 Fu)
            Agt =gross tension area
            Agv =gross shear area                                                   Block shear rupture (bolted tension members):
            Ant =net tension area                                                       Ta = (0.30 Fu) Anv + (0.5 Fu) Ant
            Anv=net shear area
                                                                                        Ant = net tension area
      When FuAnt ≥ 0.6 FuAnv:
                                                                                        Anv = net shear area
                                  0.75 [0.6 Fy Agv + Fu Ant]
            φRn =
                    smaller       0.75 [0.6 Fu Anv + Fu Ant]
      When FuAnt < 0.6 FuAnv:
                                  0.75 [0.6 Fu Anv + Fy Agt]
           φRn =
                    smaller       0.75 [0.6 Fu Anv + Fu Ant]
                                                                             0



                                                                      102
CIVIL ENGINEERING (continued)

BEAMS: homogeneous beams, flexure about x-axis
Flexure – local buckling:
                                                            bf         65                       h   640
No local buckling if section is compact:                           ≤              and             ≤
                                                            2t f       Fy                      tw    Fy

                                                                                     bf              h
                 where:             For rolled sections, use tabulated values of              and
                                                                                     2t f           tw
                                    For built-up sections, h is clear distance between flanges
                 For Fy ≤ 50 ksi, all rolled shapes except W6 × 19 are compact.


Flexure – lateral-torsional buckling: Lb = unbraced length

                     LRFD–compact rolled shapes                                                           ASD–compact rolled shapes
           300 ry                                                                         76 b f             20,000
Lp =                                                                              Lc =              or                   use smaller
             Fy                                                                               Fy           (d / A f ) Fy
                                                     Zx Table
           ry X 1                                                                 Cb = 1.75 + 1.05(M1 /M2) + 0.3(M1 /M2)2 ≤ 2.3
Lr =                 1 +      1 +     X 2 FL2
            FL                                                                                 M1 is smaller end moment
where: FL = Fy – 10 ksi                                                                        M1 /M2 is positive for reverse curvature

                      π      EGJA
            X1 =                                                                  Ma = S Fb
                      Sx      2                 W-Shapes
                                                Dimensions                        Lb ≤ Lc: Fb = 0.66 Fy
                       C § S ·2
            X2      = 4 w ¨ x¸                  and Properties                    Lb > Lc :
                        I y © GJ ¹              Table
                                                                                                  ª2 F ( L / r )2 º
φ    = 0.90                                                                              Fb     = « − y b T » ≤ 0.6 Fy                      (F1-6)
φMp = φ Fy Zx                                                                                     «3
                                                                                                  ¬
                                                                                                      1,530,000 Cb »
                                                                                                                   ¼
                           Zx Table
φMr = φ FL Sx                                                                                       170,000 Cb
                                                                                         Fb     =                  ≤ 0.6 Fy                 (F1-7)
Cb =
                       12.5 M max                                                                   ( Lb / rT )2
       2.5 M max      + 3M A + 4M B + 3MC
                                                                                                     12 ,000 Cb
Lb ≤ Lp:         φMn = φMp
                                                                                         Fb     =                ≤ 0.6 Fy                   (F1-8)
                                                                                                      Lb d / A f
Lp < Lb ≤ Lr:
                                                                                              102 ,000 Cb   L            510 ,000 Cb
             ª                       § Lb − L p ·º                                For:                    < b ≤                      :
    φMn = Cb «φM p − ( φM p − φM r ) ¨          ¸»                                                 Fy       rT                Fy
             «                       ¨ Lr − L p ¸»
             ¬                       ©          ¹¼
                                                                                               Use larger of (F1-6) and (F1-8)
            = Cb [φMp − BF (Lb − Lp)] ≤ φMp
                                                                                            Lb           510,000 Cb
                            See Zx Table for BF                                   For:         >                    :
                                                                                            rT               Fy

                                                                                               Use larger of (F1-7) and (F1-8)
Lb > Lr :
                                       2
                  φC b S x X 1 2      X1 X 2                                      See Allowable Moments in Beams curve
     φM n =                      1+             ≤ φMp
                      Lb /ry              (
                                    2 Lb /r y 2  )
See Beam Design Moments curve




                                                                            103
CIVIL ENGINEERING (continued)

Shear – unstiffened beams
                LRFD – E = 29,000 ksi                                                            ASD

                                                                    h   380
                                                             For      ≤     :          Fv = 0.40 Fy
     φ = 0.90              Aw = d t w                              tw    Fy
     h   417
       ≤                   φVn = φ (0.6 Fy) Aw                      h   380                   Fy
    tw    Fy                                                 For      >     :          Fv =          (Cv ) ≤ 0.4 Fy
                                                                   tw    Fy                   2.89
     417        h   523                                            where for unstiffened beams:
           <      ≤
      Fy       tw    Fy                                            kv = 5.34

                           ª       417     º                              190       kv               439
       φVn = φ (0.6 Fy) Aw «               »                       Cv =                   =
                           « ( h/t w ) F y »                              h/t w     Fy        ( h/t w )    Fy
                           ¬               ¼
     523        h
           <      ≤ 260
      Fy       tw

                           ª 218,000 º
       φVn = φ (0.6 Fy) Aw «          2
                                           »
                           « ( h/t w ) F y »
                           ¬               ¼

COLUMNS
Column effective length KL:
       AISC Table C-C2.1 (LRFD and ASD)− Effective Length Factors (K) for Columns
       AISC Figure C-C2.2 (LRFD and ASD)− Alignment Chart for Effective Length of Columns in Frames
Column capacities:
                        LRFD                                                          ASD
Column slenderness parameter:                                Column slenderness parameter:

            § KL ·        § 1   Fy ·                                                2 π2 E
       λc = ¨    ¸        ¨        ¸                                   Cc =
            © r ¹ max     ¨ π   E ¸                                                   Fy
                          ©        ¹
Nominal capacity of axially loaded columns (doubly           Allowable stress for axially loaded columns (doubly
symmetric section, no local buckling):                       symmetric section, no local buckling):
       φ = 0.85                                                   § KL ·
                                                             When ¨    ¸    ≤ Cc
                                                                  © r ¹ max
                           φFcr = φ § 0.658 λc · Fy
                                             2
       λc ≤ 1.5:                    ¨          ¸
                                    ©          ¹
                                                                                    ª    ( KL/r ) 2 º
                                    ª 0.877 º                                       «1 −            » Fy
       λc > 1.5:           φFcr = φ « 2 » Fy                                        «
                                                                                    ¬      2 Cc 2 » ¼
                                                                       Fa =
                                    « λc »
                                    ¬       ¼                                     5 3 ( KL/r ) ( KL / r ) 3
                                                                                    +         −
See Table 3-50: Design Stress for Compression                                     3    8 Cc      8 Cc 3
                  Members (Fy = 50 ksi, φ = 0.85)
                                                                  § KL ·                                   12 π 2 E
                                                             When ¨    ¸    > Cc:             Fa =
                                                                  © r ¹ max                           23 ( KL / r ) 2
                                                             See Table C-50: Allowable Stress for Compression
                                                                                    Members (Fy = 50 ksi)




                                                       104
CIVIL ENGINEERING (continued)

BEAM-COLUMNS:                 Sidesway prevented, x-axis bending, transverse loading between supports (no moments at ends), ends
                              unrestrained against rotation in the plane of bending

                               LRFD                                                                              ASD
 Pu                   Pu   8 Mu                                            fa                    fa     Cm f b
     ≥ 0.2 :             +        ≤ 1.0                                       > 0.15 :              +              ≤ 1 .0
φ Pn                 φ Pn 9 φ M n                                          Fa                    Fa §     fa ·
                                                                                                      ¨1−
                                                                                                      ¨       ¸ Fb
 Pu                    Pu      Mu                                                                     ©   Fe′ ¸
                                                                                                              ¹
     < 0.2 :                +     ≤ 1 .0
φ Pn                 2 φ Pn   φMn                                          fa                    fa   f
                                                                              ≤ 0.15 :              + b ≤ 1 .0
    where:                                                                 Fa                    Fa   Fb
          Mu = B1 Mnt                                                      where:
                  Cm                                                                  Cm = 1.0      for conditions stated above
          B1 =          ≥ 1.0
                    Pu
                 1−                                                                              12 π 2 E
                    Pex                                                               Fe′ =                      x-axis bending
                                                                                              23 ( KLx /rx ) 2
          Cm = 1.0       for conditions stated above
                § π2 E I x ·
          Pex = ¨          ¸ x-axis bending
                ¨ ( KL ) 2 ¸
                ©     x    ¹


BOLTED CONNECTIONS:                  A325 bolts          db = nominal bolt diameter           Ab = nominal bolt area
     s = spacing between centers of bolt holes in direction of force
     Le = distance between center of bolt hole and edge of member in direction of force
     t    = member thickness
                                       1
     Dh = bolt hole diameter = db + /16" [standard holes]


     Bolt tension and shear strengths:
                            LRFD                                                                                 ASD
Design strength (kips / bolt):
                                                                           Design strength ( kips / bolt ):
    Tension:     φRt = φ Ft Ab
                                                                                Tension: Rt = Ft Ab
    Shear:        φRv = φ Fv Ab
                                                                                Shear:      Rv = Fv Ab
Design resistance to slip at factored loads
                                                                           Design resistance to slip at service loads
        ( kips / bolt ): φRn                                                       (kips / bolt): Rv
                                     Bolt size                                                                      Bolt size
         Bolt strength                                                           Bolt strength
                              3/4"     7/8"       1"                                                        3/4"         7/8"      1"

