SlideShare une entreprise Scribd logo
1  sur  21
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 1
CHAPTER 1
INTRODUCTION
1.1 THE ELECTROMAGNETIC SPECTRUM
The electromagnetic spectrum as shown in the Fig 1.1 is the range of all possible frequencies of
electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic
distribution of electromagnetic radiation emitted or absorbed by that particular object.
The electromagnetic spectrum extends from low frequencies used for modern radio to gamma
radiation at the short-wavelength end, covering wavelengths from thousands of kilometers down
to a fraction of the size of an atom. The long wavelength limit is the size of the universe itself,
while it is thought that the short wavelength limit is in the vicinity of the Planck length, although
in principle the spectrum is infinite and continuous.
Some physicists pretend that light consists of tiny particles which they call photons. They travel
at the speed of light. The speed of light is about 300,000,000 meters per second. When they hit
something they might bounce off, go right through or get absorbed. What happens is depends
on a bit and how much energy they have. If they bounce off something and then go into eye will
cause to see the things they have bounced off. Some things like glass and Perspex will let them
go through. These materials are transparent. Black objects absorb the photons so it results not be
able to see black things. This is the problem has to be sorted out. These poor old physicists get a
little bit confused when they try to explain why some photons go through a leaf, some are
reflected, and some are absorbed. They say that it is because they have different amounts of
energy.
Other physicists pretend that light is made of waves. These physicists measure the length of the
waves and this helps them to explain what happens when light hits and leaves. The light with the
longest wavelength (red) is absorbed by the green stuff (chlorophyll) in the leaves. There is green
light, this is allowed to pass right through or is reflected. (Indigo and violet have shorter
wavelengths than blue light.)
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 2
Fig 1.1: Electromagnetic spectrum
It is easy to explain some of the properties of light by pretending that it is made of tiny particles
called photons and it is easy to explain other properties of light by pretending that it is some kind
of wave.
The visible spectrum is just one small part of the electromagnetic spectrum. These
electromagnetic waves are made up of two parts. The first part is an electric field. The second
part is a magnetic field. So they are called as electromagnetic waves. The two fields are at right
angles to each other.
1.2 MICROWAVE REGION
Microwaves are good for transmitting information from one place to another because microwave
energy can penetrate haze, light rain and snow, clouds, and smoke.
Shorter microwaves are used in remote sensing. These microwaves are used for clouds and
smoke, these waves are good for viewing the Earth from space Microwave waves are used in the
communication industry and in the kitchen as a way to cook foods. Microwave radiation is still
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 3
associated with energy levels that are usually considered harmless except for people with pace
makers.
The frequency selection is another important aspect in transmission. Here we are going to use the
S band of the Microwave Spectrum, which lies between 2-4GHz.We have selected the license
free 2.45 GHz ISM band for our purpose. The Industrial, Scientific and Medical (ISM) radio
bands were originally reserved internationally for non-commercial use of RF electromagnetic
fields for industrial, scientific and medical purposes. In recent years they have also been used for
license-free error-tolerant communications applications such as wireless LANs and Bluetooth.
Frequency range
• L Band l to 2 GHz
• S Band 2 to 4 GHz
• C Band 4 to 8 GHz
• X Band 8 to 12 GHz
• K11 Band 12 to 18 GHz
• K Band 18 to 26 GHz
• Ka Band 26 to 40 GHz.
• Q Band 30 to 50 GHz
• U Band 40 to 60 GHz
• V Band 46 to 56 GHz
• W Band 56 to 100 GHz
The S band of the Microwave Spectrum is useful for wireless charging.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 4
Fig1.2 Microwave region
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 5
CHAPTER 2
LITERATURE SURVEY
Wireless charging is any of several methods of charging batteries without the use of cables or
device-specific AC adaptors. Wireless charging can be used for a wide variety of devices
including cell phones, laptop computers and MP3 players as well as larger objects, such as robots
and electric cars.
2.1 DIFFERENT TYPES OF WIRELESS CHARGING
The different types of wireless charging are:
• Inductive charging,
• radio charging
• Resonance charging.
2.1.1 INDUCTIVE CHARGING
It is used for charging mid-sized items such as cell phones, MP3 players and PDAs. In inductive
charging, an adapter equipped with contact points is attached to the device's back plate. When
the device requires a charge, it is placed on a conductive charging pad, which is plugged into a
socket.
Inductive charging carries a far lower risk of electrical shock, when compared with conductive
charging, because there are no exposed conductors. The ability to fully enclose the charging
connection also makes the approach attractive where water impermeability is required; for
instance, inductive charging is used for implanted medical devices that require periodic or even
constant external power, and for electric hygiene devices, such as toothbrushes and shavers, that
are frequently used near or even in water. Inductive charging makes charging mobile devices
more convenient; rather than having to connect a power cable, the device can be placed on a
charge plate.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 6
One disadvantage of inductive charging is its lower efficiency and increased ohmic (resistive)
heating in comparison to direct contact. Implementations using lower frequencies or older drive
technologies charge more slowly and generate heat for most portable electronics, [excitation
needed] the technology-is nonetheless commonly used in some electric toothbrushes and
wet/dry electric shavers, partly for the advantage that the battery contacts can be completely
sealed to prevent exposure to water. Inductive charging also requires drive electronics and coils
that increase manufacturing complexity and cost.
2.1.2 RADIO CHARGING
It is used for charging items with small batteries and low power requirements, such as watches,
hearing aids, medical implants, cell phones, MP3 players and wireless keyboard and mice. Radio
waves are already in use to transmit and receive cellular telephone, television, radio and Wi-Fi
signals. Wireless radio charging works similarly. A transmitter, plugged into a socket, generates
radio waves. When the receiver attached to the device is set to the same frequency as the
transmitter, it will charge the device's battery.
2.1.3 RESONANCE CHARGING
It is used for items that require large amounts of power, such as an electric car, robot, vacuum
cleaner or laptop computer. In resonance charging, a copper coil attached to a power source is
the sending unit. Another coil, attached to the device to be charged, is the receiver. Both coils are
tuned to the same electromagnetic frequency, which makes it possible for energy to be
transferred from one to the other. The method works over short distances (3-5 meters).
The idea of wireless power transmission is not new. In 1899, Nikola Tesla wirelessly transmitted
100 million volts of electricity 26 miles to light 200 bulbs and run an electric motor.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 7
CHAPTER 3
MICROWAVE MOBILE CHARGER
3.1OVERVIEW
With mobile phones becoming a basic part of life, the recharging of mobile phone batteries has
always been a problem. The mobile phones vary in their talk time and battery standby according
to their manufacturer and batteries. All these phones irrespective of their manufacturer and
batteries have to be put to recharge after the battery has drained out. The main objective of this
current proposal is to make the recharging of the mobile phones independent of their
manufacturer and battery make.
A new proposal has been made so as to make the recharging of the mobile phones is done
automatically as you talk in your mobile phone. This is done by use of microwaves. The
microwave signal is transmitted from the transmitter along with the message signal using special
kind of antennas called slotted wave guide antenna at a frequency of 2.45 GHz.There are
minimal additions, which have to be made in the mobile handsets, which are the addition of a
sensor, a ‘rectenna’, and a ‘filter’. With the above setup, the need for separate chargers for
mobile phones is eliminated and makes charging universal. Thus the more you talk, the more
your mobile phone will be charged. Thus this seminar successfully demonstrates a novel method
of using the power of the microwave to charge the mobile phones without the use of wired
chargers. Thus this method provides great advantage to the mobile phone users to carry their
phones anywhere even if the place is devoid of facilities for charging. A novel use of the
rectenna and a sensor in a mobile phone could provide a new dimension in the revelation of
mobile phone.
With mobile phones becoming a basic part of life, the recharging of mobile phone batteries has
always been a problem. The mobile phones vary in their talk time and battery stand by according
to their manufacturer and batteries. All these phones irrespective of their manufacturer and
batteries have to be put to recharge after the battery has drained out. The main objective of this
current proposal is to make the recharging of the mobile phones independent of their
manufacturer and battery make.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 8
3.2 BLOCK DIAGRAM
Fig 3.1: Block Diagram
Microwave mobile charger consists of two parts. One is transmitting part and the other is the
Receiving part. At the transmitting end there is one microwave power source which is actually
producing microwaves i.e magnetron and a slotted waveguide antenna. It spread the Microwaves
