SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
Many of the Big Data and IoT use cases are based on combing data from multiple data sources and to make them available on a Big Data platform for analysis. The data sources are often very heterogeneous, from simple files, databases to high-volume event streams from sensors (IoT devices). It’s important to retrieve this data in a secure and reliable manner and integrate it with the Big Data platform so that it is available for analysis in real-time (stream processing) as well as in batch (typical big data processing). In past some new tools have emerged, which are especially capable of handling the process of integrating data from outside, often called Data Ingestion. From an outside perspective, they are very similar to a traditional Enterprise Service Bus infrastructures, which in larger organization are often in use to handle message-driven and service-oriented systems. But there are also important differences, they are typically easier to scale in a horizontal fashion, offer a more distributed setup, are capable of handling high-volumes of data/messages, provide a very detailed monitoring on message level and integrate very well with the Hadoop ecosystem. This session will present and compare Apache Flume, Apache NiFi, StreamSets and the Kafka Ecosystem and show how they handle the data ingestion in a Big Data solution architecture.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires