SlideShare une entreprise Scribd logo
1  sur  72
Télécharger pour lire hors ligne
LinnStrument: 
the ultimate open-source hacker instrument 
Geert Bevin
Who am I? 
• Geert Bevin, Twitter @gbevin 
• XRebel Product Manager at ZeroTurnaround 
• Java Champion, Musician, Composer, Arranger, Producer, Singer, 
Guitarist, Gamer, Kung-Fu 
• Many open-source projects including Gentoo Linux, OpenLaszlo, 
RIFE, Juce, …
Musical instrument hacker
Software for Eigenharp
GECO for Leap Motion
LinnStrument firmware and tools
What is the LinnStrument?
Revolutionary Music Performance 
Controller with 3D Note Expression
DEMO
What’s inside LinnStrument?
Front-panel 
Chassis + circuit boards 
Translucent silicone sheet 
Final prototype before production - actual units are slightly different
Metal chassis with wooden sides 
Sensor board 
Final prototype before production - actual units are slightly different
LEDs board 
Final prototype before production - actual units are slightly different
Connection between circuit boards 
Final prototype before production - actual units are slightly different
Arduino Due’s 
ARM chip Serial <-> USB MIDI Shield 
Final prototype before production - actual units are slightly different
What you need to know about 
the Arduino Due
ARM Cortex-M3 
32-bit 84MHz 
CPU 
SPI signals 
shared by 
LED/Sensor 
Digital 33-37 
Footpedals 
DIN <-> USB 
LED control 
MIDI <-> Serial
Arduino Due and LinnStrument 
• 32-bit core, 4 bytes wide operations within single CPU clock 
• CPU Clock at 84Mhz 
• 96 KBytes of SRAM 
• 512 KBytes of Flash memory for code 
• Digital I/O pins 
• Serial Peripheral Interface (SPI) pins with Slave Select
Very simple Arduino program 
// the setup function runs once when you press reset or power the board 
void setup() { 
// initialize digital pin 13 as an output. 
pinMode(13, OUTPUT); 
} 
// the loop function runs over and over again forever 
void loop() { 
digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level) 
delay(1000); // wait for a second 
digitalWrite(13, LOW); // turn the LED off by making the voltage LOW 
delay(1000); // wait for a second 
}
Arduino code 
• language based on C/C++ 
• concise reference with all language structures, values and functions 
• Arduino IDE to get started 
• the ‘setup’ function runs once, when the board starts up 
• the ‘loop’ function runs at 100% CPU, over and over again
Only one execution thread 
• what happens in the ‘loop’ function is all that’s happening 
• if something takes too long, something else isn’t happening 
• guerrilla coding tactics: powerful, short strikes and get out of there 
• design your algorithms to be sub-dividable 
• avoid dynamic memory allocation, it’s very slow
How to use the Arduino IDE
Source code in editor
Select target board
Select serial port
Compile and Upload
I don’t like the Arduino IDE 
• non-HDPI fonts 
• extremely basic editor 
• bad OS integration 
• I use Sublime Text 3 with the Stino plugin
LinnStrument : the ultimate open-source hacker instrument
How the LinnStrument hardware 
is accessed through software
Easy LED functions 
• Change the color and brightness of a single LED 
void setLed(byte col, // Column of LED to be changed 
byte row, // Row of LED to be changed 
byte color, // Color of LED to be changed 
byte brightness) // Brightness of LED (0, 1, 2 or 3) 
• Light up a single LED with the default color and brightness 
void lightLed(byte col, // Column of LED to be changed 
byte row ) // Row of LED to be changed 
• Clear a single LED 
void clearLed(byte col, // Column of LED to be changed 
byte row ) // Row of LED to be changed
Details of LED control 
• LED control is done through SPI using pin 10, with mode 0, running at 21MHz 
SPI.begin(10); 
SPI.setDataMode(10, SPI_MODE0); 
SPI.setClockDivider(10, 4); // 84MHz divided by 4 
• Digital pin 37 is an output and connected to the LED driver chips 
pinMode(37, OUTPUT); 
• Write 32-bit data structure to SPI to control the LEDs, refreshed every 100μs 
digitalWrite(37, HIGH); // enable the outputs of the LED driver chips 
SPI.transfer(10, column, SPI_CONTINUE); // send column (left-shifted 2 bits + special bit 7) 
SPI.transfer(10, blue, SPI_CONTINUE); // send blue byte 
SPI.transfer(10, green, SPI_CONTINUE); // send green byte 
SPI.transfer(10, red); // send red byte 
digitalWrite(37, LOW); // disable the outputs of the LED driver chips
Easy sensor functions 
• Send 16-bit word over SPI to touch sensor to set the analog switches 
void selectSensorCell(byte col, // Column used by analog switches 
byte row, // Row used 
byte switch) // Switch to read X (0), Y (1) or Z (2) 
• Read stable raw X value at the current col and row (returns 0-4095) 
int readX() 
• Read stable raw Y value at the current col and row (returns 0-127) 
int readY() 
• Read stable raw Z value at the current col and row (returns 0-127, 255 feather) 
byte readZ()
Details of touch sensor control 
• Touch sensor control is done through SPI using pin 4, 
with mode 0, running at 21MHz 
SPI.begin(4); 
SPI.setDataMode(4, SPI_MODE0); 
SPI.setClockDivider(4, 4); // 84MHz divided by 4 
• Write 16-bit data to SPI to set analog switches (see ls_sensor.ino) 
SPI.transfer(4, lsb, SPI_CONTINUE); // first byte of data structure 
SPI.transfer(4, msb); // second byte of data structure
Read touch sensor data 
• Touch sensor A/D input is using SPI through pin 52, 
with mode 0, running at 21MHz 
SPI.begin(52); 
SPI.setDataMode(52, SPI_MODE0); 
SPI.setClockDivider(52, 4); // 84MHz divided by 4 
• Read sensor data 
delayUsec(7); // wait for stable current after sensor 
// control changes the analog switches 
// delay different for each analog switch 
byte msb = SPI.transfer(4, 0, SPI_CONTINUE); // first byte of sensor data 
byte lsb = SPI.transfer(4, 0); // second byte of sensor data 
int raw = (int(msb) << 8 | lsb) >> 2; // pack into int, shift from 16 to 14 bit
Reading the foot pedals 
• Done in ls_switches.ino, modify this method to add custom behavior 
void handleFootSwitchState(byte whichSwitch, boolean state) 
• Digital pin 33 and 34, respectively for left and right foot switches, configured as pull-up 
inputs (inverted inputs: high is off, low is on) 
pinMode(33, INPUT_PULLUP); 
pinMode(34, INPUT_PULLUP); 
• Read the digital value of foot pedal states (typically every 20ms) 
boolean leftPedalState = digitalRead(33); 
boolean rightPedalState = digitalRead(34);
Details of MIDI / Serial - USB / DIN 
• Setting digital switches changes the communication methods from the LinnStrument 
to the outside world 
• Digital pin 35 switches between Serial and MIDI 
pinMode(35, OUTPUT); 
digitalWrite(35, HIGH); // high switches to Serial input/output 
digitalWrite(35, LOW); // low switches to MIDI input/output 
• Digital pin 36 switches between USB and DIN connectors 
pinMode(36, OUTPUT); 
digitalWrite(36, HIGH); // high switches to USB input/output 
digitalWrite(36, LOW); // low switches to DIN input/output
That’s all the hardware stuff!
Serial Monitor for debugging
Uncomment line in ls_debug.h 
Recompile and upload
Enable Update OS mode 
Which essentially turns on Serial instead of MIDI
Click on the Looking Glass icon 
To enable Serial Monitor and reset LinnStrument
Column 17 selects the debug level 
By default it’s -1, meaning that no debug info is printed
Row 2 selects debug level 0
Row 3 selects debug level 1
Row 4 selects debug level 2
This is printed in the Serial Console 
Along with the actual debug messages of corresponding levels
The relevant debug code 
if (sensorCol == 17 && sensorRow < 4) { 
debugLevel = sensorRow - 1; 
DEBUGPRINT((-1,"debugLevel = ")); 
DEBUGPRINT((-1,debugLevel)); 
DEBUGPRINT((-1,"n")); 
} 
void handleNewTouch(byte z) { 
DEBUGPRINT((1,"handleNewTouch")); 
DEBUGPRINT((1," col="));DEBUGPRINT((1,(int)sensorCol)); 
DEBUGPRINT((1," row="));DEBUGPRINT((1,(int)sensorRow)); 
DEBUGPRINT((1," z="));DEBUGPRINT((1,(int)z)); 
DEBUGPRINT((1,"n")); 
void handleTouchRelease() { 
DEBUGPRINT((1,"handleTouchRelease")); 
DEBUGPRINT((1," col="));DEBUGPRINT((1,(int)sensorCol)); 
DEBUGPRINT((1," row="));DEBUGPRINT((1,(int)sensorRow)); 
DEBUGPRINT((1,"n"));
Overview of firmware files
Core Files 
• linnstrument-firmware.ino: global data structures, setup and main loop 
• ls_displayModes.ino: illuminate LEDs for the different display modes 
• ls_handleTouches.ino: driven by main loop, handles touch tracking 
• ls_rtos.ino: primitive scheduler calling continuous tasks during delay 
• ls_settings.ino: switch behavior from UI, store and recall settings 
• ls_touchInfo.ino: encapsulate sensor data into touched cells
Low-level Files 
• ls_calibration.ino: calibration procedure and data conversion 
• ls_leds.ino: low-level communication with the LEDs 
• ls_midi.ino: MIDI input, NRPN control, clock, output and queue 
• ls_sensor.ino: low-level touch sensing with bias and curve 
• ls_test.ino: debug functions and low-level reports
Auxilliary Features Files 
• ls_arpeggiator.ino: arpeggiator logic, tied to internal MIDI clock 
• ls_faders.ino: MIDI CC faders touch handling and data sending 
• ls_font.ino: tiny, small, and big font display, including scrolling 
• ls_lowRow.ino: continuous cell evaluation for low-row features, driven by 
the main touch tracking 
• ls_noteTouchMapping.ino: track MIDI notes to touched cells, mainly used 
by arpeggiator 
• ls_switches.ino: handles control switches and foot pedals
Support Header Files 
• ls_bytebuffer.h: circular byte buffer with independent push and pop 
locations, used by ls_midi.ino output queue 
• ls_channelbucket.h: hands out MIDI channels from a bucket of 
allowed channel numbers. 
• ls_debug.h: debug macros and defines 
• ls_midi.h: standard MIDI status codes, used by ls_midi.ino
Useful global functionalities
Global variables 
• byte sensorCol: the column number of the current sensor cell 
• byte sensorRow: the row number of the current sensor cell 
• byte sensorSplit: the split of the current sensor cell (0: left, 1: right) 
• DisplayMode displayMode: the active display mode 
(see DisplayMode enum in linnstrument-firmware.ino for the values)
Global functions 
• TouchInfo &cell(): the last touch data for the current cell 
• TouchInfo &cell(byte col, byte row): the last touch data for a cell 
• FocusCell &focus(byte split, byte channel): the current cell that has 
the focus for a particular split and channel (FocusCell is a structure 
that just contains col and row)
Some specific firmware 
examples
Per-finger touch-tracking 
• With a general purpose CPU, you’d model this as touch ‘sessions’ 
that are dynamically created and have a life of their own 
• Too much memory churn for Arduino, too much book-keeping also 
• Instead, have a touch state for each cell 
• Transfer data between cells since we don’t support two fingers 
touching the same cell
Inside ls_handleTouches.ino 
void handleNewTouch(byte z) { 
// ... snip ... 
// check if the new touch could be an ongoing slide to the right 
if (potentialSlideTransferCandidate(sensorCol-1)) { 
// if the pressure gets higher than adjacent cell, 
// the slide is transitioning over 
if (isReadyForSlideTransfer(sensorCol-1)) { 
transferFromSameRowCell(sensorCol-1); 
handleXYZupdate(z); 
} 
// otherwise act as if this new touch never happened 
else { 
cellTouched(transferCell); 
} 
} 
// similar for slide to the left
Check potential slide transfer 
boolean potentialSlideTransferCandidate(int col) { 
if (col < 1) return false; 
if (sensorSplit != getSplitOf(col)) return false; 
if (!isLowRow() && (!Split[sensorSplit].sendX || 
!isFocusedCell(col, sensorRow))) return false; 
if (isLowRow() && !lowRowRequiresSlideTracking()) return false; 
if (isStrummingSplit(sensorSplit)) return false; 