             φRt              29.8     40.6       53.0                                   Rt                 19.4         26.5     34.6
     φRv ( A325-N )           15.9     21.6       28.3                           Rv ( A325-N )              9.3          12.6     16.5
     φRn (A325-SC )           10.4     14.5       19.0                          Rv ( A325-SC )              6.63         9.02     11.8
 φRv and φRn values are single shear                                        Rv values are single shear




                                                                     105
CIVIL ENGINEERING (continued)

Bearing strength
                           LRFD
                                                                    ASD
Design strength (kips/bolt/inch thickness):                         Design strength (kips/bolt/inch thickness):
    φrn = φ 1.2 Lc Fu ≤ φ 2.4 db Fu
                                                                       When s ≥ 3 db and Le ≥ 1.5 db
    φ      = 0.75
    Lc = clear distance between edge of hole                                 rb = 1.2 Fu db
              and edge of adjacent hole, or edge of                                                     Le Fu
               member, in direction of force                           When    Le < 1.5 db : rb =
                                                                                                          2
              Lc = s – D h                                             When    s < 3 db :
                       D
             Lc = Le – h                                                           §    d ·
                        2                                                          ¨ s − b ¸ Fu
                                                                                   ¨     2 ¸
 Design bearing strength (kips/bolt/inch                                      rb = ©       ¹
                                                                                                     ≤ 1.2 Fu db
                                                                                         2
 thickness) for various bolt spacings, s,
 and end distances, Le:                                              Design bearing strength (kips/bolt/inch
                                                                     thickness) for various bolt spacings, s,
                                                                     and end distances, Le:
          Bearing                   Bolt size
          strength                                                       Bearing                   Bolt size
                          3/4"         7/8"       1"
        φrn (k/bolt/in                                                   strength
                                                                    rb(k/bolt/in)        3/4"        7/8"          1"
             s = 2 2/3 db ( minimum permitted )
                                                                              s ≥ 3 db      and Le ≥ 1.5 db
        Fu = 58 ksi       62.0         72.9     83.7
                                                                        Fu = 58 ksi      52.2       60.9        69.6
        Fu = 65 ksi       69.5         81.7     93.8
                                                                        Fu = 65 ksi      58.5       68.3        78.0
                           s = 3"
                                                                           s = 2 2/3 db (minimum permitted)
         Fu = 58 ksi      78.3         91.3     101                                      47.1       55.0        62.8
                                                                        Fu = 58 ksi
         Fu = 65 ksi      87.7         102      113                     Fu = 65 ksi      52.8       61.6        70.4
                         Le = 1 1/4"                                                      Le = 1 1/4"
        Fu = 58 ksi       44.0         40.8     37.5                    Fu = 58 ksi        36.3 [all bolt sizes]
         Fu = 65 ksi      49.4         45.7     42.0                    Fu = 65 ksi        40.6 [all bolt sizes]
                          Le = 2"
        Fu = 58 ksi       78.3         79.9     76.7
         Fu = 65 ksi      87.7         89.6     85.9

The bearing resistance of the connection shall be taken as
the sum of the bearing resistances of the individual bolts.




                                                              106
CIVIL ENGINEERING (continued)




               Area Depth Web            Flange        Compact       X1          X2       rT     d/Af               Axis X-X                     Axis Y-Y

     Shape                                                                            6
                A         d     tw     bf      tf       section              x 10         **     **       I         S         r        Z         I         r
                     2                                                                                         4         3                  3         4
               in.       in.    in.    in.    in.    bf/2tf   h/tw   ksi     1/ksi        in.    1/in.   in.       in.       in.      in.       in.       in.



    W24 × 103 30.3       24.5   0.55   9.00   0.98   4.59     39.2   2390    5310         2.33   2.78    3000      245       9.96     280       119       1.99

    W24 × 94   27.7      24.3   0.52   9.07   0.88   5.18     41.9   2180    7800         2.33   3.06    2700      222       9.87     254       109       1.98

    W24 × 84   24.7      24.1   0.47   9.02   0.77   5.86     45.9   1950    12200        2.31   3.47    2370      196       9.79     224       94.4      1.95

    W24 × 76   22.4      23.9   0.44   8.99   0.68   6.61     49.0   1760    18600        2.29   3.91    2100      176       9.69     200       82.5      1.92

    W24 × 68   20.1      23.7   0.42   8.97   0.59   7.66     52.0   1590    29000        2.26   4.52    1830      154       9.55     177       70.4      1.87

    W24 × 62   18.3      23.7   0.43   7.04   0.59   5.97     49.7   1730    23800        1.71   5.72    1560      132       9.24     154       34.5      1.37

    W24 × 55   16.3      23.6   0.40   7.01   0.51   6.94     54.1   1570    36500        1.68   6.66    1360      115       9.13     135       29.1      1.34



    W21 × 93   27.3      21.6   0.58   8.42   0.93   4.53     32.3   2680    3460         2.17   2.76    2070      192       8.70     221       92.9      1.84

    W21 × 83   24.3      21.4   0.52   8.36   0.84   5.00     36.4   2400    5250         2.15   3.07    1830      171       8.67     196       81.4      1.83

    W21 × 73   21.5      21.2   0.46   8.30   0.74   5.60     41.2   2140    8380         2.13   3.46    1600      151       8.64     172       70.6      1.81

    W21 × 68   20.0      21.1   0.43   8.27   0.69   6.04     43.6   2000    10900        2.12   3.73    1480      140       8.60     160       64.7      1.80

    W21 × 62   18.3      21.0   0.40   8.24   0.62   6.70     46.9   1820    15900        2.10   4.14    1330      127       8.54     144       57.5      1.77

*   W21 × 55   16.2      20.8   0.38   8.22   0.52   7.87     50.0   1630    25800        ---     ---    1140      110       8.40     126       48.4      1.73

*   W21 × 48   14.1      20.6   0.35   8.14   0.43   9.47     53.6   1450    43600        ---     ---    959       93.0      8.24     107       38.7      1.66

    W21 × 57   16.7      21.1   0.41   6.56   0.65   5.04     46.3   1960    13100        1.64   4.94    1170      111       8.36     129       30.6      1.35

    W21 × 50   14.7      20.8   0.38   6.53   0.54   6.10     49.4   1730    22600        1.60   5.96    984       94.5      8.18     110       24.9      1.30

    W21 × 44   13.0      20.7   0.35   6.50   0.45   7.22     53.6   1550    36600        1.57   7.06    843       81.6      8.06     95.4      20.7      1.26



       * LRFD Manual only                                                                   ** AISC ASD Manual, 9th Edition




                                                                           107
CIVIL ENGINEERING (continued)



                            Table 1-1: W-Shapes Dimensions and Properties (continued)



            Area Depth Web             Flange        Compact       X1       X2        rT     d/Af               Axis X-X                   Axis Y-Y
  Shape      A         d                              section                     6                   I         S         r      Z         I         r
                              tw     bf      tf                            x 10       **     **
                  2                                                                                        4         3                3         4
            in.       in.     in.    in.    in.    bf/2tf   h/tw   ksi     1/ksi      in.    1/in.   in.       in.       in.    in.       in.       in.


W18 × 86    25.3      18.4    0.48   11.1   0.77   7.20     33.4   2460     4060      2.97   2.15    1530      166       7.77   186       175       2.63
W18 × 76    22.3      18.2    0.43   11.0   0.68   8.11     37.8   2180     6520      2.95   2.43    1330      146       7.73   163       152       2.61
W18 × 71    20.8      18.5    0.50   7.64   0.81   4.71     32.4   2690     3290      1.98   2.99    1170      127       7.50   146       60.3      1.70
W18 × 65    19.1      18.4    0.45   7.59   0.75   5.06     35.7   2470     4540      1.97   3.22    1070      117       7.49   133       54.8      1.69
W18 × 60    17.6      18.2    0.42   7.56   0.70   5.44     38.7   2290     6080      1.96   3.47     984      108       7.47   123       50.1      1.68
W18 × 55    16.2      18.1    0.39   7.53   0.63   5.98     41.1   2110     8540      1.95   3.82     890      98.3      7.41   112       44.9      1.67
W18 × 50    14.7      18.0    0.36   7.50   0.57   6.57     45.2   1920    12400      1.94   4.21    800       88.9      7.38   101       40.1      1.65
W18 × 46    13.5      18.1    0.36   6.06   0.61   5.01     44.6   2060    10100      1.54   4.93    712       78.8      7.25   90.7      22.5      1.29
W18 × 40    11.8      17.9    0.32   6.02   0.53   5.73     50.9   1810    17200      1.52   5.67    612       68.4      7.21   78.4      19.1      1.27
W18 × 35    10.3      17.7    0.30   6.00   0.43   7.06     53.5   1590    30800      1.49   6.94    510       57.6      7.04   66.5      15.3      1.22

W16 × 89    26.4      16.8    0.53   10.4   0.88   5.92     25.9   3160     1460      2.79   1.85    1310      157       7.05   177       163       2.48
W16 × 77    22.9      16.5    0.46   10.3   0.76   6.77     29.9   2770     2460      2.77   2.11    1120      136       7.00   152       138       2.46
W16 × 67    20.0      16.3    0.40   10.2   0.67   7.70     34.4   2440     4040      2.75   2.40     970      119       6.97   132       119       2.44
W16 × 57    16.8      16.4    0.43   7.12   0.72   4.98     33.0   2650     3400      1.86   3.23    758       92.2      6.72   105       43.1      1.60
W16 × 50    14.7      16.3    0.38   7.07   0.63   5.61     37.4   2340     5530      1.84   3.65    659       81.0      6.68   92.0      37.2      1.59
W16 × 45    13.3      16.1    0.35   7.04   0.57   6.23     41.1   2120     8280      1.83   4.06    586       72.7      6.65   82.3      32.8      1.57
W16 × 40    11.8      16.0    0.31   7.00   0.51   6.93     46.5   1890    12700      1.82   4.53    518       64.7      6.63   73.0      28.9      1.57
W16 × 36    10.6      15.9    0.30   6.99   0.43   8.12     48.1   1700    20400      1.79   5.28    448       56.5      6.51   64.0      24.5      1.52
W16 × 31     9.1      15.9    0.28   5.53   0.44   6.28     51.6   1740    19900      1.39   6.53    375       47.2      6.41   54.0      12.4      1.17
W16 × 26     7.7      15.7    0.25   5.50   0.35   7.97     56.8   1480    40300      1.36   8.27    301       38.4      6.26   44.2      9.59      1.12

