Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Dataguise hortonworks insurance_feb25

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 77 Publicité

Dataguise hortonworks insurance_feb25

Télécharger pour lire hors ligne

Insurance companies of all sizes are challenged to keep up with emerging technologies that deliver a competitive advantage. Recording: https://www.brighttalk.com/webcast/9573/192877

Big data holds the key to greater customer insight and stronger customer relationships. But risk of sensitive data exposure — and compliance violations — keeps many insurers from pursuing big data initiatives and reaping the rewards of business-driven analytics. Join Dataguise and Hortonworks for this live webinar to learn how you can free your organization from traditional information security constraints and unlock the power of your most valuable business assets.
• What do you need to know about PII/PHI privacy before embarking on big data initiatives?
• Why do so many big data initiatives fail before they’ve even begun—and what can you do about it?
• How can IT security organizations help data scientists extract more business value from their data?
• How are leading insurance companies leveraging big data to gain competitive advantage?

Insurance companies of all sizes are challenged to keep up with emerging technologies that deliver a competitive advantage. Recording: https://www.brighttalk.com/webcast/9573/192877

Big data holds the key to greater customer insight and stronger customer relationships. But risk of sensitive data exposure — and compliance violations — keeps many insurers from pursuing big data initiatives and reaping the rewards of business-driven analytics. Join Dataguise and Hortonworks for this live webinar to learn how you can free your organization from traditional information security constraints and unlock the power of your most valuable business assets.
• What do you need to know about PII/PHI privacy before embarking on big data initiatives?
• Why do so many big data initiatives fail before they’ve even begun—and what can you do about it?
• How can IT security organizations help data scientists extract more business value from their data?
• How are leading insurance companies leveraging big data to gain competitive advantage?

Publicité
Publicité

Plus De Contenu Connexe

Diaporamas pour vous (20)

Les utilisateurs ont également aimé (20)

Publicité

Similaire à Dataguise hortonworks insurance_feb25 (20)

Plus par Hortonworks (20)

Publicité

Plus récents (20)

Dataguise hortonworks insurance_feb25

  1. 1. Page 1 © Hortonworks Inc. 2011 – 2016. All Rights ReservedPage 1 © Hortonworks Inc. 2011 – 2015. All Rights Reserved Leveraging Big Data for Insurance Insights Without Putting PII/PHI at Risk February 25, 2016
  2. 2. Page 2 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Today’s Speakers Syed Mahmood, Sr. Product Marketing Manager – Hortonworks smahmood@hortonworks.com Cindy Maike, GM-Insurance Hortonworks cmaike@hortonworks.com Venkat Subramanian, CTO and VP of Engineering – Dataguise venkat@dataguise.com
  3. 3. Page 3 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Is Sensitive Data (PII/PHI) a challenge for your company’s analytics & big data programs? A. Yes B. No
  4. 4. Page 4 © Hortonworks Inc. 2011 – 2016. All Rights Reserved If Yes, do you have capabilities in place to manage sensitive data discovery, protection and audit? A. Yes B. No
  5. 5. Page 5 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Big Data Business Insights Insurance Opportunities Data Privacy Protection Requirements •  Regulatory •  Customer Expectations
  6. 6. Page 6 © Hortonworks Inc. 2011 – 2016. All Rights Reserved The Insurance Data Landscape has Changed Dramatically Customer centric / need based Insurance Offerings 500GB data per annual vehicle in UBI programs Drones will make the workflow efficient by 2020 Digital becoming consumer / Insured preferred interaction channel Growing availability & usage of geospatial data Change in Claim frequency & severity, fraud anomaly analytics
  7. 7. Page 7 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Industry Opportunity High-performance analytics, or a combination of structured and unstructured data, is changing the ways of the insurance industry after decades of conservatism.
  8. 8. Page 8 © Hortonworks Inc. 2011 – 2016. All Rights Reserved View of Insurance Industry Data Landscape BatchReal-time Datavelocity Structured Unstructured Data variety Semi-structured Weather-event Drone image feeds Social media Sensor (GoT) Geo-location Deposition recording Notes and diary Medical records & bills Transcriptions Photos Investigation TPA invoices FNOL intake Claims triage Vendor invoices Forms and letters Claim system Policy verification Applications/Submissions 3rd party risk models Prior loss runs
  9. 9. Page 9 © Hortonworks Inc. 2011 – 2016. All Rights Reserved New Opportunities – Security Challenges Use Cases & Opportunities Data Sources (examples) New Security Challenges Know Your Customer Application documents, clickstream and web logs, marketing research, CRM records, and social media •  Coverage for multiple file types and sources •  Critical detection to find and measure sensitivity risk Claims Optimization & Fraud Detection Policy records, claims databases, receipts, accident reports, emails, and transcriptions •  Reduce or eliminate PCI scope for Hadoop •  Detect new sensitivity risks in hard- to-reach unstructured data Evaluate Risk / New Products Mobile telematics, sensor data, social media, and voice-to-text files •  High scale •  Large sets of small files •  Detection and protection of unstructured data Traditional Documents & Attachments Claims data, insured prior loss data, and claims adjuster notes •  Masking of sensitive data for data sharing •  Sensitive data auditing Third-party Data Sharing Reporting bureaus, third-party claims administrators (TPAs), telematics service providers (TSPs) •  Tiered access — highly granular roles with differing needs/views for sensitive data
  10. 10. Hortonworks + Dataguise = SECURE BUSINESS EXECUTION CTO, DATAGUISE VENKAT SUBRAMANIAN
  11. 11. Dataguise  enables  Secure  Business  Execu3on   for  data-­‐driven  enterprises   by  delivering  data-­‐centric  security  solu3ons  that   Detect,  Audit,  Protect  and  Monitor   sensi3ve  data  assets   where  they  are  wherever  they  move   across  repositories.   ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   11  
  12. 12. ©2015  Dataguise,  Inc.      Confiden3al  and   Proprietary   Secure Business Execution The ability of an Enterprise to safely and responsibly leverage the value of all of their data assets for the purpose of gaining new business insights, maximizing competitive advantage, and driving revenue growth 12  
  13. 13. ©2015  Dataguise,  Inc.      Confiden3al  and   Proprietary   Business  Intelligence  Trend  for  2016   Shi8  from   IT-­‐led,  System-­‐of-­‐record  repor>ng     Pervasive,  Business-­‐led,  self-­‐service  analy>cs     •  Easy-­‐to-­‐use,  fast,  agile  BI  &  Analy>cs   •  Deeper  Insights  into  diverse  data  sources     **  Rita  Sallam,  Gartner   13  
  14. 14. ©2015  Dataguise,  Inc.      Confiden3al  and   Proprietary           Data  is  your  biggest  Asset     It  is  also  your  biggest  Vulnerability   14  
  15. 15. ©2016  Dataguise,  Inc.      Confiden3al  and   Proprietary   DgSecure 15   DETECT   Where  sensi3ve  content  is   present  in  struct/unstruct/   semi-­‐struct  data   AUDIT   Who  has  access  to  which   sensi3ve  data  &  iden3fy   misalignments  and  risk  factors   PROTECT   Sensi3ve  data  at  the  element   level–encrypt/decrypt  with   RBAC,  mask   MONITOR   Based  on  metadata,  track  how   and  where  sensi3ve  data  is   being  accessed  through  a  360°   dashboard   Across  Hadoop,  RDBMS,   Files,  NoSQL  DB   On  Premise,  in  the   Cloud,  or  Hybrid  
  16. 16. PHI: Guidance for Data De-Identification Sensitive/Privacy Data 16   •  Name •  Address •  Dates – Birth, Death, .. •  Telephone Numbers •  Device Identifiers and serial numbers •  Email addresses •  SSN •  Medical record numbers •  Account Numbers …..
  17. 17. Secure Environment Perimeter Security, Volume/File encryption 17   •  I have strong perimeter security Physical Security, Firewall, IDS/IPS… Isn’t that enough? •  I  have  turned  on  volume/file-­‐level   encryp>on    Control  data  access      Mee>ng  regulatory  compliance    Isn’t  this  enough?   Need  BOTH  and  *more!  
  18. 18. What Should We Do?   18   1.  Precisely locate sensitive content across ALL repositories 2.  Protect those assets appropriately – masking, encryption 3.  Open up ‘controlled’ access to data now that sensitive elements are protected 4.  Enable employees, trusted partners and customers to make data-driven decisions RISKS     BREACH     SECURITY     COMPLIANCE   VALUE     REVENUE     DATA  DRIVEN  DECISIONS     BUSINESS  INTELLIGENCE   At the cell-level…
  19. 19. ©2015  Dataguise,  Inc.      Confiden3al  and   Proprietary   How do we do it in DgSecure 19  
  20. 20. Complex Sensitive Data Discovery 20   Sensitive Data Type Sample Data Address 50920 April Blvd. Apt. 181, Lalana ME 83271 1000 Coney Island Ave. Brooklyn NY 11230 Name George Smith Smith, A. George Credit Card Number 3710 664089 10315 345039502030507 3780-331072-30547 Telephone Number (510) 824-1036 510-824-1036 510.814.1036 5108141036
  21. 21. Sensitive Data Protection Masking & Encryption in Hadoop 21   •  MASKING –  Obfuscation, one-way operation –  Multiple options in DgSecure – fictitious but realistic values, X’ing out part of the content…. –  Consistent masking to retain statistical distribution of data •  ENCRYPTION –  Encrypted cell/row –  Accessible by authorized users only – Hive, bulk, via App –  Granular protection •  REDACTION –  X’ing out entire sensitive data cell –  Nullifying
  22. 22. Masking Data in Hadoop (Cell Level) 22  
  23. 23. Masking Data in Hadoop (Cell Level) ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   23  
  24. 24. Masking Data in Hadoop (Cell Level) ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   24  
  25. 25. Encrypting Data in Hadoop (Cell Level) 25  
  26. 26. Encrypting Data in Hadoop (Cell Level) 26    26  
  27. 27. ©2016  Dataguise,  Inc.      Confiden3al  and   Proprietary   Decryption through hive queries 27   User  WITHOUT  access  privileges  on  Names  &  SSN  
  28. 28. ©2016  Dataguise,  Inc.      Confiden3al  and   Proprietary   Decryption through hive queries 28   User  WITH  access  privileges  on  Names  &  SSN  
  29. 29. Encryption or Masking in Hadoop        Analy3c                Transac3onal         Trading  System  Perf.   Customer  reten3on   Payments  Risk  Mgmt.   IT  Security  Intelligence   IP  Addresses   Name   Personal  Health  Info   Credit  Card  Number   Dynamic  pricing   Process  efficiency   Log  analysis   Insurance  Premiums   Clinical  trial  analysis   Smart  metering   Risk  Modeling   Supply  chain  op3miza3on   Brand  sen3ment   Real-­‐3me  upsell   Monitoring  Sensors   Social  Security  Number   Date  of  Birth  (DOB)   IP  Address   URL   Email  Address   Telephone  Number   Credit  limit   Purchase  amount   Customer  life3me  value   Address   Device  ID   Transac3on  Date   VIN   Person  of  Interest  Discovery   Session  Op3miza3on  
  30. 30. Encryption or Masking in Hadoop        Analy3c                Transac3onal         Trading  System  Perf.   Customer  reten3on   Payments  Risk  Mgmt.   IT  Security  Intelligence   Medical  test  results   Name   Personal  Health  Info   Credit  Card  Number   Dynamic  pricing   Process  efficiency   Log  analysis   Insurance  Premiums   Clinical  trial  analysis   Smart  metering   Risk  Modeling   Supply  chain  op3miza3on   Brand  sen3ment   Real-­‐3me  upsell   Monitoring  Sensors   Social  Security  Number   Date  of  Birth  (DOB)   IP  Address   URL   Email  Address   Telephone  Number   Credit  limit   Purchase  amount   Customer  life3me  value   Address   Mask   Encrypt  Device  ID   Transac3on  Date   VIN   Person  of  Interest  Discovery   Session  Op3miza3on  
  31. 31. Encryption or Masking in Hadoop        Analy3c                Transac3onal         Trading  System  Perf.   Customer  reten3on   Payments  Risk  Mgmt.   IT  Security  Intelligence   Biometric  IDs   Name   Personal  Health  Info   Credit  Card  Number   Dynamic  pricing   Process  efficiency   Log  analysis   Insurance  Premiums   Clinical  trial  analysis   Smart  metering   Risk  Modeling   Supply  chain  op3miza3on   Brand  sen3ment   Real-­‐3me  upsell   Monitoring  Sensors   Social  Security  Number   Date  of  Birth  (DOB)   IP  Address   URL   Email  Address   Telephone  Number   Credit  limit   Purchase  amount   Customer  life3me  value   Address   Mask   Encrypt  Device  ID   Transac3on  Date   VIN   Person  of  Interest  Discovery   Session  Op3miza3on  
  32. 32. Encryption or Masking in Hadoop        Analy3c                Transac3onal         Trading  System  Perf.   Customer  reten3on   Payments  Risk  Mgmt.   IT  Security  Intelligence   Dynamic  pricing   Process  efficiency   Log  analysis   Insurance  Premiums   Clinical  trial  analysis   Smart  metering   Risk  Modeling   Supply  chain  op3miza3on   Brand  sen3ment   Real-­‐3me  upsell   Monitoring  Sensors   Person  of  Interest  Discovery   Session  Op3miza3on   Medical  test  results   Name   Personal  Health  Info   Credit  Card  Number   Social  Security  Number   Date  of  Birth  (DOB)   IP  Address   URL   Email  Address   Telephone  Number   Credit  limit   Purchase  amount   Customer  life3me  value   Address   Mask   Device  ID   Transac3on  Date   VIN   Number   Encrypt  
  33. 33. Encryption or Masking in Hadoop        Analy3c                Transac3onal         Trading  System  Perf.   Customer  reten3on   Payments  Risk  Mgmt.   IT  Security  Intelligence   Medical  test  results   Name   Personal  Health  Info   Credit  Card  Number   Dynamic  pricing   Process  efficiency   Log  analysis   Insurance  Premiums   Clinical  trial  analysis   Smart  metering   Risk  Modeling   Supply  chain  op3miza3on   Brand  sen3ment   Real-­‐3me  upsell   Monitoring  Sensors   Social  Security  Number   Date  of  Birth  (DOB)   IP  Address   URL   Email  Address   Telephone  Number   Credit  limit   Purchase  amount   Customer  life3me  value   Address   Mask   Encrypt  Device  ID   Transac3on  Date   VIN   Person  of  Interest  Discovery   Session  Op3miza3on  
  34. 34. ©2016  Dataguise,  Inc.      Confiden3al  and  Proprietary   34         How  does  this  work  in  DgSecure  
  35. 35. ©2016  Dataguise,  Inc.      Confiden3al  and   Proprietary   HIGH-LEVEL DgSECURE FOR HADOOP FUNCTIONALITY 35   Policy  Management   Domain  Defini3on   custom  Elements      -­‐    Composite      -­‐    Dependent   Policy      -­‐    Per  Data  Feed?   Protec3on   Op3ons     Detec3on   In-­‐Flight   Within  HDFS   Full  vs.   Incremental   Structured  vs.   Semi/Unstructured   Quick  scan   Element  Count   Audi3ng   Files/Dirs   -­‐    Sensi3ve   elements   -­‐      Protected?   -­‐    Who  has  access       Users   -­‐  What  can  they  see   Protec3on   Domain  based   Masking   Redac3on   Encryp3on    -­‐  Field  or  Record    -­‐  AES  or  FPE     Repor3ng   Job  Level      -­‐    Sensi3ve  elements      -­‐    Directories  &  Files      -­‐    Remedia3on  applied   Dashboard      -­‐  Directory  or    by  policy        -­‐  Drill-­‐down   Audit  report    -­‐  User  ac3ons   No3fica3ons    
  36. 36. Set  Policy ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   36  
  37. 37. Data  Elements ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   37  
  38. 38. Define/Execute  Detec>on/Protec>on  Task ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   38  
  39. 39. Discovery  Task  Result ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   39  
  40. 40. MaskingTask  Result ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   40  
  41. 41. Masking  Task  Result   41  
  42. 42. Dashboard ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   42  
  43. 43. Entitlement Reports ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   43  
  44. 44. Audit Reports ©2015  Contains  confiden3al  and  proprietary  informa3on   and  may  not  be  disclosed  by  the  recipient  to  any  third   party.   44  
  45. 45. ©2016  Dataguise,  Inc.      Confiden3al  and  Proprietary   45           Sample  Secure  Business  Workflow     in  an  Enterprise  
  46. 46. Sample  End  to  End  Flow   46  
  47. 47. Sample  End  to  End  Flow   47   CISO/CPO:   Set  policy  per  data  feed   type  
  48. 48. Sample  End  to  End  Flow   48   Data  Asset  Owner:   Provenance  metadata  
  49. 49. Sample  End  to  End  Flow   49   IT/Set  Process:   Run  Discovery  to  detect   sensi3ve  data   Metadata  to  repository   (Atlas)  
  50. 50. Sample  End  to  End  Flow   50   IT/Set  Process:   Use  Metadata  to  set  access   control  in  Ranger  
  51. 51. Sample  End  to  End  Flow   51   Run  Masking/Encr  to  protect   sensi3ve  data   Metadata  incl.  lineage  to   repository  (Atlas)  
  52. 52. Sample  End  to  End  Flow   52   IT/Set  Process:   Use  Metadata  to  set  access   control  in  Ranger  
  53. 53. Sample  End  to  End  Flow   53   Data  Asset  owner  adds   annota3ons  &  adds  to  Data   Asset  Index  
  54. 54. Sample  End  to  End  Flow   54   Data  Scien3st  browses   available  data  sets  and   makes  access  request  
  55. 55. Sample  End  to  End  Flow   55   Data  owner  approves   request   Sets  access  control  in   Ranger  
  56. 56. Sample  End  to  End  Flow   56   Data  Scien3st  runs  data   mining/BI/Analy3cs  
  57. 57. Sample  End  to  End  Flow   57  
  58. 58. Page 58 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Ranger and Knox: Building on the Vision of Comprehensive Security Syed Mahmood
  59. 59. Page 59 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Security Challenges of Data Lake Central repository of critical and sensitive data Data maintained over long duration External ecosystem is in flux Users can access and analyze data in new and different ways
  60. 60. Page 60 © Hortonworks Inc. 2011 – 2016. All Rights Reserved How do I set policy across the entire cluster? Who am I/prove it? What can I do? What did I do? How can I encrypt at rest and over the wire? Differentiator 1: Comprehensive Approach to Security Data Protection Protect data at rest and in motion In order to protect any data system you must implement the following: Audit Maintain a record of data access Authorization Provision access to data Authentication Authenticate users and systems Administration Central management and consistent security
  61. 61. Page 61 © Hortonworks Inc. 2011 – 2016. All Rights Reserved HDP Security: Comprehensive, Complete, Extensible Data Protection Protect data at rest and in motion Security in HDP is the most comprehensive, complete and extensible for Hadoop Audit Maintain a record of data access Authorization Provision access to data Authentication Authenticate users and systems Administration Central management and consistent security Single administrative console to set policy across the entire cluster: Apache Ranger Authentication for perimeter and cluster; integrates with existing Active Directory and LDAP solutions: Kerberos | Apache Knox Consistent authorization controls across all Apache components within HDP: Apache Ranger Record of data access events across all components that is consistent and accessible: Apache Ranger | Apache Atlas Encrypts data in motion and data at rest; refer partner encryption solutions for broader needs: HDFS TDE with Ranger KMS
  62. 62. Page 62 © Hortonworks Inc. 2011 – 2016. All Rights Reserved     YARN : Data Operating System DATA ACCESS SECURITY GOVERNANCE & INTEGRATION OPERATIONS 1   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   N   Data Lifecycle & Governance Falcon Atlas Administration Authentication Authorization Auditing Data Protection Ranger Knox Atlas HDFS Encryption Data Workflow Sqoop Flume Kafka NFS WebHDFS Provisioning, Managing, & Monitoring Ambari Cloudbreak Zookeeper Scheduling Oozie Batch MapReduce Script Pig Search Solr SQL Hive NoSQL HBase Accumulo Phoenix Stream Storm In-memory Spark Others ISV Engines TezTez Tez Slider Slider HDFS Hadoop Distributed File System DATA MANAGEMENT Hortonworks Data Platform 2.3 Deployment  Choice  Linux Windows On-Premise Cloud Differentiator 2: Security Built into the Platform
  63. 63. Page 63 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Security Built into the Platform Security is consistently administered across data access engines Build or retire applications without impacting security     YARN : Data Operating System DATA ACCESS SECURITY GOVERNANCE & INTEGRATION OPERATIONS 1   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   °   N   Data Lifecycle & Governance Falcon Atlas Administration Authentication Authorization Auditing Data Protection Ranger Knox Atlas HDFS EncryptionData Workflow Sqoop Flume Kafka NFS WebHDFS Provisioning, Managing, & Monitoring Ambari Cloudbreak Zookeeper Scheduling Oozie Batch MapReduce Script Pig Search Solr SQL Hive NoSQL HBase Accumulo Phoenix Stream Storm In-memory Spark Others ISV Engines TezTez Tez Slider Slider HDFS Hadoop Distributed File System DATA MANAGEMENT Hortonworks Data Platform 2.3 Deployment  Choice  Linux Windows On-Premise Cloud
  64. 64. Page 64 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Security in Hadoop with HDP •  Wire encryption in Hadoop •  HDFS Encryption with Ranger KMS •  Centralized audit reporting with Apache Ranger •  Fine-grain access control with Apache Ranger Authorization What can I do? Audit What did I do? Data Protection Can data be encrypted at rest and over the wire? •  Kerberos •  API security with Apache Knox Authentication Who am I/prove it? HDP2.3 Centralized Security Administration with Ranger
  65. 65. Page 65 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Apache Ranger Comprehensive security for Enterprise Hadoop
  66. 66. Page 66 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Centralized Security with Ranger Centralized platform •  Centralized platform to define, administer and manage security policies consistently •  Define security policy once and apply it to all the applicable components across the stack
  67. 67. Page 67 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  68. 68. Page 68 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Centralized Security with Ranger Centralized platform •  Administer security for: –  Database –  Table –  Column –  LDAP Groups –  Specific Users Fine-grained security definition •  Centralized platform to define, administer and manage security policies consistently •  Define security policy once and apply it to all the applicable components across the stack
  69. 69. Page 69 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  70. 70. Page 70 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Centralized Security with Ranger •  Administrators have complete visibility into the security administration process Deep visibilityCentralized platform •  Administer security for: –  Database –  Table –  Column –  LDAP Groups –  Specific Users Fine-grained security definition •  Centralized platform to define, administer and manage security policies consistently •  Define security policy once and apply it to all the applicable components across the stack
  71. 71. Page 71 © Hortonworks Inc. 2011 – 2016. All Rights Reserved
  72. 72. Page 72 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Authorization and Auditing with Ranger HDFS Ranger Administration Portal HBase Hive Server2 Ranger Audit Server Ranger Plugin HadoopComponentsEnterprise Users Ranger Plugin Ranger Plugin Legacy Tools and Data Governance HDFS Knox Storm Ranger Plugin Ranger Plugin RDBMS Solr Ranger Plugin Ranger Policy Server Future Additions Currently Supported in HDP 2.2 Integration API Kafka Ranger Plugin YARN Ranger Plugin TBD Ranger Plugin
  73. 73. Page 73 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Apache Atlas is Now Included in HDP Apache Atlas Knowledge Store Audit Store ModelsType-System Policy RulesTaxonomies Tag Based Policies Data Lifecycle Management Real Time Tag Based Access Control REST API Services Search Lineage Exchange Healthcare HIPAA HL7 Financial SOX Dodd-Frank Energy PPDM Retail PCI PII Other CWM Rest API Modern, flexible access to Atlas services, HDP components and external tools Search—SQL, like DSL (Domain Specific Language) Support for key word, faceted and full text searches Lineage Capture all SQL runtime activity on HiveServer2 providing lineage for both data and schema Exchange Leverage existing metadata by importing it from ETL tools, ERP systems and data warehouses Export metadata to downstream systems
  74. 74. Page 74 © Hortonworks Inc. 2011 – 2016. All Rights Reserved Apache Atlas Vision 2015 Metadata Services Business Taxonomy - classification Operational Data – Model for Hive: DB, Tables, Col, Centralized location for all metadata inside HDP Single Interface point for Metadata Exchange with platforms outside of HDP. Search & Prescriptive Lineage – Model and Audit Apache Atlas Hive Ranger Falcon Kafka Storm
  75. 75. © Hortonworks Inc. 2015. All Rights Reserved The Insurance Data Landscape has Changed u  The insurance industry is joining and analyzing data which has never been analyzed before u  Many of these sources can be “murky” and sensitive u  Traditional PII/PHI data sources ingested into Hadoop needs to be: •  Discovered •  Protected Ø  Protecting PII/PHI data is not an option for Insurers, TPAs and Brokers…. it is a Requirement Summary
  76. 76. Page 76 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Questions ?
  77. 77. Page 77 © Hortonworks Inc. 2011 – 2014. All Rights Reserved Call to Action Additional Information : q Data Protection Optimized for Insurance Big Data – A Dataguise and Hortonworks Capability Overview q Hortonworks: Comprehensive Security in Hadoop – Solving Security in Hadoop Whitepaper q Hortonworks: Building Governance into Big Data – Whitepaper

×