// the sibling cell has an active touch 
return cell(col, sensorRow).touched != untouchedCell && 
// either a release is pending to be performed, or 
(cell(col, sensorRow).pendingReleaseCount || 
// both cells are touched simultaneously on the edges 
abs(cell().calibratedX() - cell(col, sensorRow).calibratedX()) 
< TRANSFER_SLIDE_PROXIMITY); 
}
Is the sibling cell ready for the transfer? 
boolean isReadyForSlideTransfer(int col) { 
// there's a pending release waiting 
return cell(col, sensorRow).pendingReleaseCount || 
// the cell pressure is higher 
cell().rawZ > cell(col, sensorRow).rawZ; 
}
Perform the data transfer 1/3 
void transferFromSameRowCell(byte col) { 
cell().initialX = cell(col, sensorRow).initialX; 
cell().initialReferenceX = cell(col, sensorRow).initialReferenceX; 
cell().lastMovedX = cell(col, sensorRow).lastMovedX; 
cell().fxdRateX = cell(col, sensorRow).fxdRateX; 
cell().rateCountX = cell(col, sensorRow).rateCountX; 
cell().initialY = cell(col, sensorRow).initialY; 
cell().note = cell(col, sensorRow).note; 
cell().channel = cell(col, sensorRow).channel; 
cell().fxdPrevPressure = cell(col, sensorRow).fxdPrevPressure; 
cell().fxdPrevTimbre = cell(col, sensorRow).fxdPrevTimbre; 
cell().velocity = cell(col, sensorRow).velocity; 
cell().vcount = cell(col, sensorRow).vcount; 
noteTouchMapping[sensorSplit] 
.changeCell(cell().note, cell().channel, sensorCol, sensorRow);
Perform the data transfer 2/3 
if (cell(col, sensorRow).touched != untouchedCell) { 
cell(col, sensorRow).touched = transferCell; 
} 
cell(col, sensorRow).initialX = -1; 
cell(col, sensorRow).initialReferenceX = 0; 
cell(col, sensorRow).lastMovedX = 0; 
cell(col, sensorRow).fxdRateX = 0; 
cell(col, sensorRow).rateCountX = 0; 
cell(col, sensorRow).initialY = -1; 
cell(col, sensorRow).note = -1; 
cell(col, sensorRow).channel = -1; 
cell(col, sensorRow).fxdPrevPressure = 0; 
cell(col, sensorRow).fxdPrevTimbre = 0; 
cell(col, sensorRow).velocity = 0; 
cell(col, sensorRow).pendingReleaseCount = 0; 
// do not reset vcount!
Perform the data transfer 3/3 
// transfer the focus if this was the focused cell 
byte channel = cell().channel; 
if (channel != -1 && col == focus(sensorSplit, channel).col && 
sensorRow == focus(sensorSplit, channel).row) { 
focus(sensorSplit, channel).col = sensorCol; 
focus(sensorSplit, channel).row = sensorRow; 
} 
}
Finding the right MIDI channels 
• Note-per-channel distributes up to 16 MIDI channels across notes 
• Notes should reuse same channel as late as possible (release trails) 
• Intuitively you’d scan all the active notes and determine which channel is 
available for a new note, which is again too much overhead 
• We use a bucket of available channels, channels bubble up or sink down 
• A new note merely has to take the next channel from the top 
• Fully encapsulated inside ls_channelbucket.h
Low-row functionalities 
• Intuitively you’d detect a touch on low-row cells when it’s active 
• Then evaluate state of every other cell and trigger behavior 
• This is again too much overhead 
• Instead keep track of low-row start/stop in a state machine 
• Piggy-back when processing each cell in the main loop to evaluate 
appropriate low-row behavior
Inside ls_handleTouches.ino 
void handleXYZupdate(byte z) { 
// ... snip ... 
handleLowRowState(z); 
if (isLowRow()) { 
if (newVelocity) { 
lowRowStart(); 
} 
return; 
} 
// ... snip ... 
} 
void handleTouchRelease() { 
// ... snip ... 
if (isLowRow()) { 
lowRowStop(); 
} 
// ... snip ... 
}
Inside ls_lowRow.ino 1/2 
void lowRowStart() { 
switch (Split[sensorSplit].lowRowMode) { 
case lowRowStrum: 
lowRowState[sensorCol] = pressed; 
break; 
// ... snip, different for each low-row mode 
} 
} 
void lowRowStop() { 
switch (Split[sensorSplit].lowRowMode) { 
case lowRowStrum: 
lowRowState[sensorCol] = inactive; 
break; 
// ... snip, different for each low-row mode 
} 
}
Inside ls_lowRow.ino 2/2 
void handleLowRowState(byte z) { 
// this is a low-row cell 
if (isLowRow()) { 
// send out the continuous data for low-row cells 
if (cell().velocity) { 
// ... snip, different for each low-row mode 
} 
} 
// this is a non low-row cell 
else { 
switch (Split[sensorSplit].lowRowMode) { 
case lowRowStrum: 
// uses lowRowState to correlate with column 
handleLowRowStrum(); 
break; 
// ... snip, other cases 
} 
} 
}
Sending MIDI bytes 
• MIDI was causing the LEDs to flicker 
• Too much time was spent at once (need more guerrilla!) 
• Created a MIDI queue to continuously send byte-by-byte from our 
RTOS 
• Arduino UART classes still caused problems: synchronous wait for 
readiness when sending
Patched UARTClass 
--- UARTClass.cpp 2014-11-10 14:55:10.000000000 +0100 
+++ UARTClass.cpp 2014-10-10 19:39:43.000000000 +0200 
@@ -109,9 +109,15 @@ 
size_t UARTClass::write( const uint8_t uc_data ) 
{ 
+ return write(uc_data, true); 
+} 
+ 
+size_t UARTClass::write( const uint8_t uc_data, const bool wait ) 
+{ 
// Check if the transmitter is ready 
- while ((_pUart->UART_SR & UART_SR_TXRDY) != UART_SR_TXRDY) 
- ; 
+ while ((_pUart->UART_SR & UART_SR_TXRDY) != UART_SR_TXRDY) { 
+ if ( !wait ) return 0; 
+ } 
// Send character 
_pUart->UART_THR = uc_data;
Queuing of messages 
ByteBuffer<4096> midiOutQueue; 
// called for each MIDI message that is sent 
void queueMidiMessage(MIDIStatus type, byte param1, byte param2, byte channel) { 
param1 &= 0x7F; param2 &= 0x7F; 
midiOutQueue.push((byte)type | (channel & 0x0F)); 
midiOutQueue.push(param1); 
if (type != MIDIProgramChange && type != MIDIChannelPressure) { 
midiOutQueue.push(param2); 
} 
} 
// continuously called by our RTOS 
void handlePendingMidi() { 
if (!midiOutQueue.empty()) { 
if (Serial.write(midiOutQueue.peek(), false) > 0) { // patched UART method 
midiOutQueue.pop(); 
} 
} 
}
More information at 
http://www.rogerlinndesign.com 
Questions? 
@gbevin

Contenu connexe

Tendances

[PPT] _ Unit 2 _ Complete PPT.pptx
[PPT] _ Unit 2 _ Complete PPT.pptx[PPT] _ Unit 2 _ Complete PPT.pptx
[PPT] _ Unit 2 _ Complete PPT.pptxSelvaraj Seerangan
 
Internet of things
Internet of thingsInternet of things
Internet of thingsVikrant Negi
 
Ethical hacking ppt
Ethical hacking pptEthical hacking ppt
Ethical hacking pptRohit Yadav
 
trojan detection
trojan detectiontrojan detection
trojan detectionSRI NISHITH
 
IOT and Application Performance Monitoring
IOT and Application Performance MonitoringIOT and Application Performance Monitoring
IOT and Application Performance MonitoringSupongkiba Kichu
 
IOT privacy and Security
IOT privacy and SecurityIOT privacy and Security
IOT privacy and Securitynoornabi16
 
What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...
What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...
What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...Edureka!
 
Industrial Internet of Things (IIOT)
Industrial Internet of Things (IIOT)Industrial Internet of Things (IIOT)
Industrial Internet of Things (IIOT)Ikbal Ahmed
 
CompTIA Security+ SY0-601 Domain 2
CompTIA Security+ SY0-601 Domain 2CompTIA Security+ SY0-601 Domain 2
CompTIA Security+ SY0-601 Domain 2ShivamSharma909
 
Automatic door using arduino
Automatic door using arduinoAutomatic door using arduino
Automatic door using arduinosayyed sabir
 
Chapter-2 Internet of Things.pptx
Chapter-2 Internet of Things.pptxChapter-2 Internet of Things.pptx
Chapter-2 Internet of Things.pptx40NehaPagariya
 
Inetsecurity.in Ethical Hacking presentation
Inetsecurity.in Ethical Hacking presentationInetsecurity.in Ethical Hacking presentation
Inetsecurity.in Ethical Hacking presentationJoshua Prince
 
Internet of things-Introduction
Internet of things-IntroductionInternet of things-Introduction
Internet of things-IntroductionNirnay Banagar
 

Tendances (20)

[PPT] _ Unit 2 _ Complete PPT.pptx
[PPT] _ Unit 2 _ Complete PPT.pptx[PPT] _ Unit 2 _ Complete PPT.pptx
[PPT] _ Unit 2 _ Complete PPT.pptx
 
Internet of things
Internet of thingsInternet of things
Internet of things
 
Internet of things
Internet of thingsInternet of things
Internet of things
 
Ethical hacking ppt
Ethical hacking pptEthical hacking ppt
Ethical hacking ppt
 
Internet of things
Internet of thingsInternet of things
Internet of things
 
trojan detection
trojan detectiontrojan detection
trojan detection
 
IOT and Application Performance Monitoring
IOT and Application Performance MonitoringIOT and Application Performance Monitoring
IOT and Application Performance Monitoring
 
IOT privacy and Security
IOT privacy and SecurityIOT privacy and Security
IOT privacy and Security
 
Web filtering through Software
Web filtering through SoftwareWeb filtering through Software
Web filtering through Software
 
What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...
What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...
What is Ethical Hacking? | Ethical Hacking for Beginners | Ethical Hacking Co...
 
Ethical hacking presentation
Ethical hacking presentationEthical hacking presentation
Ethical hacking presentation
 
Industrial Internet of Things (IIOT)
Industrial Internet of Things (IIOT)Industrial Internet of Things (IIOT)
Industrial Internet of Things (IIOT)
 
CompTIA Security+ SY0-601 Domain 2
CompTIA Security+ SY0-601 Domain 2CompTIA Security+ SY0-601 Domain 2
CompTIA Security+ SY0-601 Domain 2
 
Hacking presentation
Hacking presentationHacking presentation
Hacking presentation
 
Advanced persistent threats(APT)
Advanced persistent threats(APT)Advanced persistent threats(APT)
Advanced persistent threats(APT)
 
Automatic door using arduino
Automatic door using arduinoAutomatic door using arduino
Automatic door using arduino
 
Chapter-2 Internet of Things.pptx
Chapter-2 Internet of Things.pptxChapter-2 Internet of Things.pptx
Chapter-2 Internet of Things.pptx
 
Inetsecurity.in Ethical Hacking presentation
Inetsecurity.in Ethical Hacking presentationInetsecurity.in Ethical Hacking presentation
Inetsecurity.in Ethical Hacking presentation
 
Internet of things-Introduction
Internet of things-IntroductionInternet of things-Introduction
Internet of things-Introduction
 
Ethical hacking
Ethical hackingEthical hacking
Ethical hacking
 

Similaire à LinnStrument : the ultimate open-source hacker instrument

Similaire à LinnStrument : the ultimate open-source hacker instrument (20)

From Arduino to LinnStrument
From Arduino to LinnStrumentFrom Arduino to LinnStrument
From Arduino to LinnStrument
 
arduinoedit.pptx
arduinoedit.pptxarduinoedit.pptx
arduinoedit.pptx
 
Arduino course
Arduino courseArduino course
Arduino course
 
arduinocourse-180308074529 (1).pdf
arduinocourse-180308074529 (1).pdfarduinocourse-180308074529 (1).pdf
arduinocourse-180308074529 (1).pdf
 
Lab2ppt
Lab2pptLab2ppt
Lab2ppt
 
Introduction to Arduino Microcontroller
Introduction to Arduino MicrocontrollerIntroduction to Arduino Microcontroller
Introduction to Arduino Microcontroller
 
arduinoSimon.ppt
arduinoSimon.pptarduinoSimon.ppt
arduinoSimon.ppt
 
arduinoSimon.ppt
arduinoSimon.pptarduinoSimon.ppt
arduinoSimon.ppt
 
arduinoSimon.ppt
arduinoSimon.pptarduinoSimon.ppt
arduinoSimon.ppt
 
Arduino intro.pptx
Arduino intro.pptxArduino intro.pptx
Arduino intro.pptx
 
arduino.ppt
arduino.pptarduino.ppt
arduino.ppt
 
Introduction to Arduino Webinar
Introduction to Arduino WebinarIntroduction to Arduino Webinar
Introduction to Arduino Webinar
 
Ardui no
Ardui no Ardui no
Ardui no
 
arduinoworkshop-160204051621.pdf
arduinoworkshop-160204051621.pdfarduinoworkshop-160204051621.pdf
arduinoworkshop-160204051621.pdf
 
Arduino
ArduinoArduino
Arduino
 
Arduino Foundations
Arduino FoundationsArduino Foundations
Arduino Foundations
 
Introduction to the Arduino
Introduction to the ArduinoIntroduction to the Arduino
Introduction to the Arduino
 
Arduino اردوينو
Arduino اردوينوArduino اردوينو
Arduino اردوينو
 
Arduino
ArduinoArduino
Arduino
 
Arduino Slides With Neopixels
Arduino Slides With NeopixelsArduino Slides With Neopixels
Arduino Slides With Neopixels
 

Dernier

online pdf editor software solutions.pdf
online pdf editor software solutions.pdfonline pdf editor software solutions.pdf
online pdf editor software solutions.pdfMeon Technology
 
OpenChain Webinar: Universal CVSS Calculator
OpenChain Webinar: Universal CVSS CalculatorOpenChain Webinar: Universal CVSS Calculator
OpenChain Webinar: Universal CVSS CalculatorShane Coughlan
 
Leveraging DxSherpa's Generative AI Services to Unlock Human-Machine Harmony
Leveraging DxSherpa's Generative AI Services to Unlock Human-Machine HarmonyLeveraging DxSherpa's Generative AI Services to Unlock Human-Machine Harmony
Leveraging DxSherpa's Generative AI Services to Unlock Human-Machine Harmonyelliciumsolutionspun
 
Enterprise Document Management System - Qualityze Inc
Enterprise Document Management System - Qualityze IncEnterprise Document Management System - Qualityze Inc
Enterprise Document Management System - Qualityze Incrobinwilliams8624
 
Fields in Java and Kotlin and what to expect.pptx
Fields in Java and Kotlin and what to expect.pptxFields in Java and Kotlin and what to expect.pptx
Fields in Java and Kotlin and what to expect.pptxJoão Esperancinha
 
ARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdf
ARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdfARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdf
ARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdfTobias Schneck
 
Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...
Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...
Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...Jaydeep Chhasatia
 
JS-Experts - Cybersecurity for Generative AI
JS-Experts - Cybersecurity for Generative AIJS-Experts - Cybersecurity for Generative AI
JS-Experts - Cybersecurity for Generative AIIvo Andreev
 
Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...
Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...
Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...OnePlan Solutions
 
Webinar_050417_LeClair12345666777889.ppt
Webinar_050417_LeClair12345666777889.pptWebinar_050417_LeClair12345666777889.ppt
Webinar_050417_LeClair12345666777889.pptkinjal48
 
Generative AI for Cybersecurity - EC-Council
Generative AI for Cybersecurity - EC-CouncilGenerative AI for Cybersecurity - EC-Council
Generative AI for Cybersecurity - EC-CouncilVICTOR MAESTRE RAMIREZ
 
Deep Learning for Images with PyTorch - Datacamp
Deep Learning for Images with PyTorch - DatacampDeep Learning for Images with PyTorch - Datacamp
Deep Learning for Images with PyTorch - DatacampVICTOR MAESTRE RAMIREZ
 
ERP For Electrical and Electronics manufecturing.pptx
ERP For Electrical and Electronics manufecturing.pptxERP For Electrical and Electronics manufecturing.pptx
ERP For Electrical and Electronics manufecturing.pptxAutus Cyber Tech
 
eAuditor Audits & Inspections - conduct field inspections
eAuditor Audits & Inspections - conduct field inspectionseAuditor Audits & Inspections - conduct field inspections
eAuditor Audits & Inspections - conduct field inspectionsNirav Modi
 
Streamlining Your Application Builds with Cloud Native Buildpacks
Streamlining Your Application Builds  with Cloud Native BuildpacksStreamlining Your Application Builds  with Cloud Native Buildpacks
Streamlining Your Application Builds with Cloud Native BuildpacksVish Abrams
 
IA Generativa y Grafos de Neo4j: RAG time
IA Generativa y Grafos de Neo4j: RAG timeIA Generativa y Grafos de Neo4j: RAG time
IA Generativa y Grafos de Neo4j: RAG timeNeo4j
 
20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.
20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.
20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.Sharon Liu
 
Top Software Development Trends in 2024
Top Software Development Trends in  2024Top Software Development Trends in  2024
Top Software Development Trends in 2024Mind IT Systems
 
Your Vision, Our Expertise: TECUNIQUE's Tailored Software Teams
Your Vision, Our Expertise: TECUNIQUE's Tailored Software TeamsYour Vision, Our Expertise: TECUNIQUE's Tailored Software Teams
Your Vision, Our Expertise: TECUNIQUE's Tailored Software TeamsJaydeep Chhasatia
 

Dernier (20)

online pdf editor software solutions.pdf
online pdf editor software solutions.pdfonline pdf editor software solutions.pdf
online pdf editor software solutions.pdf
 
OpenChain Webinar: Universal CVSS Calculator
OpenChain Webinar: Universal CVSS CalculatorOpenChain Webinar: Universal CVSS Calculator
OpenChain Webinar: Universal CVSS Calculator
 
Leveraging DxSherpa's Generative AI Services to Unlock Human-Machine Harmony
Leveraging DxSherpa's Generative AI Services to Unlock Human-Machine HarmonyLeveraging DxSherpa's Generative AI Services to Unlock Human-Machine Harmony
Leveraging DxSherpa's Generative AI Services to Unlock Human-Machine Harmony
 
Enterprise Document Management System - Qualityze Inc
Enterprise Document Management System - Qualityze IncEnterprise Document Management System - Qualityze Inc
Enterprise Document Management System - Qualityze Inc
 
Salesforce AI Associate Certification.pptx
Salesforce AI Associate Certification.pptxSalesforce AI Associate Certification.pptx
Salesforce AI Associate Certification.pptx
 
Fields in Java and Kotlin and what to expect.pptx
Fields in Java and Kotlin and what to expect.pptxFields in Java and Kotlin and what to expect.pptx
Fields in Java and Kotlin and what to expect.pptx
 
ARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdf
ARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdfARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdf
ARM Talk @ Rejekts - Will ARM be the new Mainstream in our Data Centers_.pdf
 
Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...
Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...
Optimizing Business Potential: A Guide to Outsourcing Engineering Services in...
 
JS-Experts - Cybersecurity for Generative AI
JS-Experts - Cybersecurity for Generative AIJS-Experts - Cybersecurity for Generative AI
JS-Experts - Cybersecurity for Generative AI
 
Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...
Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...
Transforming PMO Success with AI - Discover OnePlan Strategic Portfolio Work ...
 
Webinar_050417_LeClair12345666777889.ppt
Webinar_050417_LeClair12345666777889.pptWebinar_050417_LeClair12345666777889.ppt
Webinar_050417_LeClair12345666777889.ppt
 
Generative AI for Cybersecurity - EC-Council
Generative AI for Cybersecurity - EC-CouncilGenerative AI for Cybersecurity - EC-Council
Generative AI for Cybersecurity - EC-Council
 
Deep Learning for Images with PyTorch - Datacamp
Deep Learning for Images with PyTorch - DatacampDeep Learning for Images with PyTorch - Datacamp
Deep Learning for Images with PyTorch - Datacamp
 
ERP For Electrical and Electronics manufecturing.pptx
ERP For Electrical and Electronics manufecturing.pptxERP For Electrical and Electronics manufecturing.pptx
ERP For Electrical and Electronics manufecturing.pptx
 
eAuditor Audits & Inspections - conduct field inspections
eAuditor Audits & Inspections - conduct field inspectionseAuditor Audits & Inspections - conduct field inspections
eAuditor Audits & Inspections - conduct field inspections
 
Streamlining Your Application Builds with Cloud Native Buildpacks
Streamlining Your Application Builds  with Cloud Native BuildpacksStreamlining Your Application Builds  with Cloud Native Buildpacks
Streamlining Your Application Builds with Cloud Native Buildpacks
 
IA Generativa y Grafos de Neo4j: RAG time
IA Generativa y Grafos de Neo4j: RAG timeIA Generativa y Grafos de Neo4j: RAG time
IA Generativa y Grafos de Neo4j: RAG time
 
20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.
20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.
20240319 Car Simulator Plan.pptx . Plan for a JavaScript Car Driving Simulator.
 
Top Software Development Trends in 2024
Top Software Development Trends in  2024Top Software Development Trends in  2024
Top Software Development Trends in 2024
 
Your Vision, Our Expertise: TECUNIQUE's Tailored Software Teams
Your Vision, Our Expertise: TECUNIQUE's Tailored Software TeamsYour Vision, Our Expertise: TECUNIQUE's Tailored Software Teams
Your Vision, Our Expertise: TECUNIQUE's Tailored Software Teams
 

LinnStrument : the ultimate open-source hacker instrument

  • 1. LinnStrument: the ultimate open-source hacker instrument Geert Bevin
  • 2. Who am I? • Geert Bevin, Twitter @gbevin • XRebel Product Manager at ZeroTurnaround • Java Champion, Musician, Composer, Arranger, Producer, Singer, Guitarist, Gamer, Kung-Fu • Many open-source projects including Gentoo Linux, OpenLaszlo, RIFE, Juce, …
  • 5. GECO for Leap Motion
  • 7. What is the LinnStrument?
  • 8. Revolutionary Music Performance Controller with 3D Note Expression
  • 11. Front-panel Chassis + circuit boards Translucent silicone sheet Final prototype before production - actual units are slightly different
  • 12. Metal chassis with wooden sides Sensor board Final prototype before production - actual units are slightly different
  • 13. LEDs board Final prototype before production - actual units are slightly different
  • 14. Connection between circuit boards Final prototype before production - actual units are slightly different
  • 15. Arduino Due’s ARM chip Serial <-> USB MIDI Shield Final prototype before production - actual units are slightly different
  • 16. What you need to know about the Arduino Due
  • 17. ARM Cortex-M3 32-bit 84MHz CPU SPI signals shared by LED/Sensor Digital 33-37 Footpedals DIN <-> USB LED control MIDI <-> Serial
  • 18. Arduino Due and LinnStrument • 32-bit core, 4 bytes wide operations within single CPU clock • CPU Clock at 84Mhz • 96 KBytes of SRAM • 512 KBytes of Flash memory for code • Digital I/O pins • Serial Peripheral Interface (SPI) pins with Slave Select
  • 19. Very simple Arduino program // the setup function runs once when you press reset or power the board void setup() { // initialize digital pin 13 as an output. pinMode(13, OUTPUT); } // the loop function runs over and over again forever void loop() { digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level) delay(1000); // wait for a second digitalWrite(13, LOW); // turn the LED off by making the voltage LOW delay(1000); // wait for a second }
  • 20. Arduino code • language based on C/C++ • concise reference with all language structures, values and functions • Arduino IDE to get started • the ‘setup’ function runs once, when the board starts up • the ‘loop’ function runs at 100% CPU, over and over again
  • 21. Only one execution thread • what happens in the ‘loop’ function is all that’s happening • if something takes too long, something else isn’t happening • guerrilla coding tactics: powerful, short strikes and get out of there • design your algorithms to be sub-dividable • avoid dynamic memory allocation, it’s very slow
  • 22. How to use the Arduino IDE
  • 23. Source code in editor
  • 27. I don’t like the Arduino IDE • non-HDPI fonts • extremely basic editor • bad OS integration • I use Sublime Text 3 with the Stino plugin
  • 29. How the LinnStrument hardware is accessed through software
  • 30. Easy LED functions • Change the color and brightness of a single LED void setLed(byte col, // Column of LED to be changed byte row, // Row of LED to be changed byte color, // Color of LED to be changed byte brightness) // Brightness of LED (0, 1, 2 or 3) • Light up a single LED with the default color and brightness void lightLed(byte col, // Column of LED to be changed byte row ) // Row of LED to be changed • Clear a single LED void clearLed(byte col, // Column of LED to be changed byte row ) // Row of LED to be changed
  • 31. Details of LED control • LED control is done through SPI using pin 10, with mode 0, running at 21MHz SPI.begin(10); SPI.setDataMode(10, SPI_MODE0); SPI.setClockDivider(10, 4); // 84MHz divided by 4 • Digital pin 37 is an output and connected to the LED driver chips pinMode(37, OUTPUT); • Write 32-bit data structure to SPI to control the LEDs, refreshed every 100μs digitalWrite(37, HIGH); // enable the outputs of the LED driver chips SPI.transfer(10, column, SPI_CONTINUE); // send column (left-shifted 2 bits + special bit 7) SPI.transfer(10, blue, SPI_CONTINUE); // send blue byte SPI.transfer(10, green, SPI_CONTINUE); // send green byte SPI.transfer(10, red); // send red byte digitalWrite(37, LOW); // disable the outputs of the LED driver chips
  • 32. Easy sensor functions • Send 16-bit word over SPI to touch sensor to set the analog switches void selectSensorCell(byte col, // Column used by analog switches byte row, // Row used byte switch) // Switch to read X (0), Y (1) or Z (2) • Read stable raw X value at the current col and row (returns 0-4095) int readX() • Read stable raw Y value at the current col and row (returns 0-127) int readY() • Read stable raw Z value at the current col and row (returns 0-127, 255 feather) byte readZ()
  • 33. Details of touch sensor control • Touch sensor control is done through SPI using pin 4, with mode 0, running at 21MHz SPI.begin(4); SPI.setDataMode(4, SPI_MODE0); SPI.setClockDivider(4, 4); // 84MHz divided by 4 • Write 16-bit data to SPI to set analog switches (see ls_sensor.ino) SPI.transfer(4, lsb, SPI_CONTINUE); // first byte of data structure SPI.transfer(4, msb); // second byte of data structure
  • 34. Read touch sensor data • Touch sensor A/D input is using SPI through pin 52, with mode 0, running at 21MHz SPI.begin(52); SPI.setDataMode(52, SPI_MODE0); SPI.setClockDivider(52, 4); // 84MHz divided by 4 • Read sensor data delayUsec(7); // wait for stable current after sensor // control changes the analog switches // delay different for each analog switch byte msb = SPI.transfer(4, 0, SPI_CONTINUE); // first byte of sensor data byte lsb = SPI.transfer(4, 0); // second byte of sensor data int raw = (int(msb) << 8 | lsb) >> 2; // pack into int, shift from 16 to 14 bit
  • 35. Reading the foot pedals • Done in ls_switches.ino, modify this method to add custom behavior void handleFootSwitchState(byte whichSwitch, boolean state) • Digital pin 33 and 34, respectively for left and right foot switches, configured as pull-up inputs (inverted inputs: high is off, low is on) pinMode(33, INPUT_PULLUP); pinMode(34, INPUT_PULLUP); • Read the digital value of foot pedal states (typically every 20ms) boolean leftPedalState = digitalRead(33); boolean rightPedalState = digitalRead(34);
  • 36. Details of MIDI / Serial - USB / DIN • Setting digital switches changes the communication methods from the LinnStrument to the outside world • Digital pin 35 switches between Serial and MIDI pinMode(35, OUTPUT); digitalWrite(35, HIGH); // high switches to Serial input/output digitalWrite(35, LOW); // low switches to MIDI input/output • Digital pin 36 switches between USB and DIN connectors pinMode(36, OUTPUT); digitalWrite(36, HIGH); // high switches to USB input/output digitalWrite(36, LOW); // low switches to DIN input/output
  • 37. That’s all the hardware stuff!
  • 38. Serial Monitor for debugging
  • 39. Uncomment line in ls_debug.h Recompile and upload
  • 40. Enable Update OS mode Which essentially turns on Serial instead of MIDI
  • 41. Click on the Looking Glass icon To enable Serial Monitor and reset LinnStrument
  • 42. Column 17 selects the debug level By default it’s -1, meaning that no debug info is printed
  • 43. Row 2 selects debug level 0
  • 44. Row 3 selects debug level 1
  • 45. Row 4 selects debug level 2
  • 46. This is printed in the Serial Console Along with the actual debug messages of corresponding levels
  • 47. The relevant debug code if (sensorCol == 17 && sensorRow < 4) { debugLevel = sensorRow - 1; DEBUGPRINT((-1,"debugLevel = ")); DEBUGPRINT((-1,debugLevel)); DEBUGPRINT((-1,"n")); } void handleNewTouch(byte z) { DEBUGPRINT((1,"handleNewTouch")); DEBUGPRINT((1," col="));DEBUGPRINT((1,(int)sensorCol)); DEBUGPRINT((1," row="));DEBUGPRINT((1,(int)sensorRow)); DEBUGPRINT((1," z="));DEBUGPRINT((1,(int)z)); DEBUGPRINT((1,"n")); void handleTouchRelease() { DEBUGPRINT((1,"handleTouchRelease")); DEBUGPRINT((1," col="));DEBUGPRINT((1,(int)sensorCol)); DEBUGPRINT((1," row="));DEBUGPRINT((1,(int)sensorRow)); DEBUGPRINT((1,"n"));
  • 49. Core Files • linnstrument-firmware.ino: global data structures, setup and main loop • ls_displayModes.ino: illuminate LEDs for the different display modes • ls_handleTouches.ino: driven by main loop, handles touch tracking • ls_rtos.ino: primitive scheduler calling continuous tasks during delay • ls_settings.ino: switch behavior from UI, store and recall settings • ls_touchInfo.ino: encapsulate sensor data into touched cells
  • 50. Low-level Files • ls_calibration.ino: calibration procedure and data conversion • ls_leds.ino: low-level communication with the LEDs • ls_midi.ino: MIDI input, NRPN control, clock, output and queue • ls_sensor.ino: low-level touch sensing with bias and curve • ls_test.ino: debug functions and low-level reports
  • 51. Auxilliary Features Files • ls_arpeggiator.ino: arpeggiator logic, tied to internal MIDI clock • ls_faders.ino: MIDI CC faders touch handling and data sending • ls_font.ino: tiny, small, and big font display, including scrolling • ls_lowRow.ino: continuous cell evaluation for low-row features, driven by the main touch tracking • ls_noteTouchMapping.ino: track MIDI notes to touched cells, mainly used by arpeggiator • ls_switches.ino: handles control switches and foot pedals
  • 52. Support Header Files • ls_bytebuffer.h: circular byte buffer with independent push and pop locations, used by ls_midi.ino output queue • ls_channelbucket.h: hands out MIDI channels from a bucket of allowed channel numbers. • ls_debug.h: debug macros and defines • ls_midi.h: standard MIDI status codes, used by ls_midi.ino
  • 54. Global variables • byte sensorCol: the column number of the current sensor cell • byte sensorRow: the row number of the current sensor cell • byte sensorSplit: the split of the current sensor cell (0: left, 1: right) • DisplayMode displayMode: the active display mode (see DisplayMode enum in linnstrument-firmware.ino for the values)
  • 55. Global functions • TouchInfo &cell(): the last touch data for the current cell • TouchInfo &cell(byte col, byte row): the last touch data for a cell • FocusCell &focus(byte split, byte channel): the current cell that has the focus for a particular split and channel (FocusCell is a structure that just contains col and row)
  • 57. Per-finger touch-tracking • With a general purpose CPU, you’d model this as touch ‘sessions’ that are dynamically created and have a life of their own • Too much memory churn for Arduino, too much book-keeping also • Instead, have a touch state for each cell • Transfer data between cells since we don’t support two fingers touching the same cell
  • 58. Inside ls_handleTouches.ino void handleNewTouch(byte z) { // ... snip ... // check if the new touch could be an ongoing slide to the right if (potentialSlideTransferCandidate(sensorCol-1)) { // if the pressure gets higher than adjacent cell, // the slide is transitioning over if (isReadyForSlideTransfer(sensorCol-1)) { transferFromSameRowCell(sensorCol-1); handleXYZupdate(z); } // otherwise act as if this new touch never happened else { cellTouched(transferCell); } } // similar for slide to the left
  • 59. Check potential slide transfer boolean potentialSlideTransferCandidate(int col) { if (col < 1) return false; if (sensorSplit != getSplitOf(col)) return false; if (!isLowRow() && (!Split[sensorSplit].sendX || !isFocusedCell(col, sensorRow))) return false; if (isLowRow() && !lowRowRequiresSlideTracking()) return false; if (isStrummingSplit(sensorSplit)) return false; // the sibling cell has an active touch return cell(col, sensorRow).touched != untouchedCell && // either a release is pending to be performed, or (cell(col, sensorRow).pendingReleaseCount || // both cells are touched simultaneously on the edges abs(cell().calibratedX() - cell(col, sensorRow).calibratedX()) < TRANSFER_SLIDE_PROXIMITY); }
  • 60. Is the sibling cell ready for the transfer? boolean isReadyForSlideTransfer(int col) { // there's a pending release waiting return cell(col, sensorRow).pendingReleaseCount || // the cell pressure is higher cell().rawZ > cell(col, sensorRow).rawZ; }
  • 61. Perform the data transfer 1/3 void transferFromSameRowCell(byte col) { cell().initialX = cell(col, sensorRow).initialX; cell().initialReferenceX = cell(col, sensorRow).initialReferenceX; cell().lastMovedX = cell(col, sensorRow).lastMovedX; cell().fxdRateX = cell(col, sensorRow).fxdRateX; cell().rateCountX = cell(col, sensorRow).rateCountX; cell().initialY = cell(col, sensorRow).initialY; cell().note = cell(col, sensorRow).note; cell().channel = cell(col, sensorRow).channel; cell().fxdPrevPressure = cell(col, sensorRow).fxdPrevPressure; cell().fxdPrevTimbre = cell(col, sensorRow).fxdPrevTimbre; cell().velocity = cell(col, sensorRow).velocity; cell().vcount = cell(col, sensorRow).vcount; noteTouchMapping[sensorSplit] .changeCell(cell().note, cell().channel, sensorCol, sensorRow);
  • 62. Perform the data transfer 2/3 if (cell(col, sensorRow).touched != untouchedCell) { cell(col, sensorRow).touched = transferCell; } cell(col, sensorRow).initialX = -1; cell(col, sensorRow).initialReferenceX = 0; cell(col, sensorRow).lastMovedX = 0; cell(col, sensorRow).fxdRateX = 0; cell(col, sensorRow).rateCountX = 0; cell(col, sensorRow).initialY = -1; cell(col, sensorRow).note = -1; cell(col, sensorRow).channel = -1; cell(col, sensorRow).fxdPrevPressure = 0; cell(col, sensorRow).fxdPrevTimbre = 0; cell(col, sensorRow).velocity = 0; cell(col, sensorRow).pendingReleaseCount = 0; // do not reset vcount!
  • 63. Perform the data transfer 3/3 // transfer the focus if this was the focused cell byte channel = cell().channel; if (channel != -1 && col == focus(sensorSplit, channel).col && sensorRow == focus(sensorSplit, channel).row) { focus(sensorSplit, channel).col = sensorCol; focus(sensorSplit, channel).row = sensorRow; } }
  • 64. Finding the right MIDI channels • Note-per-channel distributes up to 16 MIDI channels across notes • Notes should reuse same channel as late as possible (release trails) • Intuitively you’d scan all the active notes and determine which channel is available for a new note, which is again too much overhead • We use a bucket of available channels, channels bubble up or sink down • A new note merely has to take the next channel from the top • Fully encapsulated inside ls_channelbucket.h
  • 65. Low-row functionalities • Intuitively you’d detect a touch on low-row cells when it’s active • Then evaluate state of every other cell and trigger behavior • This is again too much overhead • Instead keep track of low-row start/stop in a state machine • Piggy-back when processing each cell in the main loop to evaluate appropriate low-row behavior
  • 66. Inside ls_handleTouches.ino void handleXYZupdate(byte z) { // ... snip ... handleLowRowState(z); if (isLowRow()) { if (newVelocity) { lowRowStart(); } return; } // ... snip ... } void handleTouchRelease() { // ... snip ... if (isLowRow()) { lowRowStop(); } // ... snip ... }
  • 67. Inside ls_lowRow.ino 1/2 void lowRowStart() { switch (Split[sensorSplit].lowRowMode) { case lowRowStrum: lowRowState[sensorCol] = pressed; break; // ... snip, different for each low-row mode } } void lowRowStop() { switch (Split[sensorSplit].lowRowMode) { case lowRowStrum: lowRowState[sensorCol] = inactive; break; // ... snip, different for each low-row mode } }
  • 68. Inside ls_lowRow.ino 2/2 void handleLowRowState(byte z) { // this is a low-row cell if (isLowRow()) { // send out the continuous data for low-row cells if (cell().velocity) { // ... snip, different for each low-row mode } } // this is a non low-row cell else { switch (Split[sensorSplit].lowRowMode) { case lowRowStrum: // uses lowRowState to correlate with column handleLowRowStrum(); break; // ... snip, other cases } } }
  • 69. Sending MIDI bytes • MIDI was causing the LEDs to flicker • Too much time was spent at once (need more guerrilla!) • Created a MIDI queue to continuously send byte-by-byte from our RTOS • Arduino UART classes still caused problems: synchronous wait for readiness when sending
  • 70. Patched UARTClass --- UARTClass.cpp 2014-11-10 14:55:10.000000000 +0100 +++ UARTClass.cpp 2014-10-10 19:39:43.000000000 +0200 @@ -109,9 +109,15 @@ size_t UARTClass::write( const uint8_t uc_data ) { + return write(uc_data, true); +} + +size_t UARTClass::write( const uint8_t uc_data, const bool wait ) +{ // Check if the transmitter is ready - while ((_pUart->UART_SR & UART_SR_TXRDY) != UART_SR_TXRDY) - ; + while ((_pUart->UART_SR & UART_SR_TXRDY) != UART_SR_TXRDY) { + if ( !wait ) return 0; + } // Send character _pUart->UART_THR = uc_data;
  • 71. Queuing of messages ByteBuffer<4096> midiOutQueue; // called for each MIDI message that is sent void queueMidiMessage(MIDIStatus type, byte param1, byte param2, byte channel) { param1 &= 0x7F; param2 &= 0x7F; midiOutQueue.push((byte)type | (channel & 0x0F)); midiOutQueue.push(param1); if (type != MIDIProgramChange && type != MIDIChannelPressure) { midiOutQueue.push(param2); } } // continuously called by our RTOS void handlePendingMidi() { if (!midiOutQueue.empty()) { if (Serial.write(midiOutQueue.peek(), false) > 0) { // patched UART method midiOutQueue.pop(); } } }
  • 72. More information at http://www.rogerlinndesign.com Questions? @gbevin