W14 × 120   35.3      14.5    0.59   14.7   0.94   7.80     19.3   3830     601       4.04   1.05    1380      190       6.24   212       495       3.74
W14 × 109   32.0      14.3    0.53   14.6   0.86   8.49     21.7   3490     853       4.02   1.14    1240      173       6.22   192       447       3.73
W14 × 99    29.1      14.2    0.49   14.6   0.78   9.34     23.5   3190    1220       4.00   1.25    1110      157       6.17   173       402       3.71
W14 × 90    26.5      14.0    0.44   14.5   0.71   10.2     25.9   2900    1750       3.99   1.36     999      143       6.14   157       362       3.70
W14 × 82    24.0      14.3    0.51   10.1   0.86   5.92     22.4   3590     849       2.74   1.65     881      123       6.05   139       148       2.48
W14 × 74    21.8      14.2    0.45   10.1   0.79   6.41     25.4   3280    1200       2.72   1.79     795      112       6.04   126       134       2.48
W14 × 68    20.0      14.0    0.42   10.0   0.72   6.97     27.5   3020    1660       2.71   1.94     722      103       6.01   115       121       2.46
W14 × 61    17.9      13.9    0.38   9.99   0.65   7.75     30.4   2720    2470       2.70   2.15    640       92.1      5.98   102       107       2.45
W14 × 53    15.6      13.9    0.37   8.06   0.66   6.11     30.9   2830    2250       2.15   2.62    541       77.8      5.89   87.1      57.7      1.92
W14 × 48    14.1      13.8    0.34   8.03   0.60   6.75     33.6   2580    3250       2.13   2.89    484       70.2      5.85   78.4      51.4      1.91

W12 × 106   31.2      12.9    0.61   12.2   0.99   6.17     15.9   4660     285       3.36   1.07    933       145       5.47   164       301       3.11
W12 × 96    28.2      12.7    0.55   12.2   0.90   6.76     17.7   4250     407       3.34   1.16    833       131       5.44   147       270       3.09
W12 × 87    25.6      12.5    0.52   12.1   0.81   7.48     18.9   3880     586       3.32   1.28    740       118       5.38   132       241       3.07
W12 × 79    23.2      12.4    0.47   12.1   0.74   8.22     20.7   3530     839       3.31   1.39    662       107       5.34   119       216       3.05
W12 × 72    21.1      12.3    0.43   12.0   0.67   8.99     22.6   3230    1180       3.29   1.52    597       97.4      5.31   108       195       3.04
W12 × 65    19.1      12.1    0.39   12.0   0.61   9.92     24.9   2940    1720       3.28   1.67    533       87.9      5.28   96.8      174       3.02
W12 × 58    17.0      12.2    0.36   10.0   0.64   7.82     27.0   3070    1470       2.72   1.90    475       78.0      5.28   86.4      107       2.51
W12 × 53    15.6      12.1    0.35   9.99   0.58   8.69     28.1   2820    2100       2.71   2.10    425       70.6      5.23   77.9      95.8      2.48
W12 × 50    14.6      12.2    0.37   8.08   0.64   6.31     26.8   3120    1500       2.17   2.36    391       64.2      5.18   71.9      56.3      1.96
W12 × 45    13.1      12.1    0.34   8.05   0.58   7.00     29.6   2820    2210       2.15   2.61    348       57.7      5.15   64.2      50.0      1.95
W12 × 40    11.7      11.9    0.30   8.01   0.52   7.77     33.6   2530    3360       2.14   2.90    307       51.5      5.13   57.0      44.1      1.94

                                                                                        ** AISC ASD Manual, 9th Edition




                                                                     108
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals
Civil Engineering Geotechnical Fundamentals

Contenu connexe

Tendances

Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Muhammad Irfan
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Muhammad Irfan
 
167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umssEdson Cossio
 
Capítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptxCapítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptxAngeloMoreira13
 
Consolidacion
ConsolidacionConsolidacion
Consolidacionhansico
 
Discharge Over a Vee-Notch Weir | Jameel Academy
Discharge Over a Vee-Notch Weir | Jameel AcademyDischarge Over a Vee-Notch Weir | Jameel Academy
Discharge Over a Vee-Notch Weir | Jameel AcademyJameel Academy
 
Solution manual for fundamentals of geotechnical engineering 4th edition br...
Solution manual for fundamentals of geotechnical engineering 4th edition   br...Solution manual for fundamentals of geotechnical engineering 4th edition   br...
Solution manual for fundamentals of geotechnical engineering 4th edition br...Salehkhanovic
 
Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Muhammad Irfan
 
soil liquefaction and quicksand condition
soil liquefaction and quicksand conditionsoil liquefaction and quicksand condition
soil liquefaction and quicksand conditionazlan ahmad
 
Shear Force and Bending moment Diagram
Shear Force and Bending moment DiagramShear Force and Bending moment Diagram
Shear Force and Bending moment DiagramAshish Mishra
 
Consolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfConsolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfA K
 
Shear Strength sivakugan
Shear Strength sivakuganShear Strength sivakugan
Shear Strength sivakuganZakee Kazmee
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsMahdi Damghani
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1SHAMJITH KM
 
Ejercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdfEjercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdfRafael Ortiz
 

Tendances (20)

Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
Geotechnical Engineering-II [Lec #27: Infinite Slope Stability Analysis]
 
Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]Geotechnical Engineering-I [Lec #19: Consolidation-III]
Geotechnical Engineering-I [Lec #19: Consolidation-III]
 
167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss167820324 texto-guia-mecanica-suelos-ii-umss
167820324 texto-guia-mecanica-suelos-ii-umss
 
Chapter 12
Chapter 12Chapter 12
Chapter 12
 
Capítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptxCapítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptx
 
Consolidacion
ConsolidacionConsolidacion
Consolidacion
 
Discharge Over a Vee-Notch Weir | Jameel Academy
Discharge Over a Vee-Notch Weir | Jameel AcademyDischarge Over a Vee-Notch Weir | Jameel Academy
Discharge Over a Vee-Notch Weir | Jameel Academy
 
Solution manual for fundamentals of geotechnical engineering 4th edition br...
Solution manual for fundamentals of geotechnical engineering 4th edition   br...Solution manual for fundamentals of geotechnical engineering 4th edition   br...
Solution manual for fundamentals of geotechnical engineering 4th edition br...
 
Moh'r circle2
Moh'r circle2Moh'r circle2
Moh'r circle2
 
Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]Geotechnical Engineering-I [Lec #17: Consolidation]
Geotechnical Engineering-I [Lec #17: Consolidation]
 
Hydrostatic forces on plane surfaces
Hydrostatic forces on plane surfacesHydrostatic forces on plane surfaces
Hydrostatic forces on plane surfaces
 
soil liquefaction and quicksand condition
soil liquefaction and quicksand conditionsoil liquefaction and quicksand condition
soil liquefaction and quicksand condition
 
Shear Force and Bending moment Diagram
Shear Force and Bending moment DiagramShear Force and Bending moment Diagram
Shear Force and Bending moment Diagram
 
Consolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfConsolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdf
 
Shear Strength sivakugan
Shear Strength sivakuganShear Strength sivakugan
Shear Strength sivakugan
 
Lec5 torsion of thin walled beams
Lec5 torsion of thin walled beamsLec5 torsion of thin walled beams
Lec5 torsion of thin walled beams
 
Mechanics of structures - module1
Mechanics of structures - module1Mechanics of structures - module1
Mechanics of structures - module1
 
Direct Shear Test
Direct Shear TestDirect Shear Test
Direct Shear Test
 
Ejercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdfEjercicio Juarez Badillo.pdf
Ejercicio Juarez Badillo.pdf
 
H#8
H#8H#8
H#8
 

En vedette

A Primer On Military Vehicle Mobility Vintage 2003
A Primer On Military Vehicle Mobility   Vintage 2003A Primer On Military Vehicle Mobility   Vintage 2003
A Primer On Military Vehicle Mobility Vintage 2003Jim Lutz
 
Tecnico en construccion
Tecnico en construccionTecnico en construccion
Tecnico en construccionJose Fuentes
 
Nec2011 cap4-estructuras de hormigon armado-2013
Nec2011 cap4-estructuras de hormigon armado-2013Nec2011 cap4-estructuras de hormigon armado-2013
Nec2011 cap4-estructuras de hormigon armado-2013Leonardo Kaos
 
Las Estructuras de Concreto
Las Estructuras de ConcretoLas Estructuras de Concreto
Las Estructuras de ConcretoMagnolia Antigua
 
Columnas de concreto armado
Columnas de concreto armadoColumnas de concreto armado
Columnas de concreto armadoGIULIANORMP
 
Leonhardt tomo i (Hormigón Armado)
Leonhardt   tomo i (Hormigón Armado)Leonhardt   tomo i (Hormigón Armado)
Leonhardt tomo i (Hormigón Armado)Masael Sanchez
 
Ingenieria calculo de estructuras de cimentacion
Ingenieria calculo de estructuras de cimentacionIngenieria calculo de estructuras de cimentacion
Ingenieria calculo de estructuras de cimentacionSantiago Paez Pachon
 
Nec2011 cap.1-cargas y materiales-021412
Nec2011 cap.1-cargas y materiales-021412Nec2011 cap.1-cargas y materiales-021412
Nec2011 cap.1-cargas y materiales-021412Anthony Tene
 
NORMAS DE LA CONSTRUCCION EN ECUADOR
NORMAS DE LA CONSTRUCCION EN ECUADORNORMAS DE LA CONSTRUCCION EN ECUADOR
NORMAS DE LA CONSTRUCCION EN ECUADORWILSON VELASTEGUI
 
Estructuras de hormigon armado
Estructuras de hormigon armadoEstructuras de hormigon armado
Estructuras de hormigon armadoGonzalo Peche V
 
Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1Julian Fernandez
 

En vedette (20)

Proceso tecnico
Proceso tecnicoProceso tecnico
Proceso tecnico
 
A Primer On Military Vehicle Mobility Vintage 2003
A Primer On Military Vehicle Mobility   Vintage 2003A Primer On Military Vehicle Mobility   Vintage 2003
A Primer On Military Vehicle Mobility Vintage 2003
 
Tecnico en construccion
Tecnico en construccionTecnico en construccion
Tecnico en construccion
 
Aisc torsion guide
Aisc torsion guideAisc torsion guide
Aisc torsion guide
 
Nec2011 cap4-estructuras de hormigon armado-2013
Nec2011 cap4-estructuras de hormigon armado-2013Nec2011 cap4-estructuras de hormigon armado-2013
Nec2011 cap4-estructuras de hormigon armado-2013
 
Las Estructuras de Concreto
Las Estructuras de ConcretoLas Estructuras de Concreto
Las Estructuras de Concreto
 
Los procesos de construccion
Los procesos de construccionLos procesos de construccion
Los procesos de construccion
 
Columnas de concreto armado
Columnas de concreto armadoColumnas de concreto armado
Columnas de concreto armado
 
Rc design ii
Rc design iiRc design ii
Rc design ii
 
Leonhardt tomo i (Hormigón Armado)
Leonhardt   tomo i (Hormigón Armado)Leonhardt   tomo i (Hormigón Armado)
Leonhardt tomo i (Hormigón Armado)
 
L9 zapata aislada
L9 zapata aisladaL9 zapata aislada
L9 zapata aislada
 
Ingenieria calculo de estructuras de cimentacion
Ingenieria calculo de estructuras de cimentacionIngenieria calculo de estructuras de cimentacion
Ingenieria calculo de estructuras de cimentacion
 
Nec2011 cap.1-cargas y materiales-021412
Nec2011 cap.1-cargas y materiales-021412Nec2011 cap.1-cargas y materiales-021412
Nec2011 cap.1-cargas y materiales-021412
 
NORMAS DE LA CONSTRUCCION EN ECUADOR
NORMAS DE LA CONSTRUCCION EN ECUADORNORMAS DE LA CONSTRUCCION EN ECUADOR
NORMAS DE LA CONSTRUCCION EN ECUADOR
 
Estructuras de concreto
Estructuras de concretoEstructuras de concreto
Estructuras de concreto
 
Estructuras de hormigon armado
Estructuras de hormigon armadoEstructuras de hormigon armado
Estructuras de hormigon armado
 
Columnas
ColumnasColumnas
Columnas
 
Estructuras de hormigón armado
Estructuras de hormigón armadoEstructuras de hormigón armado
Estructuras de hormigón armado
 
Diseño de columnas conceto 1
Diseño de columnas  conceto 1Diseño de columnas  conceto 1
Diseño de columnas conceto 1
 
Manual.del.ing.civil
Manual.del.ing.civilManual.del.ing.civil
Manual.del.ing.civil
 

Similaire à Civil Engineering Geotechnical Fundamentals

120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pages
120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pages120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pages
120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pagesLuc-Marie Jeudy de Sauceray
 
Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)Marc Buitenhuis
 
Design alternative revetments pilarczyk2008+
Design alternative revetments pilarczyk2008+Design alternative revetments pilarczyk2008+
Design alternative revetments pilarczyk2008+Krystian Pilarczyk
 
Transients characteristics
Transients characteristicsTransients characteristics
Transients characteristicsAldo Uribe
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1guest7b51c7
 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryanish antony
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1guest7b51c7
 
Fluid Mechanics Pp
Fluid Mechanics PpFluid Mechanics Pp
Fluid Mechanics PpXU
 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks9866560321sv
 
Correction for construction Settlement
Correction for construction SettlementCorrection for construction Settlement
Correction for construction SettlementSanchari Halder
 
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTERWISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTERALEXANDROS ANASTASSIADIS
 
Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14
Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14
Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14fahadansari131
 

Similaire à Civil Engineering Geotechnical Fundamentals (20)

120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pages
120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pages120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pages
120715 - LMAJdS paper - HydroVision 2012 presentation - 14 pages
 
Chap 02
Chap 02Chap 02
Chap 02
 
Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)Tp3 siphonic roof drainage systems gutters(dr)
Tp3 siphonic roof drainage systems gutters(dr)
 
Design alternative revetments pilarczyk2008+
Design alternative revetments pilarczyk2008+Design alternative revetments pilarczyk2008+
Design alternative revetments pilarczyk2008+
 
Transients characteristics
Transients characteristicsTransients characteristics
Transients characteristics
 
Physics
PhysicsPhysics
Physics
 
S08 chap6 web
S08 chap6 webS08 chap6 web
S08 chap6 web
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Me 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machineryMe 2204 fluid mechanics and machinery
Me 2204 fluid mechanics and machinery
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Hidro
HidroHidro
Hidro
 
Forced convection
Forced convectionForced convection
Forced convection
 
Emily
EmilyEmily
Emily
 
Fluid Mechanics Pp
Fluid Mechanics PpFluid Mechanics Pp
Fluid Mechanics Pp
 
Fluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksksFluid Mechanics (2)civil engineers sksks
Fluid Mechanics (2)civil engineers sksks
 
Fluid Mechanics (2).pdf
Fluid Mechanics (2).pdfFluid Mechanics (2).pdf
Fluid Mechanics (2).pdf
 
Correction for construction Settlement
Correction for construction SettlementCorrection for construction Settlement
Correction for construction Settlement
 
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTERWISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
WISWEC - A NEW CONCEPT FOR A WAVE ENERGY CONVERTER
 
CE6451-MLM-Fluid Mechanics
CE6451-MLM-Fluid MechanicsCE6451-MLM-Fluid Mechanics
CE6451-MLM-Fluid Mechanics
 
Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14
Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14
Atmospheric dispersion im Muhammad Fahad Ansari 12IEEM14
 

Dernier

FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinojohnmickonozaleda
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 

Dernier (20)

FILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipinoFILIPINO PSYCHology sikolohiyang pilipino
FILIPINO PSYCHology sikolohiyang pilipino
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 

Civil Engineering Geotechnical Fundamentals

  • 1. CIVIL ENGINEERING GEOTECHNICAL Q = KH(Nf /Nd) (for flow nets, Q per unit width), Definitions where K = coefficient permeability, c = cohesion H = total hydraulic head (potential), cc = coefficient of curvature or gradation Nf = number of flow tubes, and = (D30)2/[(D60)(D10)], where Nd = number of potential drops. D10, D30, D60 = particle diameter corresponding to 10%, 30%, and 60% finer on grain-size curve. γ = total unit weight of soil = W/V cu = uniformity coefficient = D60 /D10 γd = dry unit weight of soil = Ws /V e = void ratio = Vv /Vs, where = Gγw /(1 + e) = γ /(1 + w), where Vv = volume of voids, and Gw = Se Vs = volume of the solids. γs = unit weight of solid = Ws / Vs K = coefficient of permeability = hydraulic conductivity n = porosity = Vv /V = e/(1 + e) = Q/(iA) (from Darcy's equation), where τ = general shear strength = c + σtan φ, where Q = discharge rate φ = angle of internal friction, i = hydraulic gradient = dH/dx, σ = normal stress = P/A, H = hydraulic head, P = force, and A = cross-sectional area. A = area. qu = unconfined compressive strength = 2c Ka = coefficient of active earth pressure w = water content (%) = (Ww /Ws) ×100, where Ww = weight of water, and = tan2(45 – φ/2) Ws = weight of solids. Kp = coefficient of passive earth pressure = tan2(45 + φ/2) Cc = compression index = ∆e/∆log p Pa = active resultant force = 0.5γH 2Ka, where = (e1 – e2)/(log p2 – log p1), where H = height of wall. e1 and e2 = void ratio, and p1 and p2 = pressure. qult = bearing capacity equation = cNc + γDf Nq + 0.5γBNγ , where Dr = relative density (%) Nc, Nq, and Nγ = bearing capacity factors = [(emax – e)/(emax – emin)] ×100 B = width of strip footing, and = [(1/γmin – 1/γd) /(1/γmin – 1/γmax)] × 100, where Df = depth of footing below surface. emax and emin = maximum and minimum void ratio, and γmax and γmin = maximum and minimum unit dry weight. FS = factor of safety (slope stability) cL + Wcosα tanφ = , where Gs = specific gravity = Ws /(Vsγw), where W sinα γw = unit weight of water (62.4 lb/ft3 or 1,000 kg/m3). L = length of slip plane, ∆H = settlement = H [Cc /(1 + ei)] log [(pi + ∆p)/pi] α = slope of slip plane, = H∆e/(1 + ei), where φ = angle of friction, and H = thickness of soil layer W = total weight of soil above slip plane. ∆e = change in void ratio, and Cv = coefficient of consolidation = TH 2/t, where p = pressure. T = time factor, PI = plasticity index = LL – PL, where t = consolidation time. LL = liquid limit, and Hdr = length of drainage path PL = plasticity limit. n = number of drainage layers Cc = compression index for normally consolidated clay S = degree of saturation (%) = (Vw /Vv) × 100, where Vw = volume of water, = 0.009 (LL – 10) Vv = volume of voids. σ′ = effective stress = σ – u, where σ = normal stress, and u = pore water pressure. 93
  • 2. CIVIL ENGINEERING (continued) UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D-2487) Group Major Divisions Typical Names Laboratory Classification Criteria Symbols D 60 (More than half of coarse fraction is larger than No. Depending on percentage of fines (fraction smaller than No. 200 sieve size), coarse-grained soils are Clean gravels (Little or no cu = greater than 4; D10 Well-graded gravels, gravel-sand GW mixtures, little or no fines (D ) 2 fines) cc = 30 between 1 and 3 D 10 × D 60 Determine percentages of sand and gravel from grain-size curve. 4 sieve size) (More than half of material is larger than No. 200 sieve size) Gravels Poorly-graded gravels, gravel-sand GP Not meeting all gradiation requirements for GW mixtures, little or no fines d Gravels with fines GMa Above "A" line amount of fines) Silty gravels, gravel-sand-silt mixtures Atterberg limits below "A" (Appreciable u with PI between 4 line or PI less than 4 and 7 are classified as follows: Coarse-grained soils borderline cases 5 to 12 percent: Borderline cases requiring dual symbolsb Clayey gravels, gravel-sand-clay requiring use of GC Atterberg limits above "A" mixtures dual symbols line with PI greater than 7 D 60 (More than half of coarse fraction is smaller Clean sands (Little or no cu = greater than 6; More than 12 percent: GM, GC, SM, SC D10 Well-graded sands, gravelly sands, little Less than 5 percent: GW, GP, SW, SP SW or no fines (D )2 fines) than No. 4 sieve size) cc = 30 between 1 and 3 D 10 × D 60 Sands Poorly graded sand, gravelly sands, little SP Not meeting all gradation requirements for SW or no fines d Limits plotting in Atterberg limits below "A" (Appreciable SMa Silty sands, sand-silt mixtures hatched zone with Sands with amount of u line or PI less than 4 fines) PI between 4 and 7 fines are borderline Atterberg limits above "A" cases requiring use SC Clayey sands, sand-clay mixtures line with PI greater than 7 of dual symbols Inorganic silts and very fine sands, rock ML flour, silty or clayey fine sands, or (Liquid limit less Silts and clays clayey silts with slight plasticity (More than half material is smaller than No. 200 sieve) than 50) Inorganic clays of low to medium CL plasticity, gravelly clays, sandy clays, silty clays, lean clays Organic silts and organic silty clays of OL low plasticity Inorganic silts, micaceous or Fine-grained soils greater than 50) MH diatomaceous fine sandy or silty soils, Silts and clays (Liquid limit elastic silts Inorganic clays of high plasticity, fat CH clays Organic clays of medium to high OH plasticity, organic silts Highly organic Peat and other highly organic soils soils Pt a Division of GM and SM groups into subdivisions of d and u are for roads and airfields only. Subdivision is based on Atterberg limits; suffix d used when LL is 28 or less and the PI is 6 or less; the suffix u used when LL is greater than 28. b Borderline classification, used for soils possessing characteristics of two groups, are designated by combinations of group symbols. For example GW-GC, well-graded gravel-sand mixture with clay binder. 94
  • 3. CIVIL ENGINEERING (continued) STRUCTURAL ANALYSIS Influence Lines α = coefficient of thermal expansion An influence diagram shows the variation of a function L = member length (reaction, shear, bending moment) as a single unit load Fp = member force due to external load moves across the structure. An influence line is used to (1) determine the position of load where a maximum quantity A = cross-sectional area of member will occur and (2) determine the maximum value of the E = modulus of elasticity quantity. ∆T = T–TO; T = final temperature, and TO = initial Deflection of Trusses temperature Principle of virtual work as applied to trusses ∆ = ΣfQδL Deflection of Frames ∆ = deflection at point of interest The principle of virtual work as applied to frames: fQ = member force due to virtual unit load applied at ­ L mM ½ ∆ = ¦ ®³O dx ¾ the point of interest ¯ EI ¿ δL = change in member length m = bending moment as a funtion of x due to virtual unit load applied at the point of interest = αL(∆T) for temperature M = bending moment as a function of x due to external = FpL/AE for external load loads BEAM FIXED-END MOMENT FORMULAS Pab 2 Pa 2 b FEM AB = FEM BA = L2 L2 w o L2 w o L2 FEM AB = FEM BA = 12 12 w o L2 w o L2 FEM AB = FEM BA = 30 20 Live Load Reduction The live load applied to a structure member can be reduced as the loaded area supported by the member is increased. A typical reduction model (as used in ASCE 7 and in building codes) for a column supporting two or more floors is: § 15 · Lreduced = Lnominal ¨ 0.25 + ¸ ≥ 0.4 L Columns: kLL = 4 ¨ k LL AT ¸ nominal © ¹ Beams: kLL = 2 where Lnominal is the nominal live load (as given in a load standard or building code), AT is the floor tributary area(s) supported by the member, and kLL is the ratio of the area of influence to the tributary area. 95
  • 4. CIVIL ENGINEERING (continued) REINFORCED CONCRETE DESIGN ACI 318-02 US Customary units ASTM STANDARD REINFORCING BARS Definitions BAR SIZE DIAMETER, IN AREA, IN2 WEIGHT, LB/FT a = depth of equivalent rectangular stress block, in #3 0.375 0.11 0.376 Ag = gross area of column, in2 #4 0.500 0.20 0.668 As = area of tension reinforcement, in2 #5 0.625 0.31 1.043 As' = area of compression reinforcement, in2 #6 0.750 0.44 1.502 Ast = total area of longitudinal reinforcement, in2 #7 0.875 0.60 2.044 Av = area of shear reinforcment within a distance s, in #8 1.000 0.79 2.670 #9 1.128 1.00 3.400 b = width of compression face of member, in #10 1.270 1.27 4.303 be = effective compression flange width, in #11 1.410 1.56 5.313 bw = web width, in #14 1.693 2.25 7.650 #18 2.257 4.00 13.60 β1 = ratio of depth of rectangular stress block, a, to depth to neutral axis, c § f c ' − 4,000 · = 0.85 ≥ 0.85 – 0.05 ¨ ¨ ¸ ≥ 0.65 ¸ © 1,000 ¹ LOAD FACTORS FOR REQUIRED STRENGTH c = distance from extreme compression fiber to neutral U = 1.4 D axis, in U = 1.2 D + 1.6 L d = distance from extreme compression fiber to centroid of nonprestressed tension reinforcement, in SELECTED ACI MOMENT COEFFICIENTS dt = distance from extreme tension fiber to extreme Approximate moments in continuous beams of three or tension steel, in more spans, provided: Ec = modulus of elasticity = 33 wc1.5 f c ' , psi 1. Span lengths approximately equal (length of εt = net tensile strain in extreme tension steel at nominal longer adjacent span within 20% of shorter) strength 2. Uniformly distributed load fc' = compressive strength of concrete, psi 3. Live load not more than three times dead load fy = yield strength of steel reinforcement, psi Mu = coefficient * wu * Ln2 hf = T-beam flange thickness, in wu = factored load per unit beam length Mc = factored column moment, including slenderness Ln = clear span for positive moment; average effect, in-lb adjacent clear spans for negative moment Mn = nominal moment strength at section, in-lb φMn = design moment strength at section, in-lb Column 1 1 + + Mu = factored moment at section, in-lb 14 16 Pn = nominal axial load strength at given eccentricity, lb 1 1 1 1 φPn = design axial load strength at given − − − − eccentricity, lb 16 10 11 11 Pu = factored axial force at section, lb Ln ρg = ratio of total reinforcement area to cross-sectional area of column = Ast/Ag Spandrel 1 1 s = spacing of shear ties measured along longitudinal beam + + 14 16 axis of member, in Vc = nominal shear strength provided by concrete, lb 1 1 1 1 − − − − Vn = nominal shear strength at section, lb 24 10 11 11 φVn = design shear strength at section, lb Vs = nominal shear strength provided by reinforcement, 1 1 lb Unrestrained + + 11 16 Vu = factored shear force at section, lb end 1 1 1 − − − 10 11 11 End span Interior span 96
  • 5. CIVIL ENGINEERING (continued) UNIFIED DESIGN PROVISIONS BEAMS − FLEXURE: φMN ≥ MU Internal Forces and Strains For all beams d' Comp.strain Net tensile strain: a = β1 c Mu 0.003 ( dt − c ) 0.003 ( β1 dt − a ) ε's εt = = A's C c C s' c c a Pu d Design moment strength: φMn dt As where: φ = 0.9 [εt ≥ 0.005] Ts φ = 0.48 + 83εt [0.004 ≤ εt < 0.005] Net tensile strain: εt Reinforcement limits: AS, max εt = 0.004 @ Mn Strain Conditions ­ ′ ° 3 f c bw d 200 b d w 0.003 0.003 0.003 AS ,min = larger ® or f f ° y y ¯ c c As,min limits need not be applied if A's c As (provided ≥ 1.33 As (required) dt As Singly-reinforced beams 0.85 f c ' β 1 b § 3 d t · As,max = ¨ ¨ 7 ¸ ¸ εt ≥ 0.005 0.005> εt >0.002 εt ≤ 0.002 fy © ¹ Tension- Transition Compression- As f y a= controlled section controlled 0.85 f c′ b section: section: c ≤ 0.375 dt a a c ≥ 0.6 dt Mn = 0.85 fc' a b (d − ) = As fy (d − ) 2 2 Doubly-reinforced beams Balanced Strain: εt = εy Compression steel yields if: 0.003 0.85 β1 f c′ d' b § 87,000 · A s − A s' ≥ ¨ ¸ A's fy ¨ 87,000 + f y ¸ © ¹ dt If compression steel yields: As 0.85 f c′ β1 b § 3 d t · As,max = ¨ ′ ¸ − As fy fy © 7 ¹ εt = εy = = 0.002 Es ′ ( As − As ) f y a = 0.85 f c ' b ª § a· º Mn = fy « ( As − As ) ¨ d − ¸ + As ( d − d ' ) » ′ ′ RESISTANCE FACTORS, φ ¬ © 2¹ ¼ If compression steel does not yield (four steps): Tension-controlled sections ( εt ≥ 0.005 ): φ = 0.9 1. Solve for c: Compression-controlled sections ( εt ≤ 0.002 ): Members with spiral reinforcement φ = 0.70 § (87,000 − 0.85 f c ' ) As ' − As f y · c2 + ¨ ¨ ¸c ¸ Members with tied reinforcement φ = 0.65 © 0.85 f c ' β1 b ¹ Transition sections ( 0.002 < εt < 0.005 ): 87,000 As ' d ' Members w/ spiral reinforcement φ = 0.57 + 67εt − =0 0.85 f c ' β1 b Members w/ tied reinforcement φ = 0.48 + 83εt Shear and torsion φ = 0.75 Bearing on concrete φ = 0.65 97
  • 6. CIVIL ENGINEERING (continued) BEAMS − FLEXURE: φMN ≥ MU (CONTINUED) BEAMS − SHEAR: φVN ≥ Vu Doubly-reinforced beams (continued) Beam width used in shear equations: Compression steel does not yield (continued) b (rectangular beams ) § c − d' · bw = 2. fs'=87,000 ¨ ¸ bw (T−beams) © c ¹ Nominal shear strength: 0.85 f c 'β1 b § 3 d t · § f '· 3. As,max= ¨ ¸ − A s' ¨ s ¸ Vn = Vc + Vs fy © 7 ¹ ¨ fy ¸ © ¹ Vc = 2 bw d f c ' ( As f y − As ' f s ' ) 4. a = Av f y d 0.85 f c ' b Vs = [may not exceed 8 bw d f c' ] s ª § As f y ·§ a· º Required and maximum-permitted stirrup spacing, s Mn = fs' « ¨ ¸ ¨ f ' − As ' ¸ ¨ d − ¸ + As ' ( d − d ' ) » «© s ¬ ¹© 2¹ » ¼ φVc Vu ≤ : No stirrups required 2 T-beams − tension reinforcement in stem φVc Vu > : Use the following table ( Av given ): 2 Effective flange width: 1/4 • span length be = bw + 16 • hf φVc < Vu ≤ φVc Vu > φVc 2 beam centerline spacing smallest Design moment strenth: Smaller of: Vs = Vu − φVc : As f y Av f y a= s= 0.85 f c ' be 50b w Required φ Av f y d If a ≤ hf : Av f y s= spacing s= Vs 0.85 f c ' β 1 be § 3 dt · 0.75 bw fc ' As,max = ¨ ¨ 7 ¸ ¸ fy © ¹ a Mn = 0.85 fc' a be (d- ) 2 Vs ≤ 4 b w d fc ' If a > hf : Smaller of: Smaller of: d 0.85 f c 'β1 be § 3 d t · 0.85 f c ' (be − bw ) h f s= OR As,max = ¨ ¸+ Maximum d 2 fy © 7 ¹ fy permitted s= 2 s =24" hf spacing Mn = 0.85 fc' [hf (be − bw) (d − ) OR 2 Vs > 4 b w d fc ' s =24" a + a bw (d − )] Smaller of: 2 d s= 4 s =12" 98
  • 7. CIVIL ENGINEERING (continued) SHORT COLUMNS: Reinforcement limits: Concentrically-loaded short columns: φPn ≥ Pu A M1 = M2 = 0 ρ g = st Ag KL ≤ 22 0.01 ≤ ρg ≤ 0.08 r Design column strength, spiral columns: φ = 0.70 Definition of a short column: φPn = 0.85φ [ 0.85 fc' ( Ag − Ast ) + Ast fy ] KL 12 M 1 ≤ 34 − r M2 Design column strength, tied columns: φ = 0.65 where: KL = Lcol clear height of column φPn = 0.80φ [ 0.85 fc' ( Ag − Ast ) + Ast fy ] [assume K = 1.0] Short columns with end moments: r = 0.288h rectangular column, h is side length Mu = M2 or Mu = Pu e perpendicular to buckling axis ( i.e., Use Load-moment strength interaction diagram to: side length in the plane of buckling ) 1. Obtain φPn at applied moment Mu r = 0.25h circular column, h = diameter 2. Obtain φPn at eccentricity e 3. Select As for Pu , Mu M1 = smaller end moment M2 = larger end moment M1 M2 LONG COLUMNS − Braced (non-sway) frames Definition of a long column: Long columns with end moments: KL 12 M 1 M1 = smaller end moment > 34 − r M2 M2 = larger end moment M1 Critical load: positive if M1 , M2 produce single curvature M2 π2 E I π2 E I Pc = = 0 .4 M 1 ( KL ) 2 ( Lcol ) 2 C m = 0.6 + ≥ 0.4 M2 where: EI = 0.25 Ec Ig Cm M 2 Mc = ≥ M2 Pu Concentrically-loaded long columns: 1− 0.75 Pc emin = (0.6 + 0.03h) minimum eccentricity Use Load-moment strength interaction diagram M1 = M2 = Pu emin (positive curvature) to design/analyze column for Pu , Mu KL > 22 r M2 Mc = Pu 1− 0.75 Pc Use Load-moment strength interaction diagram to design/analyze column for Pu , Mu 99
