SlideShare une entreprise Scribd logo
1  sur  15
Télécharger pour lire hors ligne
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
123
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF AIRFLOW AND
TEMPERATURE DISTRIBUTION IN A PROTOTYPE COLD STORAGE
Qasim S. Mahdi, Husam Mahdi Hadi*
Department of Mechanical Engineering, College of Engineering,
Al-Mustansiriyah University
ABSTRACT
Airflow and temperature distribution inside a cold store are investigated using experimental
and computational fluid dynamic using CFX 14.5. In the present work a prototype cold storage for
meat has been designed. Temperature distributions were determined for different storage
temperature, -2°C, -10°C, -20°C and -21°C, inside empty cold store experimentally. The Air
temperature distribution also been determined for storage temperatures -20°C and -21°C inside
loaded cold storage with 10.8kg. The Mean air velocity distribution also been measured for empty
cold store, by using a hot wire anemometer. Navier-Stokes equations, and the turbulence is taken into
account using a standard εκ− model, incompressible, symmetric cold store used to analysis the
loaded and empty cold storage and the meat are presented as a solid domain with variable
thermophysical properties as a function of temperature. Air flow distribution results in the three
levels (bottom, medium and top) for empty cold store with relative error between experimentally and
numerically equal to 20%. The relative error between the experimental and numerical for
temperature distributions inside empty cold storage equal to 13%. Correlations have been developed
for modeling the evaporator unit in numerical simulation, where the total error between the
experimental results and the correlation that used in numerical is 8.8%.
Keywords: Cold Store; Air Distribution; Temperature Distribution; CFX; Correlations for Modeling
the Evaporator Unit.
INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING
AND TECHNOLOGY (IJMET)
ISSN 0976 – 6340 (Print)
ISSN 0976 – 6359 (Online)
Volume 5, Issue 4, April (2014), pp. 123-137
© IAEME: www.iaeme.com/ijmet.asp
Journal Impact Factor (2014): 7.5377 (Calculated by GISI)
www.jifactor.com
IJMET
© I A E M E
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
124
NOMENCLATURE
UnitDescriptionSymbol
Constant Coefficient in k-
ε Model
µC,C,C 21
MHydraulic diameterDh
W/m.KThermal conductivityK
N/m2
PressureP
N/m2
Modified pressure'p
STimeT
(m/s)Velocity vectorU
m/sVelocity Components in
X,Y & Z Directions
u,v,w
Greek symbols
m2
/sThermal Diffusivityα
mDistance Between Scalar
Quantities
kji Z,Y,X ∆∆∆
(m2
/s3
)turbulence energy
dissipation
ε
Turbulent intensityI
(m2
/s2
)Turbulence kinetic energyκ
(kg/m.s)Second viscosityλ
N.s/m2
Dynamic Viscosityµ
(kg/m.s)Effective viscosityeffµ
(kg/m.s)Turbulent viscosityTµ
kg/m3
Densityρ
Empirical Constant
ε
σ
κ
σ ,
Dissipation functionΦ
1. INTRODUCTION
Frozen storage requires freezing of the product and storage at the temperaturerange between -
12º C and -23º C. Different factors govern the ultimate quality and storage life of any frozen product,
such as: (i) the nature and composition of the product to be frozen. (ii) The careful use in selecting,
handling and preparing the product for freezing. (iii) The freezing method. (iv) The storage
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
125
conditions [1]. Therefore, the main aim in designing a storage system is to ensure a uniform targeted
temperature and humidity in the bulk of storage product. The temperature distributions inside the
cold store depend on the air flow distribution, where theydependon the product, the cooling medium,
the geometry and characteristic of the cooling room.
They are several studies on the experimental and numerical investigation of air flow,
temperature such as:
M.L. Hoang et al. [2] investigated theairflow inside a cold store using CFX package. The
airflow model is based on the steady state incompressible, Reynolds-averaged Navier-Stokes
equations.The standard as well as the Renormalization Group (RNG) version of the k- Ɛ model is
investigated. Also, the finite volume method of discretization is used.Validation was performed by
comparisons of numerical and experimental data on vertical profiles of air velocity magnitudes. The
accuracy was 26% for the standard k–Ɛ model and 28.5% for the RNG.
A transient three-dimensional CFD model was developed by H.B. Nahor et al. [3] to
calculate the velocity, temperature and moisture distribution in an existing empty and loaded cool
store. An average accuracy of 22% on the velocity magnitudes inside the empty cold store was
achieved and the predicted temperature distribution found more uniform than the predicted results. In
the loaded cold store, an average accuracy of 20% on the velocity magnitudes was observed. Serap
Akdemir and Selcuk Arin[4] studied the spatial distribution of the ambient temperature, relative
humidity and air velocity in cold store. Their results are achieved at ceiling, medium and floor level
in the cold store and for different storage temperatures (0 ºC, 1 ºC, 2 ºC and 3 ºC). Mapping software
was presented to show the variability. Also, they indicated that the spatial distribution of the
temperature and the relative humidity was not uniform in the cold store. Bjorn Margeirsson and
Sigurjon Arason [5] investigated the temperature monitoring in both cold stores and containers
which are used for storage and transportation of frozen fish products. Numerical modeling of airflow
and temperature distribution in one of the cold store was performed using the CFD code Fluent for
both steady and unsteady.Seyed Majid Sajadiye et al. [6] used a multi-scale three-dimensional
CFDcode fluent model, which predicts the airflow, heat and mass transfer in a typical full loaded
cool storage. The model was validated against experiments by means of velocity, product
temperature, and product weight loss measurements in cool storage. The errors of about 23.2% and
9.1% were achieved for velocity magnitude prediction in the cool storage and the product weight loss
after 54 days of cooling in the loaded cool storage, respectively.
2. MODELING
2.1. Physical model
The dimensions of the simulated cold store are100cm × 100cm × 100cm and the air cooling
fan dimensionsare74.5 cm × 40 cm × 14.3 cm. The door of the cold store located at the middle of the
front wall with dimensions, 57cm width, 67cm height and 5cm thickness. The structure of the cold
store is made from polyurethane insulation layer, 10 cm thickness, and the dimensions of the cold
store from inside are 80 cm × 80 cm × 80 cm.
2.2. Mathematical model
To simplify the model, a number of assumptions were made:
Transient condition as analysis type, total time (1800 second) and times steps (10 second) for
empty cold store and steady state with 370 iterations for loading cold store; Negligible the natural
convection; No heat flow through the door and walls; The Boussinesq model was not adopted; Three
dimensional, Incompressible flow; The radiation between the side walls is ignored; Turbulence
medium intensity equal (5%) and The air flow is assumed as steady turbulent state.
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
126
According to the above assumption, the following equations for air inside cold store are given [7,8]:
( )
)9(3.1;0.1;92.1
2
;44.1
1
;09.0
)8(
3.0
2/3
,2)(
2
3
)7(
2
21
)(
)6()(
)5(
2
)4(2)(
2)(
2)(2)(2)(2)(2)(2
)3()()()(
)(
)2(2
'
)1(0
=====
×
=×=
−










∂
∂
+
∂
∂
∂
∂
=








∂
∂
∂
∂
−
∂
∂
+
∂
∂
−










∂
∂
+
∂
∂
∂
∂
=








∂
∂
∂
∂
−
∂
∂
+
∂
∂
=
+














∂
∂
+
∂
∂
+
∂
∂
+
∂
∂
+
∂
∂
+
∂
∂
+





∂
∂
+
∂
∂
+
∂
∂
=Φ
Φ++−=+
∂
∂
∇+
∂
∂
−=
∂
∂
+





∂
∂
=





∂
∂
+
∂
∂
+
∂
∂
+
∂
∂
ε
σ
κ
σ
µµµ
ε
ρ
κ
ε
µκ
ε
µ
ε
ε
σ
µ
ερ
ρε
ρεµ
κ
κ
σ
µ
κρ
ρκ
ε
κ
ρ
µ
µ
νλµ
ννρν
ρ
µρ
ρ
ρ
CCC
h
D
k
IUk
C
i
x
j
U
j
x
i
U
j
x
i
U
C
j
x
T
j
xj
U
j
xt
i
x
j
U
j
x
i
U
j
x
i
U
T
j
x
T
j
xj
U
j
xt
C
T
Udi
y
w
z
v
x
w
z
u
x
v
y
u
z
w
y
v
x
u
stateof
Equations
gradTkdiUdipTUdi
t
T
Energy
U ieffx i
p
U jU i
x jt
U i
z
w
y
v
x
u
t
Continuity
2.3. Initial Boundary Condition
The initialization of the model is important for convergence. If the initial conditions are poor,
then it takes longer to converge or it may even result in divergence. In the present work the initial
conditions are:
1- The Cartesian velocity components (U=0, V=0 and W=0) all in m/s.
2- Relative pressure (0) Pa.
3- All variable are initiated for different temperature dependent on the initial experimental
temperature for each case as follows:
a- The initial temperature inside the empty cold store is 30º C.
b- The initial temperature inside the loaded cold store is 32º C and 35ºC for six meats distributed
in three levels.
2.4. Boundary conditions
The air velocity and temperature inlet boundary condition a, which are suggested 3.2m/s and
( evaporatorfromOutletT ) respectively for empty cold store, and 3.2m/s and -21º C for loaded cold store, are
used in the present work. Where the velocity and temperature open boundary condition are
determined experimentally. These include velocity type Cartesian with insert automatic, with value
(U=0 m/s, V=0 m/s and W=1.78 m/s), the opening temperature ( evaporatortoInletT ) for empty cold store
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
127
and the opening temperature -21º C for loaded cold store. Also, the other side inside the cold store,
which is symmetry in a boundary condition, is considered the other half of evaporator fan and trays.
All empirical equations are obtained using the multi-regression analysis technique and then
submitted as an expression in CFX, which depends mainly upon the experimental measurements,
from the inlet and outlet temperature of the evaporator. The empirical formulae of the outlet and inlet
temperature from evaporator as a function of time t are respectively:
sec]/[]sec/[6612763.0
sec]/[002296065.09077291.0][18583.27
]sec/[10719398103.1]sec/[10083517582.8
]sec/[10254451794.1]sec/[10033018813.5
sec]/[60548222298.0][3769572.305
55144411
337225
mVmK
tKTKT
tKtK
tKtK
tKKT
evapratorofback
evaporatorfromOutletevaporatortoInlet
evaporatorfromOutlet
××+
×−×+=
××+××−
××+××−
×−=
−−
−−
Tetrahedral mesh was generated using (3262752) elements, (663589) nodes to empty cold
store and (4475661) elements, (771219) nodes for loading cold store.
3. EXPERIMENTAL WORK
Cold storage has been designed and constructed depends on the provided materials and
equipment to achieve the freezing temperature below -20ºC. The outside and inside volumes of the
cold store are 1m3
and 0.512m3
, respectively, as shown in figure (1-a). Hermetic sealed
compressorsand air cooled condenser was located on the outside of the cold store. Force convection
evaporator was put on the ceiling of the cold storage as shown in figure (1-b),this unit has two fans
and the air velocity for each fan is 3.2m/s. After builds the cold store and before started the
experimental work the temperature distribution in and out from evaporator has been measured as
shown in figure (2).Also the other thermocouples are fixed at different levels, as shown in figure (3-
a). These have the capability to monitor the temperature in case of empty store and in case of loaded
store, see figure (3-a). The data are saved in SD card for the three 12 channel data logger that used in
the present work. The work interested in monitoring the inside and outside temperature, and the
relative humidity in the cold store.
(a) (b)
Figure (1): (a) cold storage and (b) The evaporator of the present design
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
128
Figure (2): Temperature in and out from the evaporator
(a) (b)
Figure (3): thermocouple distribution in three levels for empty cold store at (a) and loaded cold store
at (b)
4. RESULTS AND DISCUSSION
4.1. Experimental results
4.1.1. Temperature distribution
In the present work an experimental cold store was designed, built and operated to determine
the spatial distribution of the air velocity and air temperature. Since the temperature distribution is a
function of location and time, several cases have been implemented for temperature distribution for
empty and loaded storage which can bedescribed as follows:
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
129
4.1.1.1. Empty cold store
The air temperatures were determined at three levels located at different height ( 3cm, 28cm
and 53cm) inside the cold store and at different storage temperatures, -2°C, -10°C, -20°C and -21°C
respectively, as shown previously in figure (3-a).
The air temperature was varied between-2.5°C and 2.8°C for -2°C storage temperature, -
10.9°C and -7.8°C for -10°C storage temperature, -21.1°C and -18.3°C for -20°C storage
temperature, and -24.3°C and-20.1°C for -21°C storage temperature, respectively.
In the case of storage temperature -21°C, the temperature inside the cold store was 32°C and
the relative humidity was 32%. It takes 29 minutes to reach therequired storage temperature and then
the system pause due to the presence order, ON-OFF thermostat. The operation started again when
the temperature reached -17°C, due to differential temperature 4=∆T °C, and controlled by using
the thermostat.The air temperature distributions are measured during the operation of the system for
different runs. For each run the data are recorded by 12 channel data logger inside the cold store for
24 locations, six positions distributed in the center of each wall, as shown in figure (4-a), and 18
positions distributed in the air for three levels, as shown in figure (4-b). All temperatures are
recorded with a 2 minute elapse time.
(a) (b)
Figure (4): The measured temperature distribution as a function of time in the cold store for storage
temperature -21°C (a) 6 thermocouples distributed at the center of each wall. (b) 18 thermocouples
distributed on three levels in the air. (See figure (3-a))
4.1.1.2. Loaded cold store
At the present work a 10.8 kg of meat, dimension 18cm×11cm×3cm, has been used and
frozen at the cold store. As shown in figure (3-b) thermocouples are distributed and arranged on
three levels within the loaded cold store. The air temperatures are measured at these three levels in
the loaded cold store for different storage temperatures -20°C and 21°C, where the measured air
temperatures are varied between -23.6°C and -20.5°C, for -20°C storage temperature, and -23.7°C
and -22.3°C, for -21° C storage temperature, respectively.
In the case of storage temperature -21°C, the temperature inside the cold store was 37°C and
the relative humidity was 34%. Took the time to reach therequired storage temperature was 62.5
minutes.By using thermocouples and read the temperature by 12 channel data logger inside the cold
store for 24 locations, six thermocouples are distributed in the center of each wall, as shown in figure
(5-a), and 18 are distributed in the air for three levels during each test, as shown in figure (5-b). The
temperature is recorded with 10 minutes time interval.
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
130
The temperature is recorded with 10 minutes time interval.
Six parts (two for each level) of meat distributed in the left half of the store. Each part have
0.9kg, distributed in the three levels, inside the cold store, and the other half assumed symmetric to
the left one, where (1M, 2M, 3M, 4M, 5M and 6M) referred to the locations of meat inside the cold
store, see figure (3-b) . The thermocouples are inserted inside each part of the meat with
(9cm×5.5cm×1.5cm) fixed locations. The initial temperature in the core of meat, at 1M, 2M, 3M,
4M, 5M and 6M locations, began from 33.9°C, 31.7°C, 34.8°C, 35.2°C, 31.8 °C and 36.5°C
gradually.
(a) (b)
Figure (5): The measured temperature distribution as a function of time in the cold store for storage
temperature -21°C (a) 6 thermocouples distributed at the center of each wall. (b) 18 thermocouples
distributed on three levels in the air. (See figure (3-b))
4.1.2. Air velocity
The air velocity from the two fans is same in the evaporator, so the flow pattern is
symmetrical in the cold store. Test make for finding the airflow distributions (Note that the points of
airflow distribution are shown in figure (6-a)) inside empty cold store for local air velocity by using a
hot wire anemometer, as shown in figure (7). The reason for non-uniform air temperature
distributions is the bad spatial distribution of air velocity generated by evaporator fan.
Each of velocities is normal to the six faces of parallelepiped of interest
),,,,( 212121 ZZyyXX VandVVVVV . The mean velocity V was then calculated using equation (12):
)12()()()( 2
2
2
2
2
2
212121
LZZyyXX VVVVVV
V +++
++=
The results from the equation above are shown in figure (6-b).
The figures(6-b and 7) show the air velocity distributions are the best at the top level, due to
exposure to the higher air velocity, and the best points in the lower level are (1,2 and 1M). Also, one
can see from these figures the medium level has less airflow distributions and this explains the bad
temperature distribution in this area.
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
ISSN 0976 – 6359(Online), Volume 5, Issue
Figure (6): air velocity distribution
(a), and Mean velocity distributionsby using a hot wire anemometer at (b)
Figure (7): the airflow distributions for
using a hot wire anemometer ((i) at x
4.2. Numerical results
4.2.1. Air flow and temperature distribution inside empty cold store for transient simulation
The initial temperature inside the cold store was 30°C for Air at 25 °C.
distributions, in a form of contours maps
transient.It takes 4 hours and 52 minutes to reach below
store.The air temperatures were determined at three levels located at different height, 5cm, 30cm and
55cm respectively inside the cold store, where three ZX
figure (8-a, 8-b,8-c) and after accumulating time steps
has been determined at different points, the locations of t
the results of the temperature distribution at these points are shown in figure (
Three dimensional ε−K turbulent models are used to simulate the air distribution in the
cold store. Figures (10-a, 10-b and 1
(10cm, 20cm and 30cm) respectively, inside the cold store.It is observed that the high velocity zones
were concentrated between the ceiling fan, from the inlet with constan
coils, at the back of the evaporator with constant velocity 1.78 m/s, and the approximation average
air velocity at the top, medium and bottom levels are
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976
6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
131
air velocity distribution points for empty cold store by using a hot wire anemometer at
y distributionsby using a hot wire anemometer at (b)
the airflow distributions for the three levels in the cold storeand at different directions by
using a hot wire anemometer ((i) at x-direction, (ii) at y-direction and (iii) at z
distribution inside empty cold store for transient simulation
The initial temperature inside the cold store was 30°C for Air at 25 °C.
distributions, in a form of contours maps and charts, are presented in figures (
takes 4 hours and 52 minutes to reach below -21°C inside the simulation of cold
The air temperatures were determined at three levels located at different height, 5cm, 30cm and
spectively inside the cold store, where three ZX-planes are in the same locations,
accumulating time steps equal to 30 minutes. The air temperature also
has been determined at different points, the locations of these points are the same of figure (
temperature distribution at these points are shown in figure (9).
turbulent models are used to simulate the air distribution in the
0-c) show as the velocity vectors in YZ-planes at different length
(10cm, 20cm and 30cm) respectively, inside the cold store.It is observed that the high velocity zones
were concentrated between the ceiling fan, from the inlet with constant velocity 3.2m/s, and cooling
evaporator with constant velocity 1.78 m/s, and the approximation average
air velocity at the top, medium and bottom levels are 0.55 m/s, 0.283 m/s and 0.303
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
by using a hot wire anemometer at
y distributionsby using a hot wire anemometer at (b)
the three levels in the cold storeand at different directions by
direction and (iii) at z-direction)
distribution inside empty cold store for transient simulation
The initial temperature inside the cold store was 30°C for Air at 25 °C. The temperature
and charts, are presented in figures (8) and (9) with
21°C inside the simulation of cold
The air temperatures were determined at three levels located at different height, 5cm, 30cm and
planes are in the same locations, as shown in
The air temperature also
hese points are the same of figure (3-a) and
turbulent models are used to simulate the air distribution in the
planes at different length
(10cm, 20cm and 30cm) respectively, inside the cold store.It is observed that the high velocity zones
t velocity 3.2m/s, and cooling
evaporator with constant velocity 1.78 m/s, and the approximation average
m/s respectively.
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
132
(a) (b)
(c)
Figure (8): Temperature distribution inside empty cold store at accumulate time step 30 minute
located at: (a) top level, (b) medium level and (c) bottom level
Figure (9): Air temperature distribution as a function of time in the cold store for 18 points
distributed on three levels
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
133
(a) (b)
(c)
Figure (10): velocity vectors distribution at different locations in YZ plane: ((a) at x=10cm, (b) at
x=20cm and (c) at x=30cm) inside empty cold store
4.2.2. Airflow and air temperature distribution inside loaded cold store for steady state
simulation
The initial temperature inside the cold store was 35°C for Air at 25 °C, The temperature and
airflow distribution in a form of contour maps are presented in figures (11) and (13) with steady
state. It takes 370 iterations to reach whole cold store under -20°C inside the simulation of cold store.
The air temperatures were determined at three levels located at different height (5cm, 30cm and
55cm ) inside the cold store, three ZX- planes at the same locations, as shown in figures (11-a,11-b
and 11-c).
The Air velocity vector distribution also has been determined at different length in a form of
YZ-planes at the same locations, as shown in figures (12-a, 12-b and 12-c). It is observed that the
high velocity zones were concentrated between the ceiling fan, from the inlet with constant velocity
3.2m/s, and cooling coils, at the back of the evaporator with constant velocity 1.78 m/s. The
approximation of the average air velocity at the top, medium and bottom levels are 0.603 m/s, 0.377
m/s and 0.366 m/s respectively.
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
134
(a) (b)
(c)
Figure (11): Temperature distribution inside loaded cold store located at (a) top level, (b) medium
level and (c) bottom level
(a) (b)
(c)
Figure (12): velocity vectors distribution at different locations at YZ- plane: ((a) at x=10cm,
(b) at x=20cm and (c) at x=30cm) inside empty cold store
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
135
4.3. Comparison between experimental and numerical results
Temperature and air flow distribution inside empty cold store
The temperature distribution results in the three levels (bottom, medium and top) for empty
cold store as shown in the figures (13-i, 13-ii and 13-iii) respectively. Average of the relative error
between experimental and numerical air temperature distribution is equal to 13%. Air flow
distribution results in the three levels (bottom, medium and top) for empty cold store as shown in the
figure (14) with relative error between experimentally and numerically equal to 20%.
(i) (ii)
(iii)
Figure (13): Comparison between experimental and numerical for air temperature distribution inside
empty cold store: (i) Bottom level, (ii) Medium level and (iii) top level
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
136
Figure (14): Comparison between experimental and numerical for air velocity distribution inside
empty cold store: (i) Numerical and (ii) Experimental
4.4. CONCLUSIONS
From the present work results for the airflow and temperature distribution in a cold store,
different distinguish conclusions have been pointed out:
1- From the analysis of the variation of the air velocity at the middle and bottom of the cold store,
it was found that the variation is less than the top level of cold store because the evaporator was
placed at the top level of cold store.
2- The numerical results show the average air velocity for empty cold store at the top, medium
and bottom levels are 0.55 m/s, 0.283 m/s and 0.303 m/s respectively. Also, they show the
average air velocity for loading cold store at the top, medium and bottom levels 0.603 m/s,
0.377 m/s and 0.366 m/s respectively.
3- The air velocity strongly influences the performance of the unit. If the air velocity is too low
the necessary refrigerating effect and the correct storage temperature cannot be guaranteed. If
air velocity is too high the air stream becomes more turbulent thus increasing heat transfer with
the environment and the correct storage temperature can be guaranteed.
4- The two fans operate in normal conditions and therefore, the flow pattern is symmetrical inside
the cold store.
5- The air stacks appeared inside empty and loaded cold storage in several points; first stack
introduced should be close to the evaporator with minimum and maximum velocity equal to
0.038 m/sec and 0.431 m/sec for empty cold store, 0.08m/sec and 0.587 m/sec for loading cold
store respectively. Other stack appeared two more in empty store and four more in loaded store
with minimum and maximum velocity range equal to 0.025 m/sec and 0.46 m/sec for empty
store, 0.019 m/sec and 0.718 m/sec for loading store respectively.
REFERENCE
[1] Roy J. Dossat, "Principle of Refrigeration", second Edition, John Wiley and sons, 1981.
[2] M.L. Hoang et al ,"Analysis of the air flow in a cold store by means of computational fluid
dynamics", International Journal of Refrigeration, vol. 23 No. 2, pp. 127-140, 2000.
[3] H.B. Nahor, M.L. Hoang, P. Verboven,"CFD model of the airflow, heat and mass transfer in
cool stores", International Journal of Refrigeration, Vol. 28, Issue 3, pp. 368–380, 2005.
[4] SERAP AKDEMIR and SELCUK ARIN,"Spatial Variabilty of Ambient Temperature,
Relative Humidity and Air velocity in a Cold Store", Journal of Central European
Agriculture, vol. 7, No.1, pp. 101-110, 2006.
International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print),
ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME
137
[5] Bjorn Margeirsson and Sigurjon Arason, "Temperature monitoring and CFD modelling of a
cold storage", Ph.D. Thesis, University of Iceland, 2008.
[6] Seyed Majid Sajadiye, Hojat Ahmadi, Seyed Mostafa Hosseinalipour, Seyed Saeid
Mohtasebi, Mohammad Layeghi, Younes Mostofi, Amir Raja, "Evaluation of a Cooling
Performance of a Typical Full Loaded Cool Storage Using Mono-scale CFD Simulation",
Vol. 6, No. 1, 2012.
[7] ANSYS CFX Help (2012), Turbulence and Wall Function Theory, Two Equation Turbulence
Models, Release 14.5.
[8] Jones W. P. and Launders B. E., "The Predicition of Laminarization with a Two-Equation
Model of Turbulence", Int. J. Heat and Mass Transfer 15, 301-314, 1972.
[9] Gunwant D.Shelake, Harshal K. chavan, Prof. R. R. Deshmukh and Dr. S. D. Deshmukh,
“Model for Prediction of Temperature Distribution in Workpiece for Surface Grinding using
FEA”, International Journal of Advanced Research in Engineering & Technology (IJARET),
Volume 3, Issue 2, 2012, pp. 207 - 213, ISSN Print: 0976-6480, ISSN Online: 0976-6499.
[10] Ambeprasad S. Kushwaha, Dhiraj K. Patil, Vinaykumar J. Pandey, Sandeepkumar K. Yadav
and Tushar S. Suryawanshi, “Thermal Analysis of Heat Sink (Variable Shield Profile) Used
in Electronic Cooling using CFD Analysis”, International Journal of Mechanical Engineering
& Technology (IJMET), Volume 5, Issue 3, 2014, pp. 114 - 121, ISSN Print: 0976 – 6340,
ISSN Online: 0976 – 6359.
[11] N.S.Venkatesh Kumar and Prof. K. Hema Chandra Reddy, “CFD Investigation of Ceiling
Shape on Airflow Distribution for a Generic 2-D Room Model with and Without Passive
Control”, International Journal of Mechanical Engineering & Technology (IJMET), Volume
5, Issue 1, 2014, pp. 10 - 25, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359.

Contenu connexe

Tendances

JIMEC Thermal modeling and Simulation of HX Conference Paper
JIMEC Thermal modeling and Simulation of HX Conference PaperJIMEC Thermal modeling and Simulation of HX Conference Paper
JIMEC Thermal modeling and Simulation of HX Conference PaperAhmed Sohail Izhar
 
Modelling and Analysis of Spark Ignition Carburettor
Modelling and Analysis of Spark Ignition CarburettorModelling and Analysis of Spark Ignition Carburettor
Modelling and Analysis of Spark Ignition Carburettorijtsrd
 
Design & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weightDesign & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weightijsrd.com
 
Experimental analysis of natural convection over a vertical cylinder
Experimental analysis of natural convection over a vertical cylinderExperimental analysis of natural convection over a vertical cylinder
Experimental analysis of natural convection over a vertical cylinderIAEME Publication
 
IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...
IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...
IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...IRJET Journal
 
Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...
Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...
Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...ijtsrd
 
CFD Analysis of Natural Convection Flow through Inclined Enclosure
CFD Analysis of Natural Convection Flow through Inclined EnclosureCFD Analysis of Natural Convection Flow through Inclined Enclosure
CFD Analysis of Natural Convection Flow through Inclined EnclosureIJMERJOURNAL
 
Experimental design to determine thermal diffusivity of a material an anal...
Experimental design to determine thermal diffusivity of a material    an anal...Experimental design to determine thermal diffusivity of a material    an anal...
Experimental design to determine thermal diffusivity of a material an anal...eSAT Journals
 
Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...
Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...
Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...IRJET Journal
 
CFD ANALYSIS OF RADIATO
CFD ANALYSIS OF RADIATOCFD ANALYSIS OF RADIATO
CFD ANALYSIS OF RADIATOjournal ijrtem
 
Natural convection heat transfer flow visualization
Natural convection heat transfer flow visualizationNatural convection heat transfer flow visualization
Natural convection heat transfer flow visualizationeSAT Publishing House
 
Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)eSAT Publishing House
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeIOSR Journals
 
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...IJERA Editor
 
01 thermal profiles gap hanson pnnl sa-126282
01 thermal profiles gap hanson pnnl sa-12628201 thermal profiles gap hanson pnnl sa-126282
01 thermal profiles gap hanson pnnl sa-126282leann_mays
 

Tendances (19)

JIMEC Thermal modeling and Simulation of HX Conference Paper
JIMEC Thermal modeling and Simulation of HX Conference PaperJIMEC Thermal modeling and Simulation of HX Conference Paper
JIMEC Thermal modeling and Simulation of HX Conference Paper
 
Modelling and Analysis of Spark Ignition Carburettor
Modelling and Analysis of Spark Ignition CarburettorModelling and Analysis of Spark Ignition Carburettor
Modelling and Analysis of Spark Ignition Carburettor
 
harrison
harrisonharrison
harrison
 
Design & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weightDesign & optimization of LNG-CNG cylinder for optimum weight
Design & optimization of LNG-CNG cylinder for optimum weight
 
Experimental analysis of natural convection over a vertical cylinder
Experimental analysis of natural convection over a vertical cylinderExperimental analysis of natural convection over a vertical cylinder
Experimental analysis of natural convection over a vertical cylinder
 
Cb4201514518
Cb4201514518Cb4201514518
Cb4201514518
 
IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...
IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...
IRJET-Enhancing the Performance of Hybrid Microgrid using non Isolated Single...
 
Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...
Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...
Heat Transfer Characteristics of a Plate Fin Heat Sink with Pin Fins of Vario...
 
C341518
C341518C341518
C341518
 
CFD Analysis of Natural Convection Flow through Inclined Enclosure
CFD Analysis of Natural Convection Flow through Inclined EnclosureCFD Analysis of Natural Convection Flow through Inclined Enclosure
CFD Analysis of Natural Convection Flow through Inclined Enclosure
 
Experimental design to determine thermal diffusivity of a material an anal...
Experimental design to determine thermal diffusivity of a material    an anal...Experimental design to determine thermal diffusivity of a material    an anal...
Experimental design to determine thermal diffusivity of a material an anal...
 
Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...
Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...
Optimization of Fin Spacing by Analyzing the Heat Transfer through Rectangula...
 
CFD ANALYSIS OF RADIATO
CFD ANALYSIS OF RADIATOCFD ANALYSIS OF RADIATO
CFD ANALYSIS OF RADIATO
 
Natural convection heat transfer flow visualization
Natural convection heat transfer flow visualizationNatural convection heat transfer flow visualization
Natural convection heat transfer flow visualization
 
Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)Numerical investigation on heat sink by computational fluid dynamics (cfd)
Numerical investigation on heat sink by computational fluid dynamics (cfd)
 
Ijetcas14 548
Ijetcas14 548Ijetcas14 548
Ijetcas14 548
 
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated PipeCfd Simulation and Experimentalverification of Air Flow through Heated Pipe
Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe
 
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
Comparison of Shell and Tube Heat Exchanger using Theoretical Methods, HTRI, ...
 
01 thermal profiles gap hanson pnnl sa-126282
01 thermal profiles gap hanson pnnl sa-12628201 thermal profiles gap hanson pnnl sa-126282
01 thermal profiles gap hanson pnnl sa-126282
 

En vedette

092812 eeoc response hilda solis (galician)
092812 eeoc response   hilda solis (galician)092812 eeoc response   hilda solis (galician)
092812 eeoc response hilda solis (galician)VogelDenise
 
122312 obama fax (galician)
122312   obama fax (galician)122312   obama fax (galician)
122312 obama fax (galician)VogelDenise
 
4383 11856-1-pb (1)
4383 11856-1-pb (1)4383 11856-1-pb (1)
4383 11856-1-pb (1)ruizbe
 
Obama us wars used to train white supremacist (bengali)
Obama   us wars used to train white supremacist (bengali)Obama   us wars used to train white supremacist (bengali)
Obama us wars used to train white supremacist (bengali)VogelDenise
 
071310 obama email (hatian creole)
071310   obama email (hatian creole)071310   obama email (hatian creole)
071310 obama email (hatian creole)VogelDenise
 
082512 us supreme court response(BELARUSIAN)
082512   us supreme court response(BELARUSIAN)082512   us supreme court response(BELARUSIAN)
082512 us supreme court response(BELARUSIAN)VogelDenise
 
Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263
Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263
Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263Daniel Reis Duarte Pousa
 
050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latin
050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latin050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latin
050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latinVogelDenise
 
Planificación recursos 1 (1) corregida sonido
Planificación recursos 1 (1) corregida sonidoPlanificación recursos 1 (1) corregida sonido
Planificación recursos 1 (1) corregida sonidoVanesa Benitez
 
George zimmerman & ebola crisis (belarusian)
George zimmerman & ebola crisis (belarusian)George zimmerman & ebola crisis (belarusian)
George zimmerman & ebola crisis (belarusian)VogelDenise
 

En vedette (20)

30120140504018
3012014050401830120140504018
30120140504018
 
40120140504007 2
40120140504007 240120140504007 2
40120140504007 2
 
30120140502002 2
30120140502002 230120140502002 2
30120140502002 2
 
50120130405017 2
50120130405017 250120130405017 2
50120130405017 2
 
20120140503019
2012014050301920120140503019
20120140503019
 
20320140503019 2-3
20320140503019 2-320320140503019 2-3
20320140503019 2-3
 
30120140503007
3012014050300730120140503007
30120140503007
 
20120140503023
2012014050302320120140503023
20120140503023
 
20120140503020
2012014050302020120140503020
20120140503020
 
092812 eeoc response hilda solis (galician)
092812 eeoc response   hilda solis (galician)092812 eeoc response   hilda solis (galician)
092812 eeoc response hilda solis (galician)
 
122312 obama fax (galician)
122312   obama fax (galician)122312   obama fax (galician)
122312 obama fax (galician)
 
INFORME
INFORMEINFORME
INFORME
 
4383 11856-1-pb (1)
4383 11856-1-pb (1)4383 11856-1-pb (1)
4383 11856-1-pb (1)
 
Obama us wars used to train white supremacist (bengali)
Obama   us wars used to train white supremacist (bengali)Obama   us wars used to train white supremacist (bengali)
Obama us wars used to train white supremacist (bengali)
 
071310 obama email (hatian creole)
071310   obama email (hatian creole)071310   obama email (hatian creole)
071310 obama email (hatian creole)
 
082512 us supreme court response(BELARUSIAN)
082512   us supreme court response(BELARUSIAN)082512   us supreme court response(BELARUSIAN)
082512 us supreme court response(BELARUSIAN)
 
Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263
Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263
Documento recebidocpi cpidfdq-7-outros-20082015190422617-recibo-cod-1263
 
050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latin
050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latin050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latin
050113 - FAX TO JUDY CLARKE (Boston Marathon Bombing) - latin
 
Planificación recursos 1 (1) corregida sonido
Planificación recursos 1 (1) corregida sonidoPlanificación recursos 1 (1) corregida sonido
Planificación recursos 1 (1) corregida sonido
 
George zimmerman & ebola crisis (belarusian)
George zimmerman & ebola crisis (belarusian)George zimmerman & ebola crisis (belarusian)
George zimmerman & ebola crisis (belarusian)
 

Similaire à 30120140504016

AN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATIONAN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATIONijiert bestjournal
 
EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...
EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...
EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...IAEME Publication
 
Numerical analysis of velocity vectors plots and turbulent kinetic energy
Numerical analysis of velocity vectors plots and turbulent kinetic energyNumerical analysis of velocity vectors plots and turbulent kinetic energy
Numerical analysis of velocity vectors plots and turbulent kinetic energyIAEME Publication
 
THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...
THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...
THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...IAEME Publication
 
Natural convection heat transfer flow visualization of perforated fin arrays ...
Natural convection heat transfer flow visualization of perforated fin arrays ...Natural convection heat transfer flow visualization of perforated fin arrays ...
Natural convection heat transfer flow visualization of perforated fin arrays ...eSAT Journals
 
Experimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar stillExperimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar stillIAEME Publication
 
Experimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar stillExperimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar stillIAEME Publication
 
Project presentaion
Project presentaionProject presentaion
Project presentaionshafqat55
 
Experimental investigation of waste heat recovery system for domestic refrige...
Experimental investigation of waste heat recovery system for domestic refrige...Experimental investigation of waste heat recovery system for domestic refrige...
Experimental investigation of waste heat recovery system for domestic refrige...IAEME Publication
 
CFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the ClassroomCFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the Classroomijtsrd
 
THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...
THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...
THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...IAEME Publication
 
THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...
THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...
THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...IAEME Publication
 
An experimental study of forced convection green house dry 2
An experimental study of forced convection green house dry 2An experimental study of forced convection green house dry 2
An experimental study of forced convection green house dry 2IAEME Publication
 
Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...
Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...
Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...IJERA Editor
 
EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...
EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...
EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...IAEME Publication
 

Similaire à 30120140504016 (20)

AN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATIONAN ANALYSIS OF COLD STORE BY CFD SIMULATION
AN ANALYSIS OF COLD STORE BY CFD SIMULATION
 
EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...
EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...
EFFECT OF LOWERING CONDENSING SURFACE TEMPERATURE ON THE PERFORMANCE OF SOLAR...
 
Numerical analysis of velocity vectors plots and turbulent kinetic energy
Numerical analysis of velocity vectors plots and turbulent kinetic energyNumerical analysis of velocity vectors plots and turbulent kinetic energy
Numerical analysis of velocity vectors plots and turbulent kinetic energy
 
THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...
THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...
THERMODYNAMIC ANALYSIS OF YEAR ROUND AIR CONDITIONING SYSTEM FOR VARIABLE WET...
 
Natural convection heat transfer flow visualization of perforated fin arrays ...
Natural convection heat transfer flow visualization of perforated fin arrays ...Natural convection heat transfer flow visualization of perforated fin arrays ...
Natural convection heat transfer flow visualization of perforated fin arrays ...
 
Experimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar stillExperimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar still
 
Experimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar stillExperimental study of evaporation in a tubular solar still
Experimental study of evaporation in a tubular solar still
 
Project presentaion
Project presentaionProject presentaion
Project presentaion
 
20120130406013 2
20120130406013 220120130406013 2
20120130406013 2
 
Experimental investigation of waste heat recovery system for domestic refrige...
Experimental investigation of waste heat recovery system for domestic refrige...Experimental investigation of waste heat recovery system for domestic refrige...
Experimental investigation of waste heat recovery system for domestic refrige...
 
CFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the ClassroomCFD Simulation of Air Conditioning System of the Classroom
CFD Simulation of Air Conditioning System of the Classroom
 
THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...
THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...
THERMAL ANALYSIS OF AIR FLOW IN A CPU CABINET WITH MOTHERBOARD AND HARD DISK ...
 
30120140503011
3012014050301130120140503011
30120140503011
 
THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...
THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...
THERMAL ANALYSIS OF HEAT SINK (VARIABLE SHIELD PROFILE) USED IN ELECTRONIC CO...
 
S04504118120
S04504118120S04504118120
S04504118120
 
30120130405023
3012013040502330120130405023
30120130405023
 
An experimental study of forced convection green house dry 2
An experimental study of forced convection green house dry 2An experimental study of forced convection green house dry 2
An experimental study of forced convection green house dry 2
 
Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...
Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...
Conjugate Heat transfer Analysis of helical fins with airfoil cross-section a...
 
EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...
EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...
EXPERIMENTAL INVESTIGATION OF WASTE HEAT RECOVERY SYSTEM FOR DOMESTIC REFRIGE...
 
M1302038192
M1302038192M1302038192
M1302038192
 

Plus de IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

Plus de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Dernier

2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesManik S Magar
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkPixlogix Infotech
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentPim van der Noll
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Nikki Chapple
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...itnewsafrica
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPathCommunity
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 

Dernier (20)

2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
React Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App FrameworkReact Native vs Ionic - The Best Mobile App Framework
React Native vs Ionic - The Best Mobile App Framework
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...Zeshan Sattar- Assessing the skill requirements and industry expectations for...
Zeshan Sattar- Assessing the skill requirements and industry expectations for...
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
UiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to HeroUiPath Community: Communication Mining from Zero to Hero
UiPath Community: Communication Mining from Zero to Hero
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 

30120140504016

  • 1. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 123 EXPERIMENTAL AND NUMERICAL INVESTIGATION OF AIRFLOW AND TEMPERATURE DISTRIBUTION IN A PROTOTYPE COLD STORAGE Qasim S. Mahdi, Husam Mahdi Hadi* Department of Mechanical Engineering, College of Engineering, Al-Mustansiriyah University ABSTRACT Airflow and temperature distribution inside a cold store are investigated using experimental and computational fluid dynamic using CFX 14.5. In the present work a prototype cold storage for meat has been designed. Temperature distributions were determined for different storage temperature, -2°C, -10°C, -20°C and -21°C, inside empty cold store experimentally. The Air temperature distribution also been determined for storage temperatures -20°C and -21°C inside loaded cold storage with 10.8kg. The Mean air velocity distribution also been measured for empty cold store, by using a hot wire anemometer. Navier-Stokes equations, and the turbulence is taken into account using a standard εκ− model, incompressible, symmetric cold store used to analysis the loaded and empty cold storage and the meat are presented as a solid domain with variable thermophysical properties as a function of temperature. Air flow distribution results in the three levels (bottom, medium and top) for empty cold store with relative error between experimentally and numerically equal to 20%. The relative error between the experimental and numerical for temperature distributions inside empty cold storage equal to 13%. Correlations have been developed for modeling the evaporator unit in numerical simulation, where the total error between the experimental results and the correlation that used in numerical is 8.8%. Keywords: Cold Store; Air Distribution; Temperature Distribution; CFX; Correlations for Modeling the Evaporator Unit. INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 – 6340 (Print) ISSN 0976 – 6359 (Online) Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME: www.iaeme.com/ijmet.asp Journal Impact Factor (2014): 7.5377 (Calculated by GISI) www.jifactor.com IJMET © I A E M E
  • 2. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 124 NOMENCLATURE UnitDescriptionSymbol Constant Coefficient in k- ε Model µC,C,C 21 MHydraulic diameterDh W/m.KThermal conductivityK N/m2 PressureP N/m2 Modified pressure'p STimeT (m/s)Velocity vectorU m/sVelocity Components in X,Y & Z Directions u,v,w Greek symbols m2 /sThermal Diffusivityα mDistance Between Scalar Quantities kji Z,Y,X ∆∆∆ (m2 /s3 )turbulence energy dissipation ε Turbulent intensityI (m2 /s2 )Turbulence kinetic energyκ (kg/m.s)Second viscosityλ N.s/m2 Dynamic Viscosityµ (kg/m.s)Effective viscosityeffµ (kg/m.s)Turbulent viscosityTµ kg/m3 Densityρ Empirical Constant ε σ κ σ , Dissipation functionΦ 1. INTRODUCTION Frozen storage requires freezing of the product and storage at the temperaturerange between - 12º C and -23º C. Different factors govern the ultimate quality and storage life of any frozen product, such as: (i) the nature and composition of the product to be frozen. (ii) The careful use in selecting, handling and preparing the product for freezing. (iii) The freezing method. (iv) The storage
  • 3. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 125 conditions [1]. Therefore, the main aim in designing a storage system is to ensure a uniform targeted temperature and humidity in the bulk of storage product. The temperature distributions inside the cold store depend on the air flow distribution, where theydependon the product, the cooling medium, the geometry and characteristic of the cooling room. They are several studies on the experimental and numerical investigation of air flow, temperature such as: M.L. Hoang et al. [2] investigated theairflow inside a cold store using CFX package. The airflow model is based on the steady state incompressible, Reynolds-averaged Navier-Stokes equations.The standard as well as the Renormalization Group (RNG) version of the k- Ɛ model is investigated. Also, the finite volume method of discretization is used.Validation was performed by comparisons of numerical and experimental data on vertical profiles of air velocity magnitudes. The accuracy was 26% for the standard k–Ɛ model and 28.5% for the RNG. A transient three-dimensional CFD model was developed by H.B. Nahor et al. [3] to calculate the velocity, temperature and moisture distribution in an existing empty and loaded cool store. An average accuracy of 22% on the velocity magnitudes inside the empty cold store was achieved and the predicted temperature distribution found more uniform than the predicted results. In the loaded cold store, an average accuracy of 20% on the velocity magnitudes was observed. Serap Akdemir and Selcuk Arin[4] studied the spatial distribution of the ambient temperature, relative humidity and air velocity in cold store. Their results are achieved at ceiling, medium and floor level in the cold store and for different storage temperatures (0 ºC, 1 ºC, 2 ºC and 3 ºC). Mapping software was presented to show the variability. Also, they indicated that the spatial distribution of the temperature and the relative humidity was not uniform in the cold store. Bjorn Margeirsson and Sigurjon Arason [5] investigated the temperature monitoring in both cold stores and containers which are used for storage and transportation of frozen fish products. Numerical modeling of airflow and temperature distribution in one of the cold store was performed using the CFD code Fluent for both steady and unsteady.Seyed Majid Sajadiye et al. [6] used a multi-scale three-dimensional CFDcode fluent model, which predicts the airflow, heat and mass transfer in a typical full loaded cool storage. The model was validated against experiments by means of velocity, product temperature, and product weight loss measurements in cool storage. The errors of about 23.2% and 9.1% were achieved for velocity magnitude prediction in the cool storage and the product weight loss after 54 days of cooling in the loaded cool storage, respectively. 2. MODELING 2.1. Physical model The dimensions of the simulated cold store are100cm × 100cm × 100cm and the air cooling fan dimensionsare74.5 cm × 40 cm × 14.3 cm. The door of the cold store located at the middle of the front wall with dimensions, 57cm width, 67cm height and 5cm thickness. The structure of the cold store is made from polyurethane insulation layer, 10 cm thickness, and the dimensions of the cold store from inside are 80 cm × 80 cm × 80 cm. 2.2. Mathematical model To simplify the model, a number of assumptions were made: Transient condition as analysis type, total time (1800 second) and times steps (10 second) for empty cold store and steady state with 370 iterations for loading cold store; Negligible the natural convection; No heat flow through the door and walls; The Boussinesq model was not adopted; Three dimensional, Incompressible flow; The radiation between the side walls is ignored; Turbulence medium intensity equal (5%) and The air flow is assumed as steady turbulent state.
  • 4. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 126 According to the above assumption, the following equations for air inside cold store are given [7,8]: ( ) )9(3.1;0.1;92.1 2 ;44.1 1 ;09.0 )8( 3.0 2/3 ,2)( 2 3 )7( 2 21 )( )6()( )5( 2 )4(2)( 2)( 2)(2)(2)(2)(2)(2 )3()()()( )( )2(2 ' )1(0 ===== × =×= −           ∂ ∂ + ∂ ∂ ∂ ∂ =         ∂ ∂ ∂ ∂ − ∂ ∂ + ∂ ∂ −           ∂ ∂ + ∂ ∂ ∂ ∂ =         ∂ ∂ ∂ ∂ − ∂ ∂ + ∂ ∂ = +               ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ +      ∂ ∂ + ∂ ∂ + ∂ ∂ =Φ Φ++−=+ ∂ ∂ ∇+ ∂ ∂ −= ∂ ∂ +      ∂ ∂ =      ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ ε σ κ σ µµµ ε ρ κ ε µκ ε µ ε ε σ µ ερ ρε ρεµ κ κ σ µ κρ ρκ ε κ ρ µ µ νλµ ννρν ρ µρ ρ ρ CCC h D k IUk C i x j U j x i U j x i U C j x T j xj U j xt i x j U j x i U j x i U T j x T j xj U j xt C T Udi y w z v x w z u x v y u z w y v x u stateof Equations gradTkdiUdipTUdi t T Energy U ieffx i p U jU i x jt U i z w y v x u t Continuity 2.3. Initial Boundary Condition The initialization of the model is important for convergence. If the initial conditions are poor, then it takes longer to converge or it may even result in divergence. In the present work the initial conditions are: 1- The Cartesian velocity components (U=0, V=0 and W=0) all in m/s. 2- Relative pressure (0) Pa. 3- All variable are initiated for different temperature dependent on the initial experimental temperature for each case as follows: a- The initial temperature inside the empty cold store is 30º C. b- The initial temperature inside the loaded cold store is 32º C and 35ºC for six meats distributed in three levels. 2.4. Boundary conditions The air velocity and temperature inlet boundary condition a, which are suggested 3.2m/s and ( evaporatorfromOutletT ) respectively for empty cold store, and 3.2m/s and -21º C for loaded cold store, are used in the present work. Where the velocity and temperature open boundary condition are determined experimentally. These include velocity type Cartesian with insert automatic, with value (U=0 m/s, V=0 m/s and W=1.78 m/s), the opening temperature ( evaporatortoInletT ) for empty cold store
  • 5. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 127 and the opening temperature -21º C for loaded cold store. Also, the other side inside the cold store, which is symmetry in a boundary condition, is considered the other half of evaporator fan and trays. All empirical equations are obtained using the multi-regression analysis technique and then submitted as an expression in CFX, which depends mainly upon the experimental measurements, from the inlet and outlet temperature of the evaporator. The empirical formulae of the outlet and inlet temperature from evaporator as a function of time t are respectively: sec]/[]sec/[6612763.0 sec]/[002296065.09077291.0][18583.27 ]sec/[10719398103.1]sec/[10083517582.8 ]sec/[10254451794.1]sec/[10033018813.5 sec]/[60548222298.0][3769572.305 55144411 337225 mVmK tKTKT tKtK tKtK tKKT evapratorofback evaporatorfromOutletevaporatortoInlet evaporatorfromOutlet ××+ ×−×+= ××+××− ××+××− ×−= −− −− Tetrahedral mesh was generated using (3262752) elements, (663589) nodes to empty cold store and (4475661) elements, (771219) nodes for loading cold store. 3. EXPERIMENTAL WORK Cold storage has been designed and constructed depends on the provided materials and equipment to achieve the freezing temperature below -20ºC. The outside and inside volumes of the cold store are 1m3 and 0.512m3 , respectively, as shown in figure (1-a). Hermetic sealed compressorsand air cooled condenser was located on the outside of the cold store. Force convection evaporator was put on the ceiling of the cold storage as shown in figure (1-b),this unit has two fans and the air velocity for each fan is 3.2m/s. After builds the cold store and before started the experimental work the temperature distribution in and out from evaporator has been measured as shown in figure (2).Also the other thermocouples are fixed at different levels, as shown in figure (3- a). These have the capability to monitor the temperature in case of empty store and in case of loaded store, see figure (3-a). The data are saved in SD card for the three 12 channel data logger that used in the present work. The work interested in monitoring the inside and outside temperature, and the relative humidity in the cold store. (a) (b) Figure (1): (a) cold storage and (b) The evaporator of the present design
  • 6. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 128 Figure (2): Temperature in and out from the evaporator (a) (b) Figure (3): thermocouple distribution in three levels for empty cold store at (a) and loaded cold store at (b) 4. RESULTS AND DISCUSSION 4.1. Experimental results 4.1.1. Temperature distribution In the present work an experimental cold store was designed, built and operated to determine the spatial distribution of the air velocity and air temperature. Since the temperature distribution is a function of location and time, several cases have been implemented for temperature distribution for empty and loaded storage which can bedescribed as follows:
  • 7. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 129 4.1.1.1. Empty cold store The air temperatures were determined at three levels located at different height ( 3cm, 28cm and 53cm) inside the cold store and at different storage temperatures, -2°C, -10°C, -20°C and -21°C respectively, as shown previously in figure (3-a). The air temperature was varied between-2.5°C and 2.8°C for -2°C storage temperature, - 10.9°C and -7.8°C for -10°C storage temperature, -21.1°C and -18.3°C for -20°C storage temperature, and -24.3°C and-20.1°C for -21°C storage temperature, respectively. In the case of storage temperature -21°C, the temperature inside the cold store was 32°C and the relative humidity was 32%. It takes 29 minutes to reach therequired storage temperature and then the system pause due to the presence order, ON-OFF thermostat. The operation started again when the temperature reached -17°C, due to differential temperature 4=∆T °C, and controlled by using the thermostat.The air temperature distributions are measured during the operation of the system for different runs. For each run the data are recorded by 12 channel data logger inside the cold store for 24 locations, six positions distributed in the center of each wall, as shown in figure (4-a), and 18 positions distributed in the air for three levels, as shown in figure (4-b). All temperatures are recorded with a 2 minute elapse time. (a) (b) Figure (4): The measured temperature distribution as a function of time in the cold store for storage temperature -21°C (a) 6 thermocouples distributed at the center of each wall. (b) 18 thermocouples distributed on three levels in the air. (See figure (3-a)) 4.1.1.2. Loaded cold store At the present work a 10.8 kg of meat, dimension 18cm×11cm×3cm, has been used and frozen at the cold store. As shown in figure (3-b) thermocouples are distributed and arranged on three levels within the loaded cold store. The air temperatures are measured at these three levels in the loaded cold store for different storage temperatures -20°C and 21°C, where the measured air temperatures are varied between -23.6°C and -20.5°C, for -20°C storage temperature, and -23.7°C and -22.3°C, for -21° C storage temperature, respectively. In the case of storage temperature -21°C, the temperature inside the cold store was 37°C and the relative humidity was 34%. Took the time to reach therequired storage temperature was 62.5 minutes.By using thermocouples and read the temperature by 12 channel data logger inside the cold store for 24 locations, six thermocouples are distributed in the center of each wall, as shown in figure (5-a), and 18 are distributed in the air for three levels during each test, as shown in figure (5-b). The temperature is recorded with 10 minutes time interval.
  • 8. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 130 The temperature is recorded with 10 minutes time interval. Six parts (two for each level) of meat distributed in the left half of the store. Each part have 0.9kg, distributed in the three levels, inside the cold store, and the other half assumed symmetric to the left one, where (1M, 2M, 3M, 4M, 5M and 6M) referred to the locations of meat inside the cold store, see figure (3-b) . The thermocouples are inserted inside each part of the meat with (9cm×5.5cm×1.5cm) fixed locations. The initial temperature in the core of meat, at 1M, 2M, 3M, 4M, 5M and 6M locations, began from 33.9°C, 31.7°C, 34.8°C, 35.2°C, 31.8 °C and 36.5°C gradually. (a) (b) Figure (5): The measured temperature distribution as a function of time in the cold store for storage temperature -21°C (a) 6 thermocouples distributed at the center of each wall. (b) 18 thermocouples distributed on three levels in the air. (See figure (3-b)) 4.1.2. Air velocity The air velocity from the two fans is same in the evaporator, so the flow pattern is symmetrical in the cold store. Test make for finding the airflow distributions (Note that the points of airflow distribution are shown in figure (6-a)) inside empty cold store for local air velocity by using a hot wire anemometer, as shown in figure (7). The reason for non-uniform air temperature distributions is the bad spatial distribution of air velocity generated by evaporator fan. Each of velocities is normal to the six faces of parallelepiped of interest ),,,,( 212121 ZZyyXX VandVVVVV . The mean velocity V was then calculated using equation (12): )12()()()( 2 2 2 2 2 2 212121 LZZyyXX VVVVVV V +++ ++= The results from the equation above are shown in figure (6-b). The figures(6-b and 7) show the air velocity distributions are the best at the top level, due to exposure to the higher air velocity, and the best points in the lower level are (1,2 and 1M). Also, one can see from these figures the medium level has less airflow distributions and this explains the bad temperature distribution in this area.
  • 9. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 ISSN 0976 – 6359(Online), Volume 5, Issue Figure (6): air velocity distribution (a), and Mean velocity distributionsby using a hot wire anemometer at (b) Figure (7): the airflow distributions for using a hot wire anemometer ((i) at x 4.2. Numerical results 4.2.1. Air flow and temperature distribution inside empty cold store for transient simulation The initial temperature inside the cold store was 30°C for Air at 25 °C. distributions, in a form of contours maps transient.It takes 4 hours and 52 minutes to reach below store.The air temperatures were determined at three levels located at different height, 5cm, 30cm and 55cm respectively inside the cold store, where three ZX figure (8-a, 8-b,8-c) and after accumulating time steps has been determined at different points, the locations of t the results of the temperature distribution at these points are shown in figure ( Three dimensional ε−K turbulent models are used to simulate the air distribution in the cold store. Figures (10-a, 10-b and 1 (10cm, 20cm and 30cm) respectively, inside the cold store.It is observed that the high velocity zones were concentrated between the ceiling fan, from the inlet with constan coils, at the back of the evaporator with constant velocity 1.78 m/s, and the approximation average air velocity at the top, medium and bottom levels are International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 131 air velocity distribution points for empty cold store by using a hot wire anemometer at y distributionsby using a hot wire anemometer at (b) the airflow distributions for the three levels in the cold storeand at different directions by using a hot wire anemometer ((i) at x-direction, (ii) at y-direction and (iii) at z distribution inside empty cold store for transient simulation The initial temperature inside the cold store was 30°C for Air at 25 °C. distributions, in a form of contours maps and charts, are presented in figures ( takes 4 hours and 52 minutes to reach below -21°C inside the simulation of cold The air temperatures were determined at three levels located at different height, 5cm, 30cm and spectively inside the cold store, where three ZX-planes are in the same locations, accumulating time steps equal to 30 minutes. The air temperature also has been determined at different points, the locations of these points are the same of figure ( temperature distribution at these points are shown in figure (9). turbulent models are used to simulate the air distribution in the 0-c) show as the velocity vectors in YZ-planes at different length (10cm, 20cm and 30cm) respectively, inside the cold store.It is observed that the high velocity zones were concentrated between the ceiling fan, from the inlet with constant velocity 3.2m/s, and cooling evaporator with constant velocity 1.78 m/s, and the approximation average air velocity at the top, medium and bottom levels are 0.55 m/s, 0.283 m/s and 0.303 International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), by using a hot wire anemometer at y distributionsby using a hot wire anemometer at (b) the three levels in the cold storeand at different directions by direction and (iii) at z-direction) distribution inside empty cold store for transient simulation The initial temperature inside the cold store was 30°C for Air at 25 °C. The temperature and charts, are presented in figures (8) and (9) with 21°C inside the simulation of cold The air temperatures were determined at three levels located at different height, 5cm, 30cm and planes are in the same locations, as shown in The air temperature also hese points are the same of figure (3-a) and turbulent models are used to simulate the air distribution in the planes at different length (10cm, 20cm and 30cm) respectively, inside the cold store.It is observed that the high velocity zones t velocity 3.2m/s, and cooling evaporator with constant velocity 1.78 m/s, and the approximation average m/s respectively.
  • 10. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 132 (a) (b) (c) Figure (8): Temperature distribution inside empty cold store at accumulate time step 30 minute located at: (a) top level, (b) medium level and (c) bottom level Figure (9): Air temperature distribution as a function of time in the cold store for 18 points distributed on three levels
  • 11. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 133 (a) (b) (c) Figure (10): velocity vectors distribution at different locations in YZ plane: ((a) at x=10cm, (b) at x=20cm and (c) at x=30cm) inside empty cold store 4.2.2. Airflow and air temperature distribution inside loaded cold store for steady state simulation The initial temperature inside the cold store was 35°C for Air at 25 °C, The temperature and airflow distribution in a form of contour maps are presented in figures (11) and (13) with steady state. It takes 370 iterations to reach whole cold store under -20°C inside the simulation of cold store. The air temperatures were determined at three levels located at different height (5cm, 30cm and 55cm ) inside the cold store, three ZX- planes at the same locations, as shown in figures (11-a,11-b and 11-c). The Air velocity vector distribution also has been determined at different length in a form of YZ-planes at the same locations, as shown in figures (12-a, 12-b and 12-c). It is observed that the high velocity zones were concentrated between the ceiling fan, from the inlet with constant velocity 3.2m/s, and cooling coils, at the back of the evaporator with constant velocity 1.78 m/s. The approximation of the average air velocity at the top, medium and bottom levels are 0.603 m/s, 0.377 m/s and 0.366 m/s respectively.
  • 12. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 134 (a) (b) (c) Figure (11): Temperature distribution inside loaded cold store located at (a) top level, (b) medium level and (c) bottom level (a) (b) (c) Figure (12): velocity vectors distribution at different locations at YZ- plane: ((a) at x=10cm, (b) at x=20cm and (c) at x=30cm) inside empty cold store
  • 13. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 135 4.3. Comparison between experimental and numerical results Temperature and air flow distribution inside empty cold store The temperature distribution results in the three levels (bottom, medium and top) for empty cold store as shown in the figures (13-i, 13-ii and 13-iii) respectively. Average of the relative error between experimental and numerical air temperature distribution is equal to 13%. Air flow distribution results in the three levels (bottom, medium and top) for empty cold store as shown in the figure (14) with relative error between experimentally and numerically equal to 20%. (i) (ii) (iii) Figure (13): Comparison between experimental and numerical for air temperature distribution inside empty cold store: (i) Bottom level, (ii) Medium level and (iii) top level
  • 14. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 136 Figure (14): Comparison between experimental and numerical for air velocity distribution inside empty cold store: (i) Numerical and (ii) Experimental 4.4. CONCLUSIONS From the present work results for the airflow and temperature distribution in a cold store, different distinguish conclusions have been pointed out: 1- From the analysis of the variation of the air velocity at the middle and bottom of the cold store, it was found that the variation is less than the top level of cold store because the evaporator was placed at the top level of cold store. 2- The numerical results show the average air velocity for empty cold store at the top, medium and bottom levels are 0.55 m/s, 0.283 m/s and 0.303 m/s respectively. Also, they show the average air velocity for loading cold store at the top, medium and bottom levels 0.603 m/s, 0.377 m/s and 0.366 m/s respectively. 3- The air velocity strongly influences the performance of the unit. If the air velocity is too low the necessary refrigerating effect and the correct storage temperature cannot be guaranteed. If air velocity is too high the air stream becomes more turbulent thus increasing heat transfer with the environment and the correct storage temperature can be guaranteed. 4- The two fans operate in normal conditions and therefore, the flow pattern is symmetrical inside the cold store. 5- The air stacks appeared inside empty and loaded cold storage in several points; first stack introduced should be close to the evaporator with minimum and maximum velocity equal to 0.038 m/sec and 0.431 m/sec for empty cold store, 0.08m/sec and 0.587 m/sec for loading cold store respectively. Other stack appeared two more in empty store and four more in loaded store with minimum and maximum velocity range equal to 0.025 m/sec and 0.46 m/sec for empty store, 0.019 m/sec and 0.718 m/sec for loading store respectively. REFERENCE [1] Roy J. Dossat, "Principle of Refrigeration", second Edition, John Wiley and sons, 1981. [2] M.L. Hoang et al ,"Analysis of the air flow in a cold store by means of computational fluid dynamics", International Journal of Refrigeration, vol. 23 No. 2, pp. 127-140, 2000. [3] H.B. Nahor, M.L. Hoang, P. Verboven,"CFD model of the airflow, heat and mass transfer in cool stores", International Journal of Refrigeration, Vol. 28, Issue 3, pp. 368–380, 2005. [4] SERAP AKDEMIR and SELCUK ARIN,"Spatial Variabilty of Ambient Temperature, Relative Humidity and Air velocity in a Cold Store", Journal of Central European Agriculture, vol. 7, No.1, pp. 101-110, 2006.
  • 15. International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 4, April (2014), pp. 123-137 © IAEME 137 [5] Bjorn Margeirsson and Sigurjon Arason, "Temperature monitoring and CFD modelling of a cold storage", Ph.D. Thesis, University of Iceland, 2008. [6] Seyed Majid Sajadiye, Hojat Ahmadi, Seyed Mostafa Hosseinalipour, Seyed Saeid Mohtasebi, Mohammad Layeghi, Younes Mostofi, Amir Raja, "Evaluation of a Cooling Performance of a Typical Full Loaded Cool Storage Using Mono-scale CFD Simulation", Vol. 6, No. 1, 2012. [7] ANSYS CFX Help (2012), Turbulence and Wall Function Theory, Two Equation Turbulence Models, Release 14.5. [8] Jones W. P. and Launders B. E., "The Predicition of Laminarization with a Two-Equation Model of Turbulence", Int. J. Heat and Mass Transfer 15, 301-314, 1972. [9] Gunwant D.Shelake, Harshal K. chavan, Prof. R. R. Deshmukh and Dr. S. D. Deshmukh, “Model for Prediction of Temperature Distribution in Workpiece for Surface Grinding using FEA”, International Journal of Advanced Research in Engineering & Technology (IJARET), Volume 3, Issue 2, 2012, pp. 207 - 213, ISSN Print: 0976-6480, ISSN Online: 0976-6499. [10] Ambeprasad S. Kushwaha, Dhiraj K. Patil, Vinaykumar J. Pandey, Sandeepkumar K. Yadav and Tushar S. Suryawanshi, “Thermal Analysis of Heat Sink (Variable Shield Profile) Used in Electronic Cooling using CFD Analysis”, International Journal of Mechanical Engineering & Technology (IJMET), Volume 5, Issue 3, 2014, pp. 114 - 121, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359. [11] N.S.Venkatesh Kumar and Prof. K. Hema Chandra Reddy, “CFD Investigation of Ceiling Shape on Airflow Distribution for a Generic 2-D Room Model with and Without Passive Control”, International Journal of Mechanical Engineering & Technology (IJMET), Volume 5, Issue 1, 2014, pp. 10 - 25, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359.