in a space and sent it to the receiver side. Receiver side Impedance matching circuit receives the
microwave signal through Recteena circuit. This circuit is nothing but the combination of filter
circuit and the schottky Diode. Which actually convert our microwave in to the DC power.
3.2.1 Magnetron
The Magnetron is a self-contained microwave oscillator that operates differently from the linear-
beam tubes, such as the TWT and the klystron CROSSED-ELECTRON and MAGNETIC fields
are used in the magnetron to produce the high-power output required in radar and
communications equipment.
Transmitting
station with the
microwave
transmitter
sensor
Rectenna
RT cable
circulator
waveguide
Slotted waveguide
Antenna
mobile signal
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 9
The magnetron is classed as a diode because it has no grid. A magnetic field located in the space
between the plate (anode) and the cathode serves as a grid. The plate of a magnetron does not
have the same physical appearance as the plate of an ordinary electron tube. Since conventional
inductive-capacitive (LC) networks become impractical at microwave frequencies, the plate is
fabricated into a cylindrical copper block containing resonant cavities that serve as tuned circuits.
The magnetron base differs considerably from the conventional tube base. The magnetron base is
short in length and has large diameter leads that are carefully.
The cathode and filament are at the center of the tube and are supported by the filament leads.
The filament leads are large and rigid enough to keep the cathode and filament structure fixed in
position. The output lead is usually a probe or loop extending into one of the tuned cavities and
coupled into a waveguide or coaxial line. The cylindrical holes around its circumference are
resonant cavities. A narrow slot runs from each cavity into the central portion of the tube
dividing the inner structure into as many segments as there are cavities. Alternate segments are
strapped together to put the cavities in parallel with regard to the output. The cavities control the
output frequency.
The straps are circular, metal bands that are placed across the top of the block at the entrance
slots to the cavities. It must also have good emission characteristics, particularly under return
bombardment by the electrons. This is because most of the output power is provided by the large
number of electrons that are emitted when high-velocity electrons return to strike the cathode.
The cathode is indirectly heated and is constructed of a high-emission material. The open space
between the plate and the cathode is called the INTERACTION SPACE.
The cylindrical holes around its circumference are resonant cavities. A narrow slot runs from
each cavity into the central portion of the tube dividing the inner structure into as many segments
as there are cavities.Alternate segments are strapped together to put the cavities in parallel with
regard to the output. The cavities control the output frequency.The cathode and filament are at
the center of the tube and are supported by the filament leads. The filament leads are large and
rigid enough to keep the cathode and filament structure fixed in position. The output lead is
usually a probe or loop extending into one of the tuned cavities and coupled into a wave guide or
coaxial line.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 10
Fig 3.2: Magnetron
• Magnetron is a high power microwave oscillator and it is used in microwave oven and
radar transmitter.
• It is itself a special kind of vaccumtube that has permanent magnet in its constructions.
• This magnet is setup to affect the path of travel of electrons that are in transit from
cathode to the plate.
• Magnetron is capable to deliver more power than reflex klystron or gunn diode.
• It is a high power oscillator and has high efficiency of 50% to 80%.
• Magnetron is a device which produces microwave radiation of radar application and
microwaves.
• Magnetron functions as self-excited microwave oscillator.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 11
• Crossed electron and magnetic fields are used to produce magnetron to produce the high
power output required in radar equipment.
• These multi cavity devices are used in transmitters as pulsed or cw oscillators to produce
microwave radiation.
• Disadvantage of magnetron is that it works only on fixed frequency
• This magnet is setup to affect the path of travel of electrons that are in transit from
cathode to the plate.
• Magnetron functions as self-excited microwave oscillator.
3.2.2 THE SLOTTED WAVEGUIDE ANTENNA
A slotted waveguide is a waveguide that is used as an antenna in microwave radar applications.
Prior to its use in surface search radar, such systems used a parabolic segment reflector. The
circulator is connected to a tuning waveguide section to match the waveguide impedance to the
antenna input impedance.
The slotted waveguide antenna consists of 8 waveguide sections with 8 slots on each section.
These 64 slots radiate the power uniformly through free space to the rectenna. The slotted
waveguide antenna is ideal for power transmission because of its high aperture efficiency (>
95%) and high power handling capability.
3.2.3 RECTENNA
The basic addition to the mobile phone is going to be the rectenna. A rectenna is a rectifying
antenna, a special type of antenna that is used to directly convert microwave energy into DC
electricity. Its elements are usually arranged in a mesh pattern, giving it a distinct appearance
from most antennae. A simple rectenna can be constructed from a schottky diode placed between
antenna dipoles. The diode rectifies the current induced in the antenna by the microwaves.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 12
Rectenna are highly efficient at converting microwave energy to electricity. In' laboratory
environments, efficiencies above 90% have been observed with regularity.
Theoretically, high efficiencies can be maintained as the device shrinks, but experiments funded
by the United States National Renewable Energy Laboratory have so far only obtained roughly
1% efficiency while using infrared light. Another important part of our receiver circuitry is a
simple sensor. This is simply used to identify when the mobile phone user is talking. As our
main objective is to charge the mobile phone with the transmitted microwave after rectifying it
by the rectenna, the sensor plays an important role. The whole setup looks something like this.
As our main objective is to charge the mobile phone with the transmitted microwave after
rectifying it by the rectenna, the sensor plays an important role. The whole setup looks
something like this.
Fig3.4 Rectenna
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 13
3.2.4 SENSOR CIRCUITRY
The sensor circuitry is a simple circuit as shown in the Fig 6, which detects if the mobile phone
receives any message signal. This is required, as the phone has to be charged as long as the user
is talking Thus a simple F to V converter would serve our purpose. In India the operating
frequency of the mobile phone operators is generally 900MHz or 1800MHz for the GSM system
for mobile communication .Thus the usage of simple F to Y converter would act as switches to
trigger the rectenna circuit to on.
Fig.3.5 LM2907
A simple yet powerful F to V converter is LM2907.using LM2907 would greatly serve our
purpose. It acts as a switch for triggering the rectenna circuitry.
The general block diagram for the LM2097 is given below Thus a simple F to V converter would
serve our purpose. In India the operating frequency of the mobile phone operators is generally
900MHz or 1800MHz for the GSM system for mobile communication. Thus the usage of simple
F to Y converter would act as switches to trigger the rectenna circuit to on. Thus on the reception
of the signal the sensor circuitry directs the rectenna circuit to ON and the mobile phone begins
to change using the microwave power.
3.2.5 SCHOTTKY BARRIER DIODE
A Schottky diode is a special type of diode with a very low forward-voltage drop. When current
flows through a diode there is a small voltage drop across the diode terminals. A normal silicon
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 14
diode has a voltage drop between 0.6–1.7 volts, while a Schottky diode voltage drop is between
approximately 0.15–0.45 volts. This lower voltage drop can provide higher switching speed and
better system efficiency. Another advantage of the Schottky barrier diode is a very low noise
index that is very important for a communication receiver. A Schottky barrier diode is different
from a common P/N silicon diode. The common diode is formed by connecting a P type
semiconductor with an N type semiconductor, this is connecting between a semiconductor and
another semiconductor; however, a Schottky barrier diode is formed by connecting a metal with
a semiconductor. When the metal contacts the semiconductor, there will be a layer of potential
barrier (Schottky barrier) formed on the contact surface of them, which shows a characteristic of
rectification. The material of the semiconductor usually is a semiconductor of n-type
(occasionally p-type), and the material of metal generally is chosen from different metals such as
molybdenum, chromium, platinum and tungsten. Sputtering technique connects the metal and the
semiconductor.
A Schottky barrier diode is a majority carrier device, while a common diode is a minority carrier
device. When a common PN diode is turned from electric connecting to circuit breakage, the
redundant minority carrier on the contact surface should be removed to result in time delay. The
Schottky barrier diode itself has no minority carrier, it can quickly turn from electric connecting
to circuit breakage, its speed is much faster than a common P/N diode, so its reverse recovery
time Trr is very short and shorter than 10 nS. And the forward voltage bias of the Schottky
barrier diode is under 0.6V or so, lower than that (about 1.1V) of the common PN diode. So, The
Schottky barrier diode is a comparatively ideal diode, such as for a 1 ampere limited current PN
interface.
3.3PROCESS OF RECTIFICATION
Studies on various microwave power rectifier configurations show that a bridge configuration is
better than a single diode one. But the dimensions and the cost of that kind of solution do not
meet our objective. This study consists in designing and simulating a single diode power rectifier
in hybrid technology with improved sensitivity at low power levels. We achieved good
matching between simulation results and measurements thanks to the optimization of the
packaging of the Schottky diode.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 15
Microwave energy transmitted from space to earth apparently has the potential to provide
environmentally clean electric power on a very large scale. The key to improve transmission
efficiency is the rectifying circuit. The aim of this study is to make a low cost power rectifier for
low and high power levels at a.
The cathode and filament are at the center of the tube and are supported by the filament leads.
The filament leads are large and rigid enough to keep the cathode and filament structure fixed in
position. The output lead is usually a probe or loops extending into one of the tuned cavities and
coupled into a waveguide or coaxial line. The plate structure, is a solid block of copper. The
cylindrical holes around its circumference are resonant cavities. A narrow slot runs from each
cavity into the central portion of the tube dividing the inner structure into as many segments as
there are cavities. Alternate segments are strapped together to put the cavities in parallel with
regard to the output. The cavities control the output frequency. The straps are circular, metal
bands that are placed across the top of the block at the entrance slots to the cavities. Since the
cathode must operate at high power, it must be fairly large and must also be able to withstand
high operating temperatures.
It must also have good emission characteristics, particularly under return bombardment by the
electrons. This is because most of the output power is provided by the large number of electrons
that are emitted when high-velocity electrons return to strike the cathode.
The cathode is indirectly heated and is constructed of a high-emission material. The open space
between the plate and the cathode is called the INTERACTION SPACE. In this space the
electric and magnetic fields interact to exert force upon the electrons. Arranged in a mesh pattern
so give it a distinct appearance from most antenna. A simple rectenna can be constructed from a
schottky diode placed between antenna dipoles. The diode rectifies the current induced in the
antenna by the microwaves.
Rectenna are highly efficient at converting microwave energy to electricity. In laboratory
environments, efficiencies above 90% have been observed with regularity. Some
experimentation has been done with inverse rectenna, converting electricity into microwave
energy, but efficiencies are much lower-only in the area of 1%.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 16
With the advent of nanotechnology and MEMS the size of these devices can be brought down to
molecular level. It has been theorized that similar devices, scaled down to the proportions used in
nanotechnology, could be used to convert light into electricity at much greater efficiencies than
what is currently possible with solar cells. This type of device is called an optical rectenna.
Theoretically, high efficiencies can be maintained as the device shrinks, but experiments funded
by the United States National Renewable Energy Laboratory have so far only obtained roughly
1% efficiency while using infrared light. Another important part of our receiver circuitry is a
simple sensor. This is simply used to identify when the mobile phone user is talking. As our
main objective is to charge the mobile phone with the transmitted microwave after rectifying it
by the rectenna, the sensor plays an important role.
A Schottky barrier diode is different from a common P/N silicon diode. The common diode is
formed by connecting a P type semiconductor with an N type semiconductor, this is connecting
between a semiconductor and another semiconductor; however, a Schottky barrier diode is
formed by connecting a metal with a semiconductor. When the metal contacts the
semiconductor, there will be a layer of potential barrier (Schottky barrier) formed on the contact
surface of them, which shows a characteristic of rectification. The material of the semiconductor
usually is a semiconductor of n-type (occasionally p-type), and the material of metal generally is
chosen from different metals such as molybdenum, chromium, platinum and tungsten. Sputtering
technique connects the metal and the semiconductor.
A Schottky barrier diode is a majority carrier device, while a common diode is a minority carrier
device. When a common PN diode is turned from electric connecting to circuit breakage, the
redundant minority carrier on the contact surface should be removed to result in time delay. The
Schottky barrier diode itself has no minority carrier, it can quickly turn from electric connecting
to circuit breakage, its speed is much faster than a common P/N diode, so its reverse recovery
time Trr is very short and shorter than 10 nS. And the forward voltage bias of the Schottky
barrier diode is under 0.6V or so, lower than that of the common PN diode. So, The Schottky
barrier diode is a comparatively ideal diode, such as for a 1 ampere limited current PN interface.
Frequency of 2.45GHz with good efficiency of rectifying operation. The objective also is to
increase the detection sensitivity at low levels of power. Different configurations can be used to
convert the electromagnetic wave into DC signal, the study done in showed that the use of a
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 17
bridge is better than a single diode, but the purpose of this study is to achieve a low cost
microwave rectifier with single Schottky diode for low and high power levels that has a good
performances. This study is divided on two kinds of technologies the first is the hybrid
technology and the second is the monolithic one. The goal of this investigation is the
development of a hybrid microwave rectifier with single Schottky diode.
The first study of this circuit is based on the optimization of the rectifier in order to have a good
matching of the Input impedance at the desired frequency 2.45GHz. Besides, the aim of the
second study is the increasing of the detection sensitivity at low levels of power.
This study is divided on two kinds of technologies the first is the hybrid technology and the
second is the monolithic one. The goal of this investigation is the development of a hybrid
microwave rectifier with single Schottky diode. The first study of this circuit is based on the
optimization of the rectifier in order to have a good matching of the input impedance the desired
frequency of 2.45GHz.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 18
CHAPTER 4
ADVANTAGES
• The main advantage of Sensor circuitry is Reduce the usage of high electricity.
• Make the recharging of the mobile phones independent of their manufacturer.
• Make use of valuable EM energy.
• If Sensor circuitry is Very small circuitry in size.
• More economical than wired charging.
• Wireless energy transfer can potentially recharge the mobile phones without chords.
• Only one microwave transmitter can serve to all the service providers in that area.
• The need of different types of chargers by different manufacturers is totally eliminated.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 19
CHAPTER 5
DISADVANTAGES
• The transmitter and receiver also should be very powerful devices as the distance
increases.
• Wireless transmission of the energy causes some drastic effects to human body, because
of its radiation.
• Practical possibilities are not yet applicable as there is no much advancement in this field.
• The Capital Cost for practical implementation of WPT seems to be very high.
• Theiris interference of microwave with present communication systems.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 20
CHAPTER 6
CONCLUSION
Thus this paper successfully demonstrates a novel method of using the power of the microwave
to charge the mobile phones without the use of wired chargers. Thus this method provides great
advantage to the mobile phone users to carry their phones anywhere even if the place is devoid of
facilities for charging. A novel use of the rectenna and a sensor in a mobile phone could provide a
new dimension in the revelation of mobile phone.
In future wireless charging can even be done using the data exchange as now only its only been
implemented for voice calls. With the advent of nanotechnology and MEMS the size of these
rectennas can be brought down to molecular level. It has been theorized that similar devices,
scaled down to the proportions used in nanotechnology, could be used to convert light into
electricity at much greater efficiencies than what is currently possible with solar cells. This type
of device is called an optical rectenna.
MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM
Dept. of Electronics & Communication Engineering Page 21
REFERENCES
[1] Tae-Whanyoo and Kai Chang, Theoretical and Experimental Development of 10 and 35 GHz
rectennas IEEE Transaction on microwave Theory and Techniques.
[2] 9th Conference of NASA/USRA Advanced Design Program and Advanced Hawkins, Joe,
Etal, "Wireless Space Power Experiment," in Proceedings of the Space Design Program.
[3] MW Medley, 'Microwave and RF circuit analysis, synthesis, and design.
[4] Falcone, Vincent J., "Atmospheric Attenuation of Microwave Power", Journal of microwave
Power.
[5] California EMF Program 2001 - An Evaluation of the possible risks from electric and
magnetic fields
[6]Glenn Elert. "The Electromagnetic Spectrum, The Physics Hypertextbook".
Hypertextbook.com. Retrieved 2010-10-16.
[7] "Definition of frequency bands on". Vlf.it. Retrieved 2010-10-16.
[8] Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2008). "CODATA Recommended
Values of the Fundamental Physical Constants: 2006".Rev.Mod.Phys. 80: 633–
730.doi:10.1103/RevModPhys.80.633.Direct link to value.
[9] J. J. Condon and S. M.Ransom. "Essential Radio Astronomy: Pulsar Properties". National
Radio Astronomy Observatory.Retrieved 2008-01-05.
[10]A. A. Abdo et al. (2007-03-20). "Discovery of TeV Gamma‐Ray Emission from the Cygnus
Region of the Galaxy". The Astrophysical Journal Letters 658:

Contenu connexe

Tendances

PPT on Wireless charging of mobile using microwaves
PPT on Wireless charging of mobile using microwavesPPT on Wireless charging of mobile using microwaves
PPT on Wireless charging of mobile using microwavesDivya KJ
 
Wireless charging
Wireless  chargingWireless  charging
Wireless chargingNikhil Eg
 
Wireless mobile charging using microwaves
Wireless mobile charging using microwavesWireless mobile charging using microwaves
Wireless mobile charging using microwavesKiriti Varkur
 
Wireless Mobile Charging
Wireless Mobile ChargingWireless Mobile Charging
Wireless Mobile ChargingPratik Gupta
 
Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02
Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02
Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02Kartik Kalpande Patil
 
Wireless charging of mobile phones by using microwaves
Wireless charging of mobile phones by using microwavesWireless charging of mobile phones by using microwaves
Wireless charging of mobile phones by using microwavesAveen Meena
 
wireless charger
wireless chargerwireless charger
wireless chargersanjaycyrus
 
Wireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves pptWireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves pptHarish N Nayak
 
wireless charging of mobile phone using microwave
wireless charging of mobile phone using microwavewireless charging of mobile phone using microwave
wireless charging of mobile phone using microwaveAkhil Raj
 
Wireless charging using microwaves
Wireless charging using microwavesWireless charging using microwaves
Wireless charging using microwavesSai Kamal
 
Wireless charging of mobile PPT.
Wireless charging of mobile PPT.Wireless charging of mobile PPT.
Wireless charging of mobile PPT.Krishna Teja
 
160685210 wireless-charging-of-mobile-phones-using-microwaves
160685210 wireless-charging-of-mobile-phones-using-microwaves160685210 wireless-charging-of-mobile-phones-using-microwaves
160685210 wireless-charging-of-mobile-phones-using-microwavesPavithra Gunasekaran
 
Wireless mobile charging using microwave
Wireless mobile charging using microwaveWireless mobile charging using microwave
Wireless mobile charging using microwaveDan Yadav
 
wireless mobile charging using microwaves
wireless mobile charging using microwaveswireless mobile charging using microwaves
wireless mobile charging using microwavesKaushlendra Singh
 
Wireless charging of mobile phones using microwaves
Wireless charging of mobile phones using microwavesWireless charging of mobile phones using microwaves
Wireless charging of mobile phones using microwavesNaveen Kumar
 

Tendances (20)

Self charging mobiles
Self charging mobilesSelf charging mobiles
Self charging mobiles
 
PPT on Wireless charging of mobile using microwaves
PPT on Wireless charging of mobile using microwavesPPT on Wireless charging of mobile using microwaves
PPT on Wireless charging of mobile using microwaves
 
Wireless charging
Wireless  chargingWireless  charging
Wireless charging
 
Wireless charging
Wireless chargingWireless charging
Wireless charging
 
YAHEEYA
YAHEEYAYAHEEYA
YAHEEYA
 
Wireless mobile charging using microwaves
Wireless mobile charging using microwavesWireless mobile charging using microwaves
Wireless mobile charging using microwaves
 
Wireless Mobile Charging
Wireless Mobile ChargingWireless Mobile Charging
Wireless Mobile Charging
 
Seminar report
Seminar reportSeminar report
Seminar report
 
Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02
Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02
Wirelessmobilechargingusingmicrowavesjazz 140128114925-phpapp02
 
Wireless charging of mobile phones by using microwaves
Wireless charging of mobile phones by using microwavesWireless charging of mobile phones by using microwaves
Wireless charging of mobile phones by using microwaves
 
wireless charger
wireless chargerwireless charger
wireless charger
 
Wireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves pptWireless charging of mobile phones using microwaves ppt
Wireless charging of mobile phones using microwaves ppt
 
wireless charging of mobile phone using microwave
wireless charging of mobile phone using microwavewireless charging of mobile phone using microwave
wireless charging of mobile phone using microwave
 
Wireless charging using microwaves
Wireless charging using microwavesWireless charging using microwaves
Wireless charging using microwaves
 
Microwave ppt.pptx
Microwave ppt.pptxMicrowave ppt.pptx
Microwave ppt.pptx
 
Wireless charging of mobile PPT.
Wireless charging of mobile PPT.Wireless charging of mobile PPT.
Wireless charging of mobile PPT.
 
160685210 wireless-charging-of-mobile-phones-using-microwaves
160685210 wireless-charging-of-mobile-phones-using-microwaves160685210 wireless-charging-of-mobile-phones-using-microwaves
160685210 wireless-charging-of-mobile-phones-using-microwaves
 
Wireless mobile charging using microwave
Wireless mobile charging using microwaveWireless mobile charging using microwave
Wireless mobile charging using microwave
 
wireless mobile charging using microwaves
wireless mobile charging using microwaveswireless mobile charging using microwaves
wireless mobile charging using microwaves
 
Wireless charging of mobile phones using microwaves
Wireless charging of mobile phones using microwavesWireless charging of mobile phones using microwaves
Wireless charging of mobile phones using microwaves
 

En vedette

מידענות בתנאי אי וודאות
מידענות בתנאי אי וודאות מידענות בתנאי אי וודאות
מידענות בתנאי אי וודאות anatklbo
 
Preplanning
PreplanningPreplanning
Preplanningparis4t
 
Trabajo de gbi final
Trabajo de gbi finalTrabajo de gbi final
Trabajo de gbi finaldiegocd46
 
Delegation Leader Training
Delegation Leader TrainingDelegation Leader Training
Delegation Leader TrainingMSCSA
 
เรื่อง เครื่องใช้ไฟฟ้า
เรื่อง เครื่องใช้ไฟฟ้าเรื่อง เครื่องใช้ไฟฟ้า
เรื่อง เครื่องใช้ไฟฟ้าไอ'แอม ม.มุก
 
Psychological by Sonny
Psychological by SonnyPsychological by Sonny
Psychological by SonnySonny Alagad
 
Lactate removal in water jss&m (07)[1] meu artigo
Lactate removal in water   jss&m (07)[1] meu artigoLactate removal in water   jss&m (07)[1] meu artigo
Lactate removal in water jss&m (07)[1] meu artigofmasi
 
Yuval levy hoveret print
Yuval levy hoveret printYuval levy hoveret print
Yuval levy hoveret printanatklbo
 

En vedette (18)

Economic and Investment Update - September 2015
Economic and Investment Update - September 2015Economic and Investment Update - September 2015
Economic and Investment Update - September 2015
 
Outputs from Science Forum 13 - Preet Lidder
Outputs from Science Forum 13 - Preet LidderOutputs from Science Forum 13 - Preet Lidder
Outputs from Science Forum 13 - Preet Lidder
 
งานกลุ่มที่5
งานกลุ่มที่5งานกลุ่มที่5
งานกลุ่มที่5
 
Understanding impact delivery from agricultural research: Report from break-o...
Understanding impact delivery from agricultural research: Report from break-o...Understanding impact delivery from agricultural research: Report from break-o...
Understanding impact delivery from agricultural research: Report from break-o...
 