  • 8. CIVIL ENGINEERING (continued) GRAPH A.11 Column strength interaction diagram for rectangular section with bars on end faces and γ = 0.80 (for instructional use only). Design of Concrete Structures, 13th Edition (2004), Nilson, Darwin, Dolan McGraw-Hill ISBN 0-07-248305-9 GRAPH A.11, Page 762 Used by permission 100
  • 9. CIVIL ENGINEERING (continued) GRAPH A.15 Column strength interaction diagram for circular section γ = 0.80 (for instructional use only). Design of Concrete Structures, 13th Edition (2004), Nilson, Darwin, Dolan McGraw-Hill ISBN 0-07-248305-9 GRAPH A.15, Page 766 Used by permission 101
  • 10. CIVIL ENGINEERING (continued) STEEL STRUCTURES References: AISC LRFD Manual, 3rd Edition AISC ASD Manual, 9th Edition LOAD COMBINATIONS (LRFD) Floor systems: 1.4D Roof systems: 1.2D + 1.6(Lr or S or R) + 0.8W 1.2D + 1.6L 1.2D + 0.5(Lr or S or R) + 1.3W 0.9D ± 1.3W where: D = dead load due to the weight of the structure and permanent features L = live load due to occupancy and moveable equipment L r = roof live load S = snow load R = load due to initial rainwater (excluding ponding) or ice W = wind load TENSION MEMBERS: flat plates, angles (bolted or welded) Gross area: Ag = bg t (use tabulated value for angles) s2 Net area: An = (bg − ΣDh + ) t across critical chain of holes 4g where: bg = gross width t = thickness s = longitudinal center-to-center spacing (pitch) of two consecutive holes g = transverse center-to-center spacing (gage) between fastener gage lines Dh = bolt-hole diameter Effective area (bolted members): Effective area (welded members): U = 1.0 (flat bars) U = 1.0 (flat bars, L ≥ 2w) Ae = UAn U = 0.85 (angles with ≥ 3 bolts in line) Ae = UAg U = 0.87 (flat bars, 2w > L ≥ 1.5w) U = 0.75 (angles with 2 bolts in line) U = 0.75 (flat bars, 1.5w > L ≥ w) U = 0.85 (angles) LRFD Yielding: φTn = φy Ag Fy = 0.9 Ag Fy ASD Fracture: φTn = φf Ae Fu = 0.75 Ae Fu Yielding: Ta = Ag Ft = Ag (0.6 Fy) Block shear rupture (bolted tension members): Fracture: Ta = Ae Ft = Ae (0.5 Fu) Agt =gross tension area Agv =gross shear area Block shear rupture (bolted tension members): Ant =net tension area Ta = (0.30 Fu) Anv + (0.5 Fu) Ant Anv=net shear area Ant = net tension area When FuAnt ≥ 0.6 FuAnv: Anv = net shear area 0.75 [0.6 Fy Agv + Fu Ant] φRn = smaller 0.75 [0.6 Fu Anv + Fu Ant] When FuAnt < 0.6 FuAnv: 0.75 [0.6 Fu Anv + Fy Agt] φRn = smaller 0.75 [0.6 Fu Anv + Fu Ant] 0 102
  • 11. CIVIL ENGINEERING (continued) BEAMS: homogeneous beams, flexure about x-axis Flexure – local buckling: bf 65 h 640 No local buckling if section is compact: ≤ and ≤ 2t f Fy tw Fy bf h where: For rolled sections, use tabulated values of and 2t f tw For built-up sections, h is clear distance between flanges For Fy ≤ 50 ksi, all rolled shapes except W6 × 19 are compact. Flexure – lateral-torsional buckling: Lb = unbraced length LRFD–compact rolled shapes ASD–compact rolled shapes 300 ry 76 b f 20,000 Lp = Lc = or use smaller Fy Fy (d / A f ) Fy Zx Table ry X 1 Cb = 1.75 + 1.05(M1 /M2) + 0.3(M1 /M2)2 ≤ 2.3 Lr = 1 + 1 + X 2 FL2 FL M1 is smaller end moment where: FL = Fy – 10 ksi M1 /M2 is positive for reverse curvature π EGJA X1 = Ma = S Fb Sx 2 W-Shapes Dimensions Lb ≤ Lc: Fb = 0.66 Fy C § S ·2 X2 = 4 w ¨ x¸ and Properties Lb > Lc : I y © GJ ¹ Table ª2 F ( L / r )2 º φ = 0.90 Fb = « − y b T » ≤ 0.6 Fy (F1-6) φMp = φ Fy Zx «3 ¬ 1,530,000 Cb » ¼ Zx Table φMr = φ FL Sx 170,000 Cb Fb = ≤ 0.6 Fy (F1-7) Cb = 12.5 M max ( Lb / rT )2 2.5 M max + 3M A + 4M B + 3MC 12 ,000 Cb Lb ≤ Lp: φMn = φMp Fb = ≤ 0.6 Fy (F1-8) Lb d / A f Lp < Lb ≤ Lr: 102 ,000 Cb L 510 ,000 Cb ª § Lb − L p ·º For: < b ≤ : φMn = Cb «φM p − ( φM p − φM r ) ¨ ¸» Fy rT Fy « ¨ Lr − L p ¸» ¬ © ¹¼ Use larger of (F1-6) and (F1-8) = Cb [φMp − BF (Lb − Lp)] ≤ φMp Lb 510,000 Cb See Zx Table for BF For: > : rT Fy Use larger of (F1-7) and (F1-8) Lb > Lr : 2 φC b S x X 1 2 X1 X 2 See Allowable Moments in Beams curve φM n = 1+ ≤ φMp Lb /ry ( 2 Lb /r y 2 ) See Beam Design Moments curve 103
  • 12. CIVIL ENGINEERING (continued) Shear – unstiffened beams LRFD – E = 29,000 ksi ASD h 380 For ≤ : Fv = 0.40 Fy φ = 0.90 Aw = d t w tw Fy h 417 ≤ φVn = φ (0.6 Fy) Aw h 380 Fy tw Fy For > : Fv = (Cv ) ≤ 0.4 Fy tw Fy 2.89 417 h 523 where for unstiffened beams: < ≤ Fy tw Fy kv = 5.34 ª 417 º 190 kv 439 φVn = φ (0.6 Fy) Aw « » Cv = = « ( h/t w ) F y » h/t w Fy ( h/t w ) Fy ¬ ¼ 523 h < ≤ 260 Fy tw ª 218,000 º φVn = φ (0.6 Fy) Aw « 2 » « ( h/t w ) F y » ¬ ¼ COLUMNS Column effective length KL: AISC Table C-C2.1 (LRFD and ASD)− Effective Length Factors (K) for Columns AISC Figure C-C2.2 (LRFD and ASD)− Alignment Chart for Effective Length of Columns in Frames Column capacities: LRFD ASD Column slenderness parameter: Column slenderness parameter: § KL · § 1 Fy · 2 π2 E λc = ¨ ¸ ¨ ¸ Cc = © r ¹ max ¨ π E ¸ Fy © ¹ Nominal capacity of axially loaded columns (doubly Allowable stress for axially loaded columns (doubly symmetric section, no local buckling): symmetric section, no local buckling): φ = 0.85 § KL · When ¨ ¸ ≤ Cc © r ¹ max φFcr = φ § 0.658 λc · Fy 2 λc ≤ 1.5: ¨ ¸ © ¹ ª ( KL/r ) 2 º ª 0.877 º «1 − » Fy λc > 1.5: φFcr = φ « 2 » Fy « ¬ 2 Cc 2 » ¼ Fa = « λc » ¬ ¼ 5 3 ( KL/r ) ( KL / r ) 3 + − See Table 3-50: Design Stress for Compression 3 8 Cc 8 Cc 3 Members (Fy = 50 ksi, φ = 0.85) § KL · 12 π 2 E When ¨ ¸ > Cc: Fa = © r ¹ max 23 ( KL / r ) 2 See Table C-50: Allowable Stress for Compression Members (Fy = 50 ksi) 104
  • 13. CIVIL ENGINEERING (continued) BEAM-COLUMNS: Sidesway prevented, x-axis bending, transverse loading between supports (no moments at ends), ends unrestrained against rotation in the plane of bending LRFD ASD Pu Pu 8 Mu fa fa Cm f b ≥ 0.2 : + ≤ 1.0 > 0.15 : + ≤ 1 .0 φ Pn φ Pn 9 φ M n Fa Fa § fa · ¨1− ¨ ¸ Fb Pu Pu Mu © Fe′ ¸ ¹ < 0.2 : + ≤ 1 .0 φ Pn 2 φ Pn φMn fa fa f ≤ 0.15 : + b ≤ 1 .0 where: Fa Fa Fb Mu = B1 Mnt where: Cm Cm = 1.0 for conditions stated above B1 = ≥ 1.0 Pu 1− 12 π 2 E Pex Fe′ = x-axis bending 23 ( KLx /rx ) 2 Cm = 1.0 for conditions stated above § π2 E I x · Pex = ¨ ¸ x-axis bending ¨ ( KL ) 2 ¸ © x ¹ BOLTED CONNECTIONS: A325 bolts db = nominal bolt diameter Ab = nominal bolt area s = spacing between centers of bolt holes in direction of force Le = distance between center of bolt hole and edge of member in direction of force t = member thickness 1 Dh = bolt hole diameter = db + /16" [standard holes] Bolt tension and shear strengths: LRFD ASD Design strength (kips / bolt): Design strength ( kips / bolt ): Tension: φRt = φ Ft Ab Tension: Rt = Ft Ab Shear: φRv = φ Fv Ab Shear: Rv = Fv Ab Design resistance to slip at factored loads Design resistance to slip at service loads ( kips / bolt ): φRn (kips / bolt): Rv Bolt size Bolt size Bolt strength Bolt strength 3/4" 7/8" 1" 3/4" 7/8" 1" φRt 29.8 40.6 53.0 Rt 19.4 26.5 34.6 φRv ( A325-N ) 15.9 21.6 28.3 Rv ( A325-N ) 9.3 12.6 16.5 φRn (A325-SC ) 10.4 14.5 19.0 Rv ( A325-SC ) 6.63 9.02 11.8 φRv and φRn values are single shear Rv values are single shear 105
  • 14. CIVIL ENGINEERING (continued) Bearing strength LRFD ASD Design strength (kips/bolt/inch thickness): Design strength (kips/bolt/inch thickness): φrn = φ 1.2 Lc Fu ≤ φ 2.4 db Fu When s ≥ 3 db and Le ≥ 1.5 db φ = 0.75 Lc = clear distance between edge of hole rb = 1.2 Fu db and edge of adjacent hole, or edge of Le Fu member, in direction of force When Le < 1.5 db : rb = 2 Lc = s – D h When s < 3 db : D Lc = Le – h § d · 2 ¨ s − b ¸ Fu ¨ 2 ¸ Design bearing strength (kips/bolt/inch rb = © ¹ ≤ 1.2 Fu db 2 thickness) for various bolt spacings, s, and end distances, Le: Design bearing strength (kips/bolt/inch thickness) for various bolt spacings, s, and end distances, Le: Bearing Bolt size strength Bearing Bolt size 3/4" 7/8" 1" φrn (k/bolt/in strength rb(k/bolt/in) 3/4" 7/8" 1" s = 2 2/3 db ( minimum permitted ) s ≥ 3 db and Le ≥ 1.5 db Fu = 58 ksi 62.0 72.9 83.7 Fu = 58 ksi 52.2 60.9 69.6 Fu = 65 ksi 69.5 81.7 93.8 Fu = 65 ksi 58.5 68.3 78.0 s = 3" s = 2 2/3 db (minimum permitted) Fu = 58 ksi 78.3 91.3 101 47.1 55.0 62.8 Fu = 58 ksi Fu = 65 ksi 87.7 102 113 Fu = 65 ksi 52.8 61.6 70.4 Le = 1 1/4" Le = 1 1/4" Fu = 58 ksi 44.0 40.8 37.5 Fu = 58 ksi 36.3 [all bolt sizes] Fu = 65 ksi 49.4 45.7 42.0 Fu = 65 ksi 40.6 [all bolt sizes] Le = 2" Fu = 58 ksi 78.3 79.9 76.7 Fu = 65 ksi 87.7 89.6 85.9 The bearing resistance of the connection shall be taken as the sum of the bearing resistances of the individual bolts. 106
  • 15. CIVIL ENGINEERING (continued) Area Depth Web Flange Compact X1 X2 rT d/Af Axis X-X Axis Y-Y Shape 6 A d tw bf tf section x 10 ** ** I S r Z I r 2 4 3 3 4 in. in. in. in. in. bf/2tf h/tw ksi 1/ksi in. 1/in. in. in. in. in. in. in. W24 × 103 30.3 24.5 0.55 9.00 0.98 4.59 39.2 2390 5310 2.33 2.78 3000 245 9.96 280 119 1.99 W24 × 94 27.7 24.3 0.52 9.07 0.88 5.18 41.9 2180 7800 2.33 3.06 2700 222 9.87 254 109 1.98 W24 × 84 24.7 24.1 0.47 9.02 0.77 5.86 45.9 1950 12200 2.31 3.47 2370 196 9.79 224 94.4 1.95 W24 × 76 22.4 23.9 0.44 8.99 0.68 6.61 49.0 1760 18600 2.29 3.91 2100 176 9.69 200 82.5 1.92 W24 × 68 20.1 23.7 0.42 8.97 0.59 7.66 52.0 1590 29000 2.26 4.52 1830 154 9.55 177 70.4 1.87 W24 × 62 18.3 23.7 0.43 7.04 0.59 5.97 49.7 1730 23800 1.71 5.72 1560 132 9.24 154 34.5 1.37 W24 × 55 16.3 23.6 0.40 7.01 0.51 6.94 54.1 1570 36500 1.68 6.66 1360 115 9.13 135 29.1 1.34 W21 × 93 27.3 21.6 0.58 8.42 0.93 4.53 32.3 2680 3460 2.17 2.76 2070 192 8.70 221 92.9 1.84 W21 × 83 24.3 21.4 0.52 8.36 0.84 5.00 36.4 2400 5250 2.15 3.07 1830 171 8.67 196 81.4 1.83 W21 × 73 21.5 21.2 0.46 8.30 0.74 5.60 41.2 2140 8380 2.13 3.46 1600 151 8.64 172 70.6 1.81 W21 × 68 20.0 21.1 0.43 8.27 0.69 6.04 43.6 2000 10900 2.12 3.73 1480 140 8.60 160 64.7 1.80 W21 × 62 18.3 21.0 0.40 8.24 0.62 6.70 46.9 1820 15900 2.10 4.14 1330 127 8.54 144 57.5 1.77 * W21 × 55 16.2 20.8 0.38 8.22 0.52 7.87 50.0 1630 25800 --- --- 1140 110 8.40 126 48.4 1.73 * W21 × 48 14.1 20.6 0.35 8.14 0.43 9.47 53.6 1450 43600 --- --- 959 93.0 8.24 107 38.7 1.66 W21 × 57 16.7 21.1 0.41 6.56 0.65 5.04 46.3 1960 13100 1.64 4.94 1170 111 8.36 129 30.6 1.35 W21 × 50 14.7 20.8 0.38 6.53 0.54 6.10 49.4 1730 22600 1.60 5.96 984 94.5 8.18 110 24.9 1.30 W21 × 44 13.0 20.7 0.35 6.50 0.45 7.22 53.6 1550 36600 1.57 7.06 843 81.6 8.06 95.4 20.7 1.26 * LRFD Manual only ** AISC ASD Manual, 9th Edition 107
  • 16. CIVIL ENGINEERING (continued) Table 1-1: W-Shapes Dimensions and Properties (continued) Area Depth Web Flange Compact X1 X2 rT d/Af Axis X-X Axis Y-Y Shape A d section 6 I S r Z I r tw bf tf x 10 ** ** 2 4 3 3 4 in. in. in. in. in. bf/2tf h/tw ksi 1/ksi in. 1/in. in. in. in. in. in. in. W18 × 86 25.3 18.4 0.48 11.1 0.77 7.20 33.4 2460 4060 2.97 2.15 1530 166 7.77 186 175 2.63 W18 × 76 22.3 18.2 0.43 11.0 0.68 8.11 37.8 2180 6520 2.95 2.43 1330 146 7.73 163 152 2.61 W18 × 71 20.8 18.5 0.50 7.64 0.81 4.71 32.4 2690 3290 1.98 2.99 1170 127 7.50 146 60.3 1.70 W18 × 65 19.1 18.4 0.45 7.59 0.75 5.06 35.7 2470 4540 1.97 3.22 1070 117 7.49 133 54.8 1.69 W18 × 60 17.6 18.2 0.42 7.56 0.70 5.44 38.7 2290 6080 1.96 3.47 984 108 7.47 123 50.1 1.68 W18 × 55 16.2 18.1 0.39 7.53 0.63 5.98 41.1 2110 8540 1.95 3.82 890 98.3 7.41 112 44.9 1.67 W18 × 50 14.7 18.0 0.36 7.50 0.57 6.57 45.2 1920 12400 1.94 4.21 800 88.9 7.38 101 40.1 1.65 W18 × 46 13.5 18.1 0.36 6.06 0.61 5.01 44.6 2060 10100 1.54 4.93 712 78.8 7.25 90.7 22.5 1.29 W18 × 40 11.8 17.9 0.32 6.02 0.53 5.73 50.9 1810 17200 1.52 5.67 612 68.4 7.21 78.4 19.1 1.27 W18 × 35 10.3 17.7 0.30 6.00 0.43 7.06 53.5 1590 30800 1.49 6.94 510 57.6 7.04 66.5 15.3 1.22 W16 × 89 26.4 16.8 0.53 10.4 0.88 5.92 25.9 3160 1460 2.79 1.85 1310 157 7.05 177 163 2.48 W16 × 77 22.9 16.5 0.46 10.3 0.76 6.77 29.9 2770 2460 2.77 2.11 1120 136 7.00 152 138 2.46 W16 × 67 20.0 16.3 0.40 10.2 0.67 7.70 34.4 2440 4040 2.75 2.40 970 119 6.97 132 119 2.44 W16 × 57 16.8 16.4 0.43 7.12 0.72 4.98 33.0 2650 3400 1.86 3.23 758 92.2 6.72 105 43.1 1.60 W16 × 50 14.7 16.3 0.38 7.07 0.63 5.61 37.4 2340 5530 1.84 3.65 659 81.0 6.68 92.0 37.2 1.59 W16 × 45 13.3 16.1 0.35 7.04 0.57 6.23 41.1 2120 8280 1.83 4.06 586 72.7 6.65 82.3 32.8 1.57 W16 × 40 11.8 16.0 0.31 7.00 0.51 6.93 46.5 1890 12700 1.82 4.53 518 64.7 6.63 73.0 28.9 1.57 W16 × 36 10.6 15.9 0.30 6.99 0.43 8.12 48.1 1700 20400 1.79 5.28 448 56.5 6.51 64.0 24.5 1.52 W16 × 31 9.1 15.9 0.28 5.53 0.44 6.28 51.6 1740 19900 1.39 6.53 375 47.2 6.41 54.0 12.4 1.17 W16 × 26 7.7 15.7 0.25 5.50 0.35 7.97 56.8 1480 40300 1.36 8.27 301 38.4 6.26 44.2 9.59 1.12 W14 × 120 35.3 14.5 0.59 14.7 0.94 7.80 19.3 3830 601 4.04 1.05 1380 190 6.24 212 495 3.74 W14 × 109 32.0 14.3 0.53 14.6 0.86 8.49 21.7 3490 853 4.02 1.14 1240 173 6.22 192 447 3.73 W14 × 99 29.1 14.2 0.49 14.6 0.78 9.34 23.5 3190 1220 4.00 1.25 1110 157 6.17 173 402 3.71 W14 × 90 26.5 14.0 0.44 14.5 0.71 10.2 25.9 2900 1750 3.99 1.36 999 143 6.14 157 362 3.70 W14 × 82 24.0 14.3 0.51 10.1 0.86 5.92 22.4 3590 849 2.74 1.65 881 123 6.05 139 148 2.48 W14 × 74 21.8 14.2 0.45 10.1 0.79 6.41 25.4 3280 1200 2.72 1.79 795 112 6.04 126 134 2.48 W14 × 68 20.0 14.0 0.42 10.0 0.72 6.97 27.5 3020 1660 2.71 1.94 722 103 6.01 115 121 2.46 W14 × 61 17.9 13.9 0.38 9.99 0.65 7.75 30.4 2720 2470 2.70 2.15 640 92.1 5.98 102 107 2.45 W14 × 53 15.6 13.9 0.37 8.06 0.66 6.11 30.9 2830 2250 2.15 2.62 541 77.8 5.89 87.1 57.7 1.92 W14 × 48 14.1 13.8 0.34 8.03 0.60 6.75 33.6 2580 3250 2.13 2.89 484 70.2 5.85 78.4 51.4 1.91 W12 × 106 31.2 12.9 0.61 12.2 0.99 6.17 15.9 4660 285 3.36 1.07 933 145 5.47 164 301 3.11 W12 × 96 28.2 12.7 0.55 12.2 0.90 6.76 17.7 4250 407 3.34 1.16 833 131 5.44 147 270 3.09 W12 × 87 25.6 12.5 0.52 12.1 0.81 7.48 18.9 3880 586 3.32 1.28 740 118 5.38 132 241 3.07 W12 × 79 23.2 12.4 0.47 12.1 0.74 8.22 20.7 3530 839 3.31 1.39 662 107 5.34 119 216 3.05 W12 × 72 21.1 12.3 0.43 12.0 0.67 8.99 22.6 3230 1180 3.29 1.52 597 97.4 5.31 108 195 3.04 W12 × 65 19.1 12.1 0.39 12.0 0.61 9.92 24.9 2940 1720 3.28 1.67 533 87.9 5.28 96.8 174 3.02 W12 × 58 17.0 12.2 0.36 10.0 0.64 7.82 27.0 3070 1470 2.72 1.90 475 78.0 5.28 86.4 107 2.51 W12 × 53 15.6 12.1 0.35 9.99 0.58 8.69 28.1 2820 2100 2.71 2.10 425 70.6 5.23 77.9 95.8 2.48 W12 × 50 14.6 12.2 0.37 8.08 0.64 6.31 26.8 3120 1500 2.17 2.36 391 64.2 5.18 71.9 56.3 1.96 W12 × 45 13.1 12.1 0.34 8.05 0.58 7.00 29.6 2820 2210 2.15 2.61 348 57.7 5.15 64.2 50.0 1.95 W12 × 40 11.7 11.9 0.30 8.01 0.52 7.77 33.6 2530 3360 2.14 2.90 307 51.5 5.13 57.0 44.1 1.94 ** AISC ASD Manual, 9th Edition 108