SlideShare a Scribd company logo
1 of 25
Download to read offline
Exploiting fullwaveform lidar signals to estimate
         timber volume and above-ground biomass of
                         individual trees

               Tristan Allouis1 ,               Sylvie Durrieu1                Cédric Véga2
                                             Pierre Couteron3
                    1 Cemagref/AgroParisTech,           UMR TETIS, Montpellier, France
                          2 French   Institute of Pondicherry, Pondicherry, India
       3 Institut   de Recherche pour le Développement, UMR AMAP, Montpellier, France



                           2011 IEEE IGARSS, Vancouver, Canada




1/18         Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Introduction: Context


       Why assessing forest biomass?

           Estimating forest productivity and carbon sequestration rate
           Defining strategies for sustainable forest management and
           climate change mitigation


       How?

           Through allometric equations using field-measured trunc
           diameter at breast height (DBH) → Cost and assess issues
           Through remote sensing techniques → Do not give access to
           the DBH



2/18          Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Introduction: Background


       Lidar technique overview

              Light detection and ranging

         1   Emission/reception of laser pulses
         2   Signal processing
         3   Signal and echoes geo-positioning
       Advantages:
             High resolution products
             (several pt/m2 )
             Ground echoes under the canopy


3/18            Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Introduction: Background



       State of the art
       3D information derived from lidar data:
           Height, basal area, volume (direct
           or indirect methods)
           Topography under cover
       Scope:
           Timber inventory and management
           Habitat monitoring
           Ecosystem modelling




4/18            Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Introduction: Aim of the study




       Questions

           Can other tree metrics replace
           DBH in allometric equations?
           Can full-waveform signals improve
           volume/biomass estimates?
           What is the accuracy of such
           estimates at tree level?




5/18          Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Material: Study site


       Study area

           Located in the French Alps
           (mountainous)
           Planted with Black Pine

       Field data

           6 circular plots of 15 m
           radius (61 trees)
           Tree DBH, total height,
           crown base height



6/18           Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Material: Study site

       Reference Volume
       Equation by the French Institute for Agricultural Research for
       Black Pine within France (C=trunc circonference; H=total height):
       Volume = 34111.14 + 0.020833846 · H · C 2 − 1486.2307 · C +
       2.2695012·C ·H +15.664201·C 2 −56.250923·H −0.0061317691·H 2

       Reference Biomass
       Equation by Gil et al. (2011) for Black Pine within Spain:
       Biomass = 0.6073 · DBH 2 − 5.0998 · DBH − 23.729

          Gil, Blanco, Carballo, Calvo, 2011. Carbon stock estimates for forests in the
       Castilla y León region, Spain. A GIS based method for evaluating spatial distribution
       of residual biomass for bio-energy, Biomass and Bioenergy, vol. 35, pp. 243-252


7/18          Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Material: Lidar data


       Characteristics

           Small-footprint size (                25 cm)
           Density = 5        shots/m2
       ⇒ Sample rate of 98% per surface unit

       2 types of lidar data

           Canopy Height Model (CHM):
           classical lidar data derived from
           discrete returns
           Full-Waveform lidar signals



8/18           Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Method: Deriving metrics from the CHM

       CHM metrics
       Segmentation of individual trees
       (Véga and Durrieu, 2011) and
       extraction of:
           Total tree height (HtCHM )
           Crown projected area (AcrownCHM )
           Tree bounding volume
           (BVCHM = AcrownCHM · HtCHM )

            Véga, Durrieu, 2011. Multi-level filtering segmentation to measure individual tree
         parameters based on Lidar data: application to a mountainous forest with
         heterogeneous stands, International Journal of Applied Earth Observations and
         Geoinformation 13, 646–656.


9/18            Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Method: Deriving metrics from full-waveform lidar signals

        Method

            Aggregation of signals falling inside
            modeled tree crowns ⇒ One
            aggregrated signal corresponds to
            one individual tree
            Vegetation profile calculation
            (correction of signal attenuation,
            more details in Allouis et al. 2010 )

             Allouis, Durrieu, Cuesta, Chazette, Flamant, Couteron, 2010. Assessment of tree
          and crown heights of a maritime pine forest at plot level using a fullwaveform
          ultraviolet lidar prototype, International Geoscience and Remote Sensing Symposium
          (IGARSS), pp. 1382-1385


10/18             Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Method: Deriving metrics from full-waveform lidar signals

        FW metrics

            Curve integral (ISIG , IPROF ,
                                                                       Aggregated waveform               Vegetation profile
            I2SIG , I2PROF )                                                      Power                              Density


            Ratio beween I and ground
            component integral
            (RSIG , RPROF )
            Maximum signal amplitude
            except ground (MaxSIG )
            Crown base height
            (HcrownPROF )
            Height of maximum profile
                                                                     Range                            Range
            amplitude except ground
            (HmaxPROF )

11/18            Tristan Allouis, S. Durrieu, C. Véga, P. Couteron      Estimation of individual tree biomass using lidar signals
Method: Deriving metrics from full-waveform lidar signals

        FW metrics

            Curve integral (ISIG , IPROF ,
                                                                       Aggregated waveform               Vegetation profile
            I2SIG , I2PROF )                                                      Power                              Density


            Ratio beween I and ground
            component integral
            (RSIG , RPROF )
            Maximum signal amplitude
            except ground (MaxSIG )
            Crown base height
            (HcrownPROF )
            Height of maximum profile
                                                                     Range                            Range
            amplitude except ground
            (HmaxPROF )

11/18            Tristan Allouis, S. Durrieu, C. Véga, P. Couteron      Estimation of individual tree biomass using lidar signals
Method: Deriving metrics from full-waveform lidar signals

        FW metrics

            Curve integral (ISIG , IPROF ,
                                                                       Aggregated waveform               Vegetation profile
            I2SIG , I2PROF )                                                      Power                              Density


            Ratio beween I and ground
            component integral
            (RSIG , RPROF )
            Maximum signal amplitude
            except ground (MaxSIG )
            Crown base height
            (HcrownPROF )
            Height of maximum profile
                                                                     Range                            Range
            amplitude except ground
            (HmaxPROF )

11/18            Tristan Allouis, S. Durrieu, C. Véga, P. Couteron      Estimation of individual tree biomass using lidar signals
Method: Deriving metrics from full-waveform lidar signals

        FW metrics

            Curve integral (ISIG , IPROF ,
                                                                       Aggregated waveform               Vegetation profile
            I2SIG , I2PROF )                                                      Power                              Density


            Ratio beween I and ground
            component integral
            (RSIG , RPROF )                                                                                         HmaxPROF
                                                                              MaxSIG
            Maximum signal amplitude
                                                                                                                    HcrownPROF
            except ground (MaxSIG )
            Crown base height
            (HcrownPROF )
            Height of maximum profile
                                                                     Range                            Range
            amplitude except ground
            (HmaxPROF )

11/18            Tristan Allouis, S. Durrieu, C. Véga, P. Couteron      Estimation of individual tree biomass using lidar signals
Method: Building estimation models



        Process
        Building volume and biomass estimation models:

          1   Selection of significant metrics (stepwise algorithm)
          2   Construction of final models (10 subsamples for
              calibration/validation)
          3   Comparision of model performance (for CHM-only, CHM+FW
              and benchmark models)




12/18          Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Results: Replacing DBH in allometric equations

                                                                        → Strong relationship
                                                                        between DBH and crown
                                                                        projected area.
                                                                        Perspectives
                                                                        ⇒ Using crown area in
                                                                        traditional DBH models
                                                                        ⇒ Building new models
                                                                        with other metrics




           West, Enquist, Brown, 2009. A general quantitative theory of forest structure and
        dynamics, Proceedings of the National Academy of Sciences of the United States of
        America, vol. 106, pp. 7040-7045

13/18           Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Results: Estimation models
        Metrics selected in linear models
            Benchmark
                  Volume and biomass: BVtrunkREF , DBHREF , HtREF
            CHM-only
                  Volume: BVcrownCHM , HtCHM , AcrownCHM
                  Biomass: BVcrownCHM , HtCHM
            CHM+FW
                  Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM
                  Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF

                                                  Volume                  Biomass
                                               AdjR2 Error              AdjR2 Error
                     Benchmark                    1    1%                 1    8%
                     CHM-only                   0.93 15 %                0.87 30 %
                     CHM+FW                     0.95 17 %                0.91 25 %
14/18         Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Results: Estimation models
        Metrics selected in linear models
            Benchmark
                  Volume and biomass: BVtrunkREF , DBHREF , HtREF
            CHM-only
                  Volume: BVcrownCHM , HtCHM , AcrownCHM
                  Biomass: BVcrownCHM , HtCHM
            CHM+FW
                  Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM
                  Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF

                                                  Volume                  Biomass
                                               AdjR2 Error              AdjR2 Error
                     Benchmark                    1    1%                 1    8%
                     CHM-only                   0.93 15 %                0.87 30 %
                     CHM+FW                     0.95 17 %                0.91 25 %
14/18         Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Results: Estimation models
        Metrics selected in linear models
            Benchmark
                  Volume and biomass: BVtrunkREF , DBHREF , HtREF
            CHM-only
                  Volume: BVcrownCHM , HtCHM , AcrownCHM
                  Biomass: BVcrownCHM , HtCHM
            CHM+FW
                  Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM
                  Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF

                                                  Volume                  Biomass
                                               AdjR2 Error              AdjR2 Error
                     Benchmark                    1    1%                 1    8%
                     CHM-only                   0.93 15 %                0.87 30 %
                     CHM+FW                     0.95 17 %                0.91 25 %
14/18         Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Results: Estimation models
        Metrics selected in linear models
            Benchmark
                  Volume and biomass: BVtrunkREF , DBHREF , HtREF
            CHM-only
                  Volume: BVcrownCHM , HtCHM , AcrownCHM
                  Biomass: BVcrownCHM , HtCHM
            CHM+FW
                  Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM
                  Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF

                                                  Volume                  Biomass
                                               AdjR2 Error              AdjR2 Error
                     Benchmark                    1    1%                 1    8%
                     CHM-only                   0.93 15 %                0.87 30 %
                     CHM+FW                     0.95 17 %                0.91 25 %
14/18         Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Results: Estimation models
        Metrics selected in linear models
            Benchmark
                  Volume and biomass: BVtrunkREF , DBHREF , HtREF
            CHM-only
                  Volume: BVcrownCHM , HtCHM , AcrownCHM
                  Biomass: BVcrownCHM , HtCHM
            CHM+FW
                  Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM
                  Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF

                                                  Volume                  Biomass
                                               AdjR2 Error              AdjR2 Error
                     Benchmark                    1    1%                 1    8%
                     CHM-only                   0.93 15 %                0.87 30 %
                     CHM+FW                     0.95 17 %                0.91 25 %
14/18         Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Results: Estimation models



                                                          q                                                                             q




                                                                                                           60
                               150




                                                                                                                                                        q
                                                          q
                                                                                                                                                        q




                                                                                                           40
                                                          q
                               100




                                                                                                                        q
                                                          q
                                                          q                                                             q
                                                          q




                                                                                                           20
        Estimation error (%)




                                                                                    Estimation error (%)
                                                                         q                                              q
                                                                                                                        q
                                                                                                                        q
                               50




                                                                         q
                                                                         q




                                                                                                           0
                                                                                                                        q
                                                                                                                        q
                                          q                                                                             q
                                          q
                                          q                                                                             q




                                                                                                           −20
                                          q                                                                             q
                               0




                                          q




                                                                                                           −40
                               −50




                                                                         q
                                                                         q




                                                                                                           −60
                                                                                                                                                        q
                               −100




                                                                         q                                                                              q


                                       Benchmark         CHM           CHM+FW                                       Benchmark          CHM            CHM+FW

                                                   Volume estimation                                                            Biomass2 estimation




15/18                                 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron                          Estimation of individual tree biomass using lidar signals
Conclusion




        Crown area is a good predictor of DBH
        Tree bounding volume (height x crown area) is one of the
        most efficient lidar metric for volume and biomass estimation
        Slight improvement using FW lidar metrics in biomass
        estimation models but no improvement in volume estimations
        Approach limited to monospecific and single-storey forests
        Future work: evaluating FW metrics worth at plot level




16/18     Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Thank you for your attention




17/18   Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals
Exploiting fullwaveform lidar signals to estimate
          timber volume and above-ground biomass of
                          individual trees

                Tristan Allouis1 ,               Sylvie Durrieu1                Cédric Véga2
                                              Pierre Couteron3
                     1 Cemagref/AgroParisTech,           UMR TETIS, Montpellier, France
                          2 French    Institute of Pondicherry, Pondicherry, India
        3 Institut   de Recherche pour le Développement, UMR AMAP, Montpellier, France



                            2011 IEEE IGARSS, Vancouver, Canada




18/18          Tristan Allouis, S. Durrieu, C. Véga, P. Couteron   Estimation of individual tree biomass using lidar signals

More Related Content

Similar to EXPLOITING FULLWAVEFORM LIDAR SIGNALS TO ESTIMATE TIMBER VOLUME AND ABOVE-GROUND BIOMASS OF INDIVIDUAL TREES.pdf

2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.ppt2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.pptgrssieee
 
2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.ppt2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.pptgrssieee
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)theijes
 
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRYLIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRYAbhiram Kanigolla
 
cartus_TH4.T02.3.ppt
cartus_TH4.T02.3.pptcartus_TH4.T02.3.ppt
cartus_TH4.T02.3.pptgrssieee
 
Role of Modern Technologies in Forestry
Role of Modern Technologies in ForestryRole of Modern Technologies in Forestry
Role of Modern Technologies in ForestryPritam Kumar Barman
 
Forest monitoring through remote sensing
Forest monitoring through remote sensingForest monitoring through remote sensing
Forest monitoring through remote sensingPritam Kumar Barman
 
Forest quality assessment based on bird sound recognition using convolutiona...
Forest quality assessment based on bird sound recognition using  convolutiona...Forest quality assessment based on bird sound recognition using  convolutiona...
Forest quality assessment based on bird sound recognition using convolutiona...IJECEIAES
 
Application of remote sensing in forest ecosystem
Application of remote sensing in forest ecosystemApplication of remote sensing in forest ecosystem
Application of remote sensing in forest ecosystemaliya nasir
 
Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...Surendra Bam
 
MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptx
MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptxMONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptx
MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptxgrssieee
 
ASSESSMENT OF VEGETATION COVER USING UAV-BASED REMOTE SENSING
ASSESSMENT OF VEGETATION COVER  USING UAV-BASED REMOTE SENSINGASSESSMENT OF VEGETATION COVER  USING UAV-BASED REMOTE SENSING
ASSESSMENT OF VEGETATION COVER USING UAV-BASED REMOTE SENSINGPritam Kumar Barman
 
BioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.pptBioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.pptgrssieee
 
Use Case: PostGIS and Agribotics
Use Case: PostGIS and AgriboticsUse Case: PostGIS and Agribotics
Use Case: PostGIS and AgriboticsPGConf APAC
 
Large Scale Forest Taxation based on Single Tree Measurements by means of Air...
Large Scale Forest Taxation based on Single Tree Measurements by means of Air...Large Scale Forest Taxation based on Single Tree Measurements by means of Air...
Large Scale Forest Taxation based on Single Tree Measurements by means of Air...mawe99
 

Similar to EXPLOITING FULLWAVEFORM LIDAR SIGNALS TO ESTIMATE TIMBER VOLUME AND ABOVE-GROUND BIOMASS OF INDIVIDUAL TREES.pdf (20)

2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.ppt2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.ppt
 
2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.ppt2011_0728_IGARSS2011_Motohka.ppt
2011_0728_IGARSS2011_Motohka.ppt
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
The International Journal of Engineering and Science (The IJES)
 The International Journal of Engineering and Science (The IJES) The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRYLIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
LIDAR TECHNOLOGY AND ITS APPLICATION ON FORESTRY
 
cartus_TH4.T02.3.ppt
cartus_TH4.T02.3.pptcartus_TH4.T02.3.ppt
cartus_TH4.T02.3.ppt
 
Role of Modern Technologies in Forestry
Role of Modern Technologies in ForestryRole of Modern Technologies in Forestry
Role of Modern Technologies in Forestry
 
Forest monitoring through remote sensing
Forest monitoring through remote sensingForest monitoring through remote sensing
Forest monitoring through remote sensing
 
Forest quality assessment based on bird sound recognition using convolutiona...
Forest quality assessment based on bird sound recognition using  convolutiona...Forest quality assessment based on bird sound recognition using  convolutiona...
Forest quality assessment based on bird sound recognition using convolutiona...
 
Application of remote sensing in forest ecosystem
Application of remote sensing in forest ecosystemApplication of remote sensing in forest ecosystem
Application of remote sensing in forest ecosystem
 
Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...Assessment of biomass and carbon sequestration potentials of standing Pongami...
Assessment of biomass and carbon sequestration potentials of standing Pongami...
 
MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptx
MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptxMONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptx
MONITORING FOREST MANAGEMENT ACTIVTIES USING AIRBORNE LIDAR AND ALOS PALSAR.pptx
 
ASSESSMENT OF VEGETATION COVER USING UAV-BASED REMOTE SENSING
ASSESSMENT OF VEGETATION COVER  USING UAV-BASED REMOTE SENSINGASSESSMENT OF VEGETATION COVER  USING UAV-BASED REMOTE SENSING
ASSESSMENT OF VEGETATION COVER USING UAV-BASED REMOTE SENSING
 
Experiments of the Propagation through Forest at GSM Frequencies (2G-3G-4G)
Experiments of the Propagation through Forest at GSM Frequencies (2G-3G-4G)Experiments of the Propagation through Forest at GSM Frequencies (2G-3G-4G)
Experiments of the Propagation through Forest at GSM Frequencies (2G-3G-4G)
 
BioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.pptBioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
BioSAR2010-aSARcampaigninsupportofthebiomassmission.ppt
 
LiDAR Technology & IT’s Application on Forestry
LiDAR Technology & IT’s Application on ForestryLiDAR Technology & IT’s Application on Forestry
LiDAR Technology & IT’s Application on Forestry
 
Use Case: PostGIS and Agribotics
Use Case: PostGIS and AgriboticsUse Case: PostGIS and Agribotics
Use Case: PostGIS and Agribotics
 
Basic remote sensing and gis
Basic remote sensing and gisBasic remote sensing and gis
Basic remote sensing and gis
 
Large Scale Forest Taxation based on Single Tree Measurements by means of Air...
Large Scale Forest Taxation based on Single Tree Measurements by means of Air...Large Scale Forest Taxation based on Single Tree Measurements by means of Air...
Large Scale Forest Taxation based on Single Tree Measurements by means of Air...
 
Vacchiano et al. 2007
Vacchiano et al. 2007Vacchiano et al. 2007
Vacchiano et al. 2007
 

More from grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELgrssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESgrssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSgrssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERgrssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdfgrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.pptgrssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptgrssieee
 

More from grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

Recently uploaded

DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfRankYa
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostZilliz
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machinePadma Pradeep
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024The Digital Insurer
 

Recently uploaded (20)

DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
Search Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdfSearch Engine Optimization SEO PDF for 2024.pdf
Search Engine Optimization SEO PDF for 2024.pdf
 
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage CostLeverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
Leverage Zilliz Serverless - Up to 50X Saving for Your Vector Storage Cost
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Install Stable Diffusion in windows machine
Install Stable Diffusion in windows machineInstall Stable Diffusion in windows machine
Install Stable Diffusion in windows machine
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024My INSURER PTE LTD - Insurtech Innovation Award 2024
My INSURER PTE LTD - Insurtech Innovation Award 2024
 

EXPLOITING FULLWAVEFORM LIDAR SIGNALS TO ESTIMATE TIMBER VOLUME AND ABOVE-GROUND BIOMASS OF INDIVIDUAL TREES.pdf

  • 1. Exploiting fullwaveform lidar signals to estimate timber volume and above-ground biomass of individual trees Tristan Allouis1 , Sylvie Durrieu1 Cédric Véga2 Pierre Couteron3 1 Cemagref/AgroParisTech, UMR TETIS, Montpellier, France 2 French Institute of Pondicherry, Pondicherry, India 3 Institut de Recherche pour le Développement, UMR AMAP, Montpellier, France 2011 IEEE IGARSS, Vancouver, Canada 1/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 2. Introduction: Context Why assessing forest biomass? Estimating forest productivity and carbon sequestration rate Defining strategies for sustainable forest management and climate change mitigation How? Through allometric equations using field-measured trunc diameter at breast height (DBH) → Cost and assess issues Through remote sensing techniques → Do not give access to the DBH 2/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 3. Introduction: Background Lidar technique overview Light detection and ranging 1 Emission/reception of laser pulses 2 Signal processing 3 Signal and echoes geo-positioning Advantages: High resolution products (several pt/m2 ) Ground echoes under the canopy 3/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 4. Introduction: Background State of the art 3D information derived from lidar data: Height, basal area, volume (direct or indirect methods) Topography under cover Scope: Timber inventory and management Habitat monitoring Ecosystem modelling 4/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 5. Introduction: Aim of the study Questions Can other tree metrics replace DBH in allometric equations? Can full-waveform signals improve volume/biomass estimates? What is the accuracy of such estimates at tree level? 5/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 6. Material: Study site Study area Located in the French Alps (mountainous) Planted with Black Pine Field data 6 circular plots of 15 m radius (61 trees) Tree DBH, total height, crown base height 6/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 7. Material: Study site Reference Volume Equation by the French Institute for Agricultural Research for Black Pine within France (C=trunc circonference; H=total height): Volume = 34111.14 + 0.020833846 · H · C 2 − 1486.2307 · C + 2.2695012·C ·H +15.664201·C 2 −56.250923·H −0.0061317691·H 2 Reference Biomass Equation by Gil et al. (2011) for Black Pine within Spain: Biomass = 0.6073 · DBH 2 − 5.0998 · DBH − 23.729 Gil, Blanco, Carballo, Calvo, 2011. Carbon stock estimates for forests in the Castilla y León region, Spain. A GIS based method for evaluating spatial distribution of residual biomass for bio-energy, Biomass and Bioenergy, vol. 35, pp. 243-252 7/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 8. Material: Lidar data Characteristics Small-footprint size ( 25 cm) Density = 5 shots/m2 ⇒ Sample rate of 98% per surface unit 2 types of lidar data Canopy Height Model (CHM): classical lidar data derived from discrete returns Full-Waveform lidar signals 8/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 9. Method: Deriving metrics from the CHM CHM metrics Segmentation of individual trees (Véga and Durrieu, 2011) and extraction of: Total tree height (HtCHM ) Crown projected area (AcrownCHM ) Tree bounding volume (BVCHM = AcrownCHM · HtCHM ) Véga, Durrieu, 2011. Multi-level filtering segmentation to measure individual tree parameters based on Lidar data: application to a mountainous forest with heterogeneous stands, International Journal of Applied Earth Observations and Geoinformation 13, 646–656. 9/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 10. Method: Deriving metrics from full-waveform lidar signals Method Aggregation of signals falling inside modeled tree crowns ⇒ One aggregrated signal corresponds to one individual tree Vegetation profile calculation (correction of signal attenuation, more details in Allouis et al. 2010 ) Allouis, Durrieu, Cuesta, Chazette, Flamant, Couteron, 2010. Assessment of tree and crown heights of a maritime pine forest at plot level using a fullwaveform ultraviolet lidar prototype, International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1382-1385 10/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 11. Method: Deriving metrics from full-waveform lidar signals FW metrics Curve integral (ISIG , IPROF , Aggregated waveform Vegetation profile I2SIG , I2PROF ) Power Density Ratio beween I and ground component integral (RSIG , RPROF ) Maximum signal amplitude except ground (MaxSIG ) Crown base height (HcrownPROF ) Height of maximum profile Range Range amplitude except ground (HmaxPROF ) 11/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 12. Method: Deriving metrics from full-waveform lidar signals FW metrics Curve integral (ISIG , IPROF , Aggregated waveform Vegetation profile I2SIG , I2PROF ) Power Density Ratio beween I and ground component integral (RSIG , RPROF ) Maximum signal amplitude except ground (MaxSIG ) Crown base height (HcrownPROF ) Height of maximum profile Range Range amplitude except ground (HmaxPROF ) 11/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 13. Method: Deriving metrics from full-waveform lidar signals FW metrics Curve integral (ISIG , IPROF , Aggregated waveform Vegetation profile I2SIG , I2PROF ) Power Density Ratio beween I and ground component integral (RSIG , RPROF ) Maximum signal amplitude except ground (MaxSIG ) Crown base height (HcrownPROF ) Height of maximum profile Range Range amplitude except ground (HmaxPROF ) 11/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 14. Method: Deriving metrics from full-waveform lidar signals FW metrics Curve integral (ISIG , IPROF , Aggregated waveform Vegetation profile I2SIG , I2PROF ) Power Density Ratio beween I and ground component integral (RSIG , RPROF ) HmaxPROF MaxSIG Maximum signal amplitude HcrownPROF except ground (MaxSIG ) Crown base height (HcrownPROF ) Height of maximum profile Range Range amplitude except ground (HmaxPROF ) 11/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 15. Method: Building estimation models Process Building volume and biomass estimation models: 1 Selection of significant metrics (stepwise algorithm) 2 Construction of final models (10 subsamples for calibration/validation) 3 Comparision of model performance (for CHM-only, CHM+FW and benchmark models) 12/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 16. Results: Replacing DBH in allometric equations → Strong relationship between DBH and crown projected area. Perspectives ⇒ Using crown area in traditional DBH models ⇒ Building new models with other metrics West, Enquist, Brown, 2009. A general quantitative theory of forest structure and dynamics, Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 7040-7045 13/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 17. Results: Estimation models Metrics selected in linear models Benchmark Volume and biomass: BVtrunkREF , DBHREF , HtREF CHM-only Volume: BVcrownCHM , HtCHM , AcrownCHM Biomass: BVcrownCHM , HtCHM CHM+FW Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF Volume Biomass AdjR2 Error AdjR2 Error Benchmark 1 1% 1 8% CHM-only 0.93 15 % 0.87 30 % CHM+FW 0.95 17 % 0.91 25 % 14/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 18. Results: Estimation models Metrics selected in linear models Benchmark Volume and biomass: BVtrunkREF , DBHREF , HtREF CHM-only Volume: BVcrownCHM , HtCHM , AcrownCHM Biomass: BVcrownCHM , HtCHM CHM+FW Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF Volume Biomass AdjR2 Error AdjR2 Error Benchmark 1 1% 1 8% CHM-only 0.93 15 % 0.87 30 % CHM+FW 0.95 17 % 0.91 25 % 14/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 19. Results: Estimation models Metrics selected in linear models Benchmark Volume and biomass: BVtrunkREF , DBHREF , HtREF CHM-only Volume: BVcrownCHM , HtCHM , AcrownCHM Biomass: BVcrownCHM , HtCHM CHM+FW Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF Volume Biomass AdjR2 Error AdjR2 Error Benchmark 1 1% 1 8% CHM-only 0.93 15 % 0.87 30 % CHM+FW 0.95 17 % 0.91 25 % 14/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 20. Results: Estimation models Metrics selected in linear models Benchmark Volume and biomass: BVtrunkREF , DBHREF , HtREF CHM-only Volume: BVcrownCHM , HtCHM , AcrownCHM Biomass: BVcrownCHM , HtCHM CHM+FW Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF Volume Biomass AdjR2 Error AdjR2 Error Benchmark 1 1% 1 8% CHM-only 0.93 15 % 0.87 30 % CHM+FW 0.95 17 % 0.91 25 % 14/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 21. Results: Estimation models Metrics selected in linear models Benchmark Volume and biomass: BVtrunkREF , DBHREF , HtREF CHM-only Volume: BVcrownCHM , HtCHM , AcrownCHM Biomass: BVcrownCHM , HtCHM CHM+FW Volume: BVcrownCHM , AcrownCHM , I2SIG , HtCHM Biomass: I2SIG , BVcrownCHM , AcrownCHM , HtCHM , RPROF Volume Biomass AdjR2 Error AdjR2 Error Benchmark 1 1% 1 8% CHM-only 0.93 15 % 0.87 30 % CHM+FW 0.95 17 % 0.91 25 % 14/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 22. Results: Estimation models q q 60 150 q q q 40 q 100 q q q q q 20 Estimation error (%) Estimation error (%) q q q q 50 q q 0 q q q q q q q −20 q q 0 q −40 −50 q q −60 q −100 q q Benchmark CHM CHM+FW Benchmark CHM CHM+FW Volume estimation Biomass2 estimation 15/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 23. Conclusion Crown area is a good predictor of DBH Tree bounding volume (height x crown area) is one of the most efficient lidar metric for volume and biomass estimation Slight improvement using FW lidar metrics in biomass estimation models but no improvement in volume estimations Approach limited to monospecific and single-storey forests Future work: evaluating FW metrics worth at plot level 16/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 24. Thank you for your attention 17/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals
  • 25. Exploiting fullwaveform lidar signals to estimate timber volume and above-ground biomass of individual trees Tristan Allouis1 , Sylvie Durrieu1 Cédric Véga2 Pierre Couteron3 1 Cemagref/AgroParisTech, UMR TETIS, Montpellier, France 2 French Institute of Pondicherry, Pondicherry, India 3 Institut de Recherche pour le Développement, UMR AMAP, Montpellier, France 2011 IEEE IGARSS, Vancouver, Canada 18/18 Tristan Allouis, S. Durrieu, C. Véga, P. Couteron Estimation of individual tree biomass using lidar signals