Patrick Webb, Tufts University, Keynote Presentation: "Agriculture and nutri...
Patrick Webb, Tufts University, Keynote Presentation:  "Agriculture and nutri...Patrick Webb, Tufts University, Keynote Presentation:  "Agriculture and nutri...
Patrick Webb, Tufts University, Keynote Presentation: "Agriculture and nutri...
 
מידענות בתנאי אי וודאות
מידענות בתנאי אי וודאות מידענות בתנאי אי וודאות
מידענות בתנאי אי וודאות
 
Preplanning
PreplanningPreplanning
Preplanning
 
Trabajo de gbi final
Trabajo de gbi finalTrabajo de gbi final
Trabajo de gbi final
 
Delegation Leader Training
Delegation Leader TrainingDelegation Leader Training
Delegation Leader Training
 
Dp ex2
Dp ex2Dp ex2
Dp ex2
 
SIAC program report
SIAC program report SIAC program report
SIAC program report
 
กลุ่มที่ 5
กลุ่มที่ 5กลุ่มที่ 5
กลุ่มที่ 5
 
เรื่อง เครื่องใช้ไฟฟ้า
เรื่อง เครื่องใช้ไฟฟ้าเรื่อง เครื่องใช้ไฟฟ้า
เรื่อง เครื่องใช้ไฟฟ้า
 
Psychological by Sonny
Psychological by SonnyPsychological by Sonny
Psychological by Sonny
 
กลุ่มที่ 5
กลุ่มที่ 5กลุ่มที่ 5
กลุ่มที่ 5
 
Lactate removal in water jss&m (07)[1] meu artigo
Lactate removal in water   jss&m (07)[1] meu artigoLactate removal in water   jss&m (07)[1] meu artigo
Lactate removal in water jss&m (07)[1] meu artigo
 
Yuval levy hoveret print
Yuval levy hoveret printYuval levy hoveret print
Yuval levy hoveret print
 
黃色小鴨黏土教學
黃色小鴨黏土教學黃色小鴨黏土教學
黃色小鴨黏土教學
 

Similaire à MICROWAVE MOBILE CHARGER

Seminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile ChargerSeminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile ChargerEr Amreek Singh Masoun
 
Seminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile ChargerSeminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile ChargerEr Amreek Singh Masoun
 
Wireless mobile charging using microwaves
Wireless mobile charging using microwavesWireless mobile charging using microwaves
Wireless mobile charging using microwavesDevyani Vaidya
 
Wireless Charging Of Mobile
Wireless Charging Of Mobile  Wireless Charging Of Mobile
Wireless Charging Of Mobile Devyani Vaidya
 
wchargingppt-140216022555-phpapp02 (1).pdf
wchargingppt-140216022555-phpapp02 (1).pdfwchargingppt-140216022555-phpapp02 (1).pdf
wchargingppt-140216022555-phpapp02 (1).pdfNarasimhaReddy288344
 
Wireless Power Transmission System A Review
Wireless Power Transmission System A ReviewWireless Power Transmission System A Review
Wireless Power Transmission System A Reviewijtsrd
 
RF Energy Harvesting for Wireless Devices
RF Energy Harvesting for Wireless DevicesRF Energy Harvesting for Wireless Devices
RF Energy Harvesting for Wireless DevicesIJERD Editor
 
PAPER PRESENTATION
PAPER PRESENTATIONPAPER PRESENTATION
PAPER PRESENTATIONZeba Tamana
 
Wireless charging of mobile phones using microwaves 1
Wireless charging of mobile phones using microwaves 1Wireless charging of mobile phones using microwaves 1
Wireless charging of mobile phones using microwaves 1Mohammad Shoeb Quraishi
 
Wireless charging technology and related technology
Wireless charging technology and related technologyWireless charging technology and related technology
Wireless charging technology and related technologyJackieZhang36
 

Similaire à MICROWAVE MOBILE CHARGER (20)

Wireless mobile charging 2
Wireless mobile charging 2Wireless mobile charging 2
Wireless mobile charging 2
 
Seminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile ChargerSeminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile Charger
 
Seminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile ChargerSeminar Report on Wireless Mobile Charger
Seminar Report on Wireless Mobile Charger
 
Ijesit201305 29
Ijesit201305 29Ijesit201305 29
Ijesit201305 29
 
Wireless mobile charging using microwaves
Wireless mobile charging using microwavesWireless mobile charging using microwaves
Wireless mobile charging using microwaves
 
4santhosh report
4santhosh report4santhosh report
4santhosh report
 
Wcharging
WchargingWcharging
Wcharging
 
Wireless Charging Of Mobile
Wireless Charging Of Mobile  Wireless Charging Of Mobile
Wireless Charging Of Mobile
 
wchargingppt-140216022555-phpapp02 (1).pdf
wchargingppt-140216022555-phpapp02 (1).pdfwchargingppt-140216022555-phpapp02 (1).pdf
wchargingppt-140216022555-phpapp02 (1).pdf
 
Wireless Power Transmission System A Review
Wireless Power Transmission System A ReviewWireless Power Transmission System A Review
Wireless Power Transmission System A Review
 
Wireless charging ppt
Wireless charging pptWireless charging ppt
Wireless charging ppt
 
Wireless recharging
Wireless rechargingWireless recharging
Wireless recharging
 
Wireless recharging
Wireless rechargingWireless recharging
Wireless recharging
 
Wireless charging
Wireless chargingWireless charging
Wireless charging
 
RF Energy Harvesting for Wireless Devices
RF Energy Harvesting for Wireless DevicesRF Energy Harvesting for Wireless Devices
RF Energy Harvesting for Wireless Devices
 
PAPER PRESENTATION
PAPER PRESENTATIONPAPER PRESENTATION
PAPER PRESENTATION
 
Wireless charging of mobile phones using microwaves 1
Wireless charging of mobile phones using microwaves 1Wireless charging of mobile phones using microwaves 1
Wireless charging of mobile phones using microwaves 1
 
Wireless charging technology and related technology
Wireless charging technology and related technologyWireless charging technology and related technology
Wireless charging technology and related technology
 
Wireless charging
Wireless chargingWireless charging
Wireless charging
 
Sumant
SumantSumant
Sumant
 

Dernier

What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 

Dernier (20)

What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data PrivacyTrustArc Webinar - How to Build Consumer Trust Through Data Privacy
TrustArc Webinar - How to Build Consumer Trust Through Data Privacy
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 

MICROWAVE MOBILE CHARGER

  • 1. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 1 CHAPTER 1 INTRODUCTION 1.1 THE ELECTROMAGNETIC SPECTRUM The electromagnetic spectrum as shown in the Fig 1.1 is the range of all possible frequencies of electromagnetic radiation. The "electromagnetic spectrum" of an object is the characteristic distribution of electromagnetic radiation emitted or absorbed by that particular object. The electromagnetic spectrum extends from low frequencies used for modern radio to gamma radiation at the short-wavelength end, covering wavelengths from thousands of kilometers down to a fraction of the size of an atom. The long wavelength limit is the size of the universe itself, while it is thought that the short wavelength limit is in the vicinity of the Planck length, although in principle the spectrum is infinite and continuous. Some physicists pretend that light consists of tiny particles which they call photons. They travel at the speed of light. The speed of light is about 300,000,000 meters per second. When they hit something they might bounce off, go right through or get absorbed. What happens is depends on a bit and how much energy they have. If they bounce off something and then go into eye will cause to see the things they have bounced off. Some things like glass and Perspex will let them go through. These materials are transparent. Black objects absorb the photons so it results not be able to see black things. This is the problem has to be sorted out. These poor old physicists get a little bit confused when they try to explain why some photons go through a leaf, some are reflected, and some are absorbed. They say that it is because they have different amounts of energy. Other physicists pretend that light is made of waves. These physicists measure the length of the waves and this helps them to explain what happens when light hits and leaves. The light with the longest wavelength (red) is absorbed by the green stuff (chlorophyll) in the leaves. There is green light, this is allowed to pass right through or is reflected. (Indigo and violet have shorter wavelengths than blue light.)
  • 2. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 2 Fig 1.1: Electromagnetic spectrum It is easy to explain some of the properties of light by pretending that it is made of tiny particles called photons and it is easy to explain other properties of light by pretending that it is some kind of wave. The visible spectrum is just one small part of the electromagnetic spectrum. These electromagnetic waves are made up of two parts. The first part is an electric field. The second part is a magnetic field. So they are called as electromagnetic waves. The two fields are at right angles to each other. 1.2 MICROWAVE REGION Microwaves are good for transmitting information from one place to another because microwave energy can penetrate haze, light rain and snow, clouds, and smoke. Shorter microwaves are used in remote sensing. These microwaves are used for clouds and smoke, these waves are good for viewing the Earth from space Microwave waves are used in the communication industry and in the kitchen as a way to cook foods. Microwave radiation is still
  • 3. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 3 associated with energy levels that are usually considered harmless except for people with pace makers. The frequency selection is another important aspect in transmission. Here we are going to use the S band of the Microwave Spectrum, which lies between 2-4GHz.We have selected the license free 2.45 GHz ISM band for our purpose. The Industrial, Scientific and Medical (ISM) radio bands were originally reserved internationally for non-commercial use of RF electromagnetic fields for industrial, scientific and medical purposes. In recent years they have also been used for license-free error-tolerant communications applications such as wireless LANs and Bluetooth. Frequency range • L Band l to 2 GHz • S Band 2 to 4 GHz • C Band 4 to 8 GHz • X Band 8 to 12 GHz • K11 Band 12 to 18 GHz • K Band 18 to 26 GHz • Ka Band 26 to 40 GHz. • Q Band 30 to 50 GHz • U Band 40 to 60 GHz • V Band 46 to 56 GHz • W Band 56 to 100 GHz The S band of the Microwave Spectrum is useful for wireless charging.
  • 4. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 4 Fig1.2 Microwave region
  • 5. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 5 CHAPTER 2 LITERATURE SURVEY Wireless charging is any of several methods of charging batteries without the use of cables or device-specific AC adaptors. Wireless charging can be used for a wide variety of devices including cell phones, laptop computers and MP3 players as well as larger objects, such as robots and electric cars. 2.1 DIFFERENT TYPES OF WIRELESS CHARGING The different types of wireless charging are: • Inductive charging, • radio charging • Resonance charging. 2.1.1 INDUCTIVE CHARGING It is used for charging mid-sized items such as cell phones, MP3 players and PDAs. In inductive charging, an adapter equipped with contact points is attached to the device's back plate. When the device requires a charge, it is placed on a conductive charging pad, which is plugged into a socket. Inductive charging carries a far lower risk of electrical shock, when compared with conductive charging, because there are no exposed conductors. The ability to fully enclose the charging connection also makes the approach attractive where water impermeability is required; for instance, inductive charging is used for implanted medical devices that require periodic or even constant external power, and for electric hygiene devices, such as toothbrushes and shavers, that are frequently used near or even in water. Inductive charging makes charging mobile devices more convenient; rather than having to connect a power cable, the device can be placed on a charge plate.
  • 6. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 6 One disadvantage of inductive charging is its lower efficiency and increased ohmic (resistive) heating in comparison to direct contact. Implementations using lower frequencies or older drive technologies charge more slowly and generate heat for most portable electronics, [excitation needed] the technology-is nonetheless commonly used in some electric toothbrushes and wet/dry electric shavers, partly for the advantage that the battery contacts can be completely sealed to prevent exposure to water. Inductive charging also requires drive electronics and coils that increase manufacturing complexity and cost. 2.1.2 RADIO CHARGING It is used for charging items with small batteries and low power requirements, such as watches, hearing aids, medical implants, cell phones, MP3 players and wireless keyboard and mice. Radio waves are already in use to transmit and receive cellular telephone, television, radio and Wi-Fi signals. Wireless radio charging works similarly. A transmitter, plugged into a socket, generates radio waves. When the receiver attached to the device is set to the same frequency as the transmitter, it will charge the device's battery. 2.1.3 RESONANCE CHARGING It is used for items that require large amounts of power, such as an electric car, robot, vacuum cleaner or laptop computer. In resonance charging, a copper coil attached to a power source is the sending unit. Another coil, attached to the device to be charged, is the receiver. Both coils are tuned to the same electromagnetic frequency, which makes it possible for energy to be transferred from one to the other. The method works over short distances (3-5 meters). The idea of wireless power transmission is not new. In 1899, Nikola Tesla wirelessly transmitted 100 million volts of electricity 26 miles to light 200 bulbs and run an electric motor.
  • 7. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 7 CHAPTER 3 MICROWAVE MOBILE CHARGER 3.1OVERVIEW With mobile phones becoming a basic part of life, the recharging of mobile phone batteries has always been a problem. The mobile phones vary in their talk time and battery standby according to their manufacturer and batteries. All these phones irrespective of their manufacturer and batteries have to be put to recharge after the battery has drained out. The main objective of this current proposal is to make the recharging of the mobile phones independent of their manufacturer and battery make. A new proposal has been made so as to make the recharging of the mobile phones is done automatically as you talk in your mobile phone. This is done by use of microwaves. The microwave signal is transmitted from the transmitter along with the message signal using special kind of antennas called slotted wave guide antenna at a frequency of 2.45 GHz.There are minimal additions, which have to be made in the mobile handsets, which are the addition of a sensor, a ‘rectenna’, and a ‘filter’. With the above setup, the need for separate chargers for mobile phones is eliminated and makes charging universal. Thus the more you talk, the more your mobile phone will be charged. Thus this seminar successfully demonstrates a novel method of using the power of the microwave to charge the mobile phones without the use of wired chargers. Thus this method provides great advantage to the mobile phone users to carry their phones anywhere even if the place is devoid of facilities for charging. A novel use of the rectenna and a sensor in a mobile phone could provide a new dimension in the revelation of mobile phone. With mobile phones becoming a basic part of life, the recharging of mobile phone batteries has always been a problem. The mobile phones vary in their talk time and battery stand by according to their manufacturer and batteries. All these phones irrespective of their manufacturer and batteries have to be put to recharge after the battery has drained out. The main objective of this current proposal is to make the recharging of the mobile phones independent of their manufacturer and battery make.
  • 8. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 8 3.2 BLOCK DIAGRAM Fig 3.1: Block Diagram Microwave mobile charger consists of two parts. One is transmitting part and the other is the Receiving part. At the transmitting end there is one microwave power source which is actually producing microwaves i.e magnetron and a slotted waveguide antenna. It spread the Microwaves in a space and sent it to the receiver side. Receiver side Impedance matching circuit receives the microwave signal through Recteena circuit. This circuit is nothing but the combination of filter circuit and the schottky Diode. Which actually convert our microwave in to the DC power. 3.2.1 Magnetron The Magnetron is a self-contained microwave oscillator that operates differently from the linear- beam tubes, such as the TWT and the klystron CROSSED-ELECTRON and MAGNETIC fields are used in the magnetron to produce the high-power output required in radar and communications equipment. Transmitting station with the microwave transmitter sensor Rectenna RT cable circulator waveguide Slotted waveguide Antenna mobile signal
  • 9. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 9 The magnetron is classed as a diode because it has no grid. A magnetic field located in the space between the plate (anode) and the cathode serves as a grid. The plate of a magnetron does not have the same physical appearance as the plate of an ordinary electron tube. Since conventional inductive-capacitive (LC) networks become impractical at microwave frequencies, the plate is fabricated into a cylindrical copper block containing resonant cavities that serve as tuned circuits. The magnetron base differs considerably from the conventional tube base. The magnetron base is short in length and has large diameter leads that are carefully. The cathode and filament are at the center of the tube and are supported by the filament leads. The filament leads are large and rigid enough to keep the cathode and filament structure fixed in position. The output lead is usually a probe or loop extending into one of the tuned cavities and coupled into a waveguide or coaxial line. The cylindrical holes around its circumference are resonant cavities. A narrow slot runs from each cavity into the central portion of the tube dividing the inner structure into as many segments as there are cavities. Alternate segments are strapped together to put the cavities in parallel with regard to the output. The cavities control the output frequency. The straps are circular, metal bands that are placed across the top of the block at the entrance slots to the cavities. It must also have good emission characteristics, particularly under return bombardment by the electrons. This is because most of the output power is provided by the large number of electrons that are emitted when high-velocity electrons return to strike the cathode. The cathode is indirectly heated and is constructed of a high-emission material. The open space between the plate and the cathode is called the INTERACTION SPACE. The cylindrical holes around its circumference are resonant cavities. A narrow slot runs from each cavity into the central portion of the tube dividing the inner structure into as many segments as there are cavities.Alternate segments are strapped together to put the cavities in parallel with regard to the output. The cavities control the output frequency.The cathode and filament are at the center of the tube and are supported by the filament leads. The filament leads are large and rigid enough to keep the cathode and filament structure fixed in position. The output lead is usually a probe or loop extending into one of the tuned cavities and coupled into a wave guide or coaxial line.
  • 10. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 10 Fig 3.2: Magnetron • Magnetron is a high power microwave oscillator and it is used in microwave oven and radar transmitter. • It is itself a special kind of vaccumtube that has permanent magnet in its constructions. • This magnet is setup to affect the path of travel of electrons that are in transit from cathode to the plate. • Magnetron is capable to deliver more power than reflex klystron or gunn diode. • It is a high power oscillator and has high efficiency of 50% to 80%. • Magnetron is a device which produces microwave radiation of radar application and microwaves. • Magnetron functions as self-excited microwave oscillator.
  • 11. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 11 • Crossed electron and magnetic fields are used to produce magnetron to produce the high power output required in radar equipment. • These multi cavity devices are used in transmitters as pulsed or cw oscillators to produce microwave radiation. • Disadvantage of magnetron is that it works only on fixed frequency • This magnet is setup to affect the path of travel of electrons that are in transit from cathode to the plate. • Magnetron functions as self-excited microwave oscillator. 3.2.2 THE SLOTTED WAVEGUIDE ANTENNA A slotted waveguide is a waveguide that is used as an antenna in microwave radar applications. Prior to its use in surface search radar, such systems used a parabolic segment reflector. The circulator is connected to a tuning waveguide section to match the waveguide impedance to the antenna input impedance. The slotted waveguide antenna consists of 8 waveguide sections with 8 slots on each section. These 64 slots radiate the power uniformly through free space to the rectenna. The slotted waveguide antenna is ideal for power transmission because of its high aperture efficiency (> 95%) and high power handling capability. 3.2.3 RECTENNA The basic addition to the mobile phone is going to be the rectenna. A rectenna is a rectifying antenna, a special type of antenna that is used to directly convert microwave energy into DC electricity. Its elements are usually arranged in a mesh pattern, giving it a distinct appearance from most antennae. A simple rectenna can be constructed from a schottky diode placed between antenna dipoles. The diode rectifies the current induced in the antenna by the microwaves.
  • 12. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 12 Rectenna are highly efficient at converting microwave energy to electricity. In' laboratory environments, efficiencies above 90% have been observed with regularity. Theoretically, high efficiencies can be maintained as the device shrinks, but experiments funded by the United States National Renewable Energy Laboratory have so far only obtained roughly 1% efficiency while using infrared light. Another important part of our receiver circuitry is a simple sensor. This is simply used to identify when the mobile phone user is talking. As our main objective is to charge the mobile phone with the transmitted microwave after rectifying it by the rectenna, the sensor plays an important role. The whole setup looks something like this. As our main objective is to charge the mobile phone with the transmitted microwave after rectifying it by the rectenna, the sensor plays an important role. The whole setup looks something like this. Fig3.4 Rectenna
  • 13. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 13 3.2.4 SENSOR CIRCUITRY The sensor circuitry is a simple circuit as shown in the Fig 6, which detects if the mobile phone receives any message signal. This is required, as the phone has to be charged as long as the user is talking Thus a simple F to V converter would serve our purpose. In India the operating frequency of the mobile phone operators is generally 900MHz or 1800MHz for the GSM system for mobile communication .Thus the usage of simple F to Y converter would act as switches to trigger the rectenna circuit to on. Fig.3.5 LM2907 A simple yet powerful F to V converter is LM2907.using LM2907 would greatly serve our purpose. It acts as a switch for triggering the rectenna circuitry. The general block diagram for the LM2097 is given below Thus a simple F to V converter would serve our purpose. In India the operating frequency of the mobile phone operators is generally 900MHz or 1800MHz for the GSM system for mobile communication. Thus the usage of simple F to Y converter would act as switches to trigger the rectenna circuit to on. Thus on the reception of the signal the sensor circuitry directs the rectenna circuit to ON and the mobile phone begins to change using the microwave power. 3.2.5 SCHOTTKY BARRIER DIODE A Schottky diode is a special type of diode with a very low forward-voltage drop. When current flows through a diode there is a small voltage drop across the diode terminals. A normal silicon
  • 14. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 14 diode has a voltage drop between 0.6–1.7 volts, while a Schottky diode voltage drop is between approximately 0.15–0.45 volts. This lower voltage drop can provide higher switching speed and better system efficiency. Another advantage of the Schottky barrier diode is a very low noise index that is very important for a communication receiver. A Schottky barrier diode is different from a common P/N silicon diode. The common diode is formed by connecting a P type semiconductor with an N type semiconductor, this is connecting between a semiconductor and another semiconductor; however, a Schottky barrier diode is formed by connecting a metal with a semiconductor. When the metal contacts the semiconductor, there will be a layer of potential barrier (Schottky barrier) formed on the contact surface of them, which shows a characteristic of rectification. The material of the semiconductor usually is a semiconductor of n-type (occasionally p-type), and the material of metal generally is chosen from different metals such as molybdenum, chromium, platinum and tungsten. Sputtering technique connects the metal and the semiconductor. A Schottky barrier diode is a majority carrier device, while a common diode is a minority carrier device. When a common PN diode is turned from electric connecting to circuit breakage, the redundant minority carrier on the contact surface should be removed to result in time delay. The Schottky barrier diode itself has no minority carrier, it can quickly turn from electric connecting to circuit breakage, its speed is much faster than a common P/N diode, so its reverse recovery time Trr is very short and shorter than 10 nS. And the forward voltage bias of the Schottky barrier diode is under 0.6V or so, lower than that (about 1.1V) of the common PN diode. So, The Schottky barrier diode is a comparatively ideal diode, such as for a 1 ampere limited current PN interface. 3.3PROCESS OF RECTIFICATION Studies on various microwave power rectifier configurations show that a bridge configuration is better than a single diode one. But the dimensions and the cost of that kind of solution do not meet our objective. This study consists in designing and simulating a single diode power rectifier in hybrid technology with improved sensitivity at low power levels. We achieved good matching between simulation results and measurements thanks to the optimization of the packaging of the Schottky diode.
  • 15. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 15 Microwave energy transmitted from space to earth apparently has the potential to provide environmentally clean electric power on a very large scale. The key to improve transmission efficiency is the rectifying circuit. The aim of this study is to make a low cost power rectifier for low and high power levels at a. The cathode and filament are at the center of the tube and are supported by the filament leads. The filament leads are large and rigid enough to keep the cathode and filament structure fixed in position. The output lead is usually a probe or loops extending into one of the tuned cavities and coupled into a waveguide or coaxial line. The plate structure, is a solid block of copper. The cylindrical holes around its circumference are resonant cavities. A narrow slot runs from each cavity into the central portion of the tube dividing the inner structure into as many segments as there are cavities. Alternate segments are strapped together to put the cavities in parallel with regard to the output. The cavities control the output frequency. The straps are circular, metal bands that are placed across the top of the block at the entrance slots to the cavities. Since the cathode must operate at high power, it must be fairly large and must also be able to withstand high operating temperatures. It must also have good emission characteristics, particularly under return bombardment by the electrons. This is because most of the output power is provided by the large number of electrons that are emitted when high-velocity electrons return to strike the cathode. The cathode is indirectly heated and is constructed of a high-emission material. The open space between the plate and the cathode is called the INTERACTION SPACE. In this space the electric and magnetic fields interact to exert force upon the electrons. Arranged in a mesh pattern so give it a distinct appearance from most antenna. A simple rectenna can be constructed from a schottky diode placed between antenna dipoles. The diode rectifies the current induced in the antenna by the microwaves. Rectenna are highly efficient at converting microwave energy to electricity. In laboratory environments, efficiencies above 90% have been observed with regularity. Some experimentation has been done with inverse rectenna, converting electricity into microwave energy, but efficiencies are much lower-only in the area of 1%.
  • 16. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 16 With the advent of nanotechnology and MEMS the size of these devices can be brought down to molecular level. It has been theorized that similar devices, scaled down to the proportions used in nanotechnology, could be used to convert light into electricity at much greater efficiencies than what is currently possible with solar cells. This type of device is called an optical rectenna. Theoretically, high efficiencies can be maintained as the device shrinks, but experiments funded by the United States National Renewable Energy Laboratory have so far only obtained roughly 1% efficiency while using infrared light. Another important part of our receiver circuitry is a simple sensor. This is simply used to identify when the mobile phone user is talking. As our main objective is to charge the mobile phone with the transmitted microwave after rectifying it by the rectenna, the sensor plays an important role. A Schottky barrier diode is different from a common P/N silicon diode. The common diode is formed by connecting a P type semiconductor with an N type semiconductor, this is connecting between a semiconductor and another semiconductor; however, a Schottky barrier diode is formed by connecting a metal with a semiconductor. When the metal contacts the semiconductor, there will be a layer of potential barrier (Schottky barrier) formed on the contact surface of them, which shows a characteristic of rectification. The material of the semiconductor usually is a semiconductor of n-type (occasionally p-type), and the material of metal generally is chosen from different metals such as molybdenum, chromium, platinum and tungsten. Sputtering technique connects the metal and the semiconductor. A Schottky barrier diode is a majority carrier device, while a common diode is a minority carrier device. When a common PN diode is turned from electric connecting to circuit breakage, the redundant minority carrier on the contact surface should be removed to result in time delay. The Schottky barrier diode itself has no minority carrier, it can quickly turn from electric connecting to circuit breakage, its speed is much faster than a common P/N diode, so its reverse recovery time Trr is very short and shorter than 10 nS. And the forward voltage bias of the Schottky barrier diode is under 0.6V or so, lower than that of the common PN diode. So, The Schottky barrier diode is a comparatively ideal diode, such as for a 1 ampere limited current PN interface. Frequency of 2.45GHz with good efficiency of rectifying operation. The objective also is to increase the detection sensitivity at low levels of power. Different configurations can be used to convert the electromagnetic wave into DC signal, the study done in showed that the use of a
  • 17. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 17 bridge is better than a single diode, but the purpose of this study is to achieve a low cost microwave rectifier with single Schottky diode for low and high power levels that has a good performances. This study is divided on two kinds of technologies the first is the hybrid technology and the second is the monolithic one. The goal of this investigation is the development of a hybrid microwave rectifier with single Schottky diode. The first study of this circuit is based on the optimization of the rectifier in order to have a good matching of the Input impedance at the desired frequency 2.45GHz. Besides, the aim of the second study is the increasing of the detection sensitivity at low levels of power. This study is divided on two kinds of technologies the first is the hybrid technology and the second is the monolithic one. The goal of this investigation is the development of a hybrid microwave rectifier with single Schottky diode. The first study of this circuit is based on the optimization of the rectifier in order to have a good matching of the input impedance the desired frequency of 2.45GHz.
  • 18. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 18 CHAPTER 4 ADVANTAGES • The main advantage of Sensor circuitry is Reduce the usage of high electricity. • Make the recharging of the mobile phones independent of their manufacturer. • Make use of valuable EM energy. • If Sensor circuitry is Very small circuitry in size. • More economical than wired charging. • Wireless energy transfer can potentially recharge the mobile phones without chords. • Only one microwave transmitter can serve to all the service providers in that area. • The need of different types of chargers by different manufacturers is totally eliminated.
  • 19. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 19 CHAPTER 5 DISADVANTAGES • The transmitter and receiver also should be very powerful devices as the distance increases. • Wireless transmission of the energy causes some drastic effects to human body, because of its radiation. • Practical possibilities are not yet applicable as there is no much advancement in this field. • The Capital Cost for practical implementation of WPT seems to be very high. • Theiris interference of microwave with present communication systems.
  • 20. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 20 CHAPTER 6 CONCLUSION Thus this paper successfully demonstrates a novel method of using the power of the microwave to charge the mobile phones without the use of wired chargers. Thus this method provides great advantage to the mobile phone users to carry their phones anywhere even if the place is devoid of facilities for charging. A novel use of the rectenna and a sensor in a mobile phone could provide a new dimension in the revelation of mobile phone. In future wireless charging can even be done using the data exchange as now only its only been implemented for voice calls. With the advent of nanotechnology and MEMS the size of these rectennas can be brought down to molecular level. It has been theorized that similar devices, scaled down to the proportions used in nanotechnology, could be used to convert light into electricity at much greater efficiencies than what is currently possible with solar cells. This type of device is called an optical rectenna.
  • 21. MICROWAVE MOBILE CHARGER BISHOP JEROME INSTITUTE, KOLLAM Dept. of Electronics & Communication Engineering Page 21 REFERENCES [1] Tae-Whanyoo and Kai Chang, Theoretical and Experimental Development of 10 and 35 GHz rectennas IEEE Transaction on microwave Theory and Techniques. [2] 9th Conference of NASA/USRA Advanced Design Program and Advanced Hawkins, Joe, Etal, "Wireless Space Power Experiment," in Proceedings of the Space Design Program. [3] MW Medley, 'Microwave and RF circuit analysis, synthesis, and design. [4] Falcone, Vincent J., "Atmospheric Attenuation of Microwave Power", Journal of microwave Power. [5] California EMF Program 2001 - An Evaluation of the possible risks from electric and magnetic fields [6]Glenn Elert. "The Electromagnetic Spectrum, The Physics Hypertextbook". Hypertextbook.com. Retrieved 2010-10-16. [7] "Definition of frequency bands on". Vlf.it. Retrieved 2010-10-16. [8] Mohr, Peter J.; Taylor, Barry N.; Newell, David B. (2008). "CODATA Recommended Values of the Fundamental Physical Constants: 2006".Rev.Mod.Phys. 80: 633– 730.doi:10.1103/RevModPhys.80.633.Direct link to value. [9] J. J. Condon and S. M.Ransom. "Essential Radio Astronomy: Pulsar Properties". National Radio Astronomy Observatory.Retrieved 2008-01-05. [10]A. A. Abdo et al. (2007-03-20). "Discovery of TeV Gamma‐Ray Emission from the Cygnus Region of the Galaxy". The Astrophysical Journal Letters 658: