SlideShare a Scribd company logo
Soumettre la recherche
Mettre en ligne
30120140505017 2-3
Signaler
Partager
IAEME Publication
Journal Publishing à Journal Publication
Suivre
•
0 j'aime
•
157 vues
Technologie
Business
30120140505017 2-3
•
0 j'aime
•
157 vues
IAEME Publication
Journal Publishing à Journal Publication
Suivre
Signaler
Partager
Technologie
Business
30120140505017 2-3
1 sur 13
Télécharger maintenant
Recommandé
Optimization of Injection Molding Process-literature review par
Optimization of Injection Molding Process-literature review
Alex Larsh
2.6K vues
•
16 diapositives
30120140501011 2-3 par
30120140501011 2-3
IAEME Publication
186 vues
•
8 diapositives
30120140504013 par
30120140504013
IAEME Publication
205 vues
•
7 diapositives
Analysis of Process Parameters for Optimization of Plastic Extrusion in Pipe ... par
Analysis of Process Parameters for Optimization of Plastic Extrusion in Pipe ...
IJERA Editor
532 vues
•
4 diapositives
Reduction of short shots by optimizing injection molding process parameters par
Reduction of short shots by optimizing injection molding process parameters
IAEME Publication
912 vues
•
9 diapositives
IRJET- Effect of Injection Moulding Process Parameter on Warpage of using Tag... par
IRJET- Effect of Injection Moulding Process Parameter on Warpage of using Tag...
IRJET Journal
10 vues
•
5 diapositives
Contenu connexe
Tendances
A study of the effects of machining parameters on surface roughness using res... par
A study of the effects of machining parameters on surface roughness using res...
IAEME Publication
434 vues
•
12 diapositives
Optimization of process parameters in drilling of aisi 1015 steel for exit bu... par
Optimization of process parameters in drilling of aisi 1015 steel for exit bu...
IAEME Publication
638 vues
•
11 diapositives
30120130406023 2-3 par
30120130406023 2-3
IAEME Publication
472 vues
•
4 diapositives
A STUDY OF THE EFFECTS OF MACHINING PARAMETERS ON SURFACE ROUGHNESS USING RES... par
A STUDY OF THE EFFECTS OF MACHINING PARAMETERS ON SURFACE ROUGHNESS USING RES...
IAEME Publication
554 vues
•
12 diapositives
Parametric optimization of surface roughness in turning inconel718 using tag par
Parametric optimization of surface roughness in turning inconel718 using tag
IAEME Publication
707 vues
•
13 diapositives
Application of taguchi method in the optimization of boring parameters 2 par
Application of taguchi method in the optimization of boring parameters 2
IAEME Publication
652 vues
•
9 diapositives
Tendances
(16)
A study of the effects of machining parameters on surface roughness using res... par IAEME Publication
A study of the effects of machining parameters on surface roughness using res...
IAEME Publication
•
434 vues
Optimization of process parameters in drilling of aisi 1015 steel for exit bu... par IAEME Publication
Optimization of process parameters in drilling of aisi 1015 steel for exit bu...
IAEME Publication
•
638 vues
30120130406023 2-3 par IAEME Publication
30120130406023 2-3
IAEME Publication
•
472 vues
A STUDY OF THE EFFECTS OF MACHINING PARAMETERS ON SURFACE ROUGHNESS USING RES... par IAEME Publication
A STUDY OF THE EFFECTS OF MACHINING PARAMETERS ON SURFACE ROUGHNESS USING RES...
IAEME Publication
•
554 vues
Parametric optimization of surface roughness in turning inconel718 using tag par IAEME Publication
Parametric optimization of surface roughness in turning inconel718 using tag
IAEME Publication
•
707 vues
Application of taguchi method in the optimization of boring parameters 2 par IAEME Publication
Application of taguchi method in the optimization of boring parameters 2
IAEME Publication
•
652 vues
Investigation of post processing techniques to reduce the surface roughness o... par iaemedu
Investigation of post processing techniques to reduce the surface roughness o...
iaemedu
•
1.1K vues
6 par Er Suman Chatterjee
6
Er Suman Chatterjee
•
324 vues
C0941217 par IOSR Journals
C0941217
IOSR Journals
•
240 vues
Parametric optimisation by using response surface par prj_publication
Parametric optimisation by using response surface
prj_publication
•
99 vues
Investigations of machining parameters on surface roughness in cnc milling u... par Alexander Decker
Investigations of machining parameters on surface roughness in cnc milling u...
Alexander Decker
•
526 vues
Ijsea04021006 par Editor IJCATR
Ijsea04021006
Editor IJCATR
•
297 vues
IRJET- Optimization of Plastic Injection Molding par IRJET Journal
IRJET- Optimization of Plastic Injection Molding
IRJET Journal
•
42 vues
Turning parameters optimization for surface roughness by taguchi method par IAEME Publication
Turning parameters optimization for surface roughness by taguchi method
IAEME Publication
•
828 vues
Taguchi Method for Optimization of Cutting Parameters in Turning Operations par IDES Editor
Taguchi Method for Optimization of Cutting Parameters in Turning Operations
IDES Editor
•
490 vues
International Journal of Engineering Research and Development (IJERD) par IJERD Editor
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
•
392 vues
Similaire à 30120140505017 2-3
EFFECT OF PROCESS PARAMETERS ON FLATNESS OF PLASTIC COMPONENT par
EFFECT OF PROCESS PARAMETERS ON FLATNESS OF PLASTIC COMPONENT
IAEME Publication
255 vues
•
7 diapositives
Investigation of Significant Process Parameter in Manganese Phosphating of Pi... par
Investigation of Significant Process Parameter in Manganese Phosphating of Pi...
IJERA Editor
140 vues
•
4 diapositives
IRJET- Optimization of Injection Molding Process Control Variables using Tagu... par
IRJET- Optimization of Injection Molding Process Control Variables using Tagu...
IRJET Journal
13 vues
•
8 diapositives
30120140501006 par
30120140501006
IAEME Publication
510 vues
•
11 diapositives
IRJET- Investigation of Mechanical Properties of Poly Lactic Acid Embedded Na... par
IRJET- Investigation of Mechanical Properties of Poly Lactic Acid Embedded Na...
IRJET Journal
44 vues
•
6 diapositives
ANALYSIS OF SHRINKAGE AND WARPAGE DISPLACEMENT USING CONFORMAL COOLING par
ANALYSIS OF SHRINKAGE AND WARPAGE DISPLACEMENT USING CONFORMAL COOLING
IRJET Journal
6 vues
•
7 diapositives
Similaire à 30120140505017 2-3
(20)
EFFECT OF PROCESS PARAMETERS ON FLATNESS OF PLASTIC COMPONENT par IAEME Publication
EFFECT OF PROCESS PARAMETERS ON FLATNESS OF PLASTIC COMPONENT
IAEME Publication
•
255 vues
Investigation of Significant Process Parameter in Manganese Phosphating of Pi... par IJERA Editor
Investigation of Significant Process Parameter in Manganese Phosphating of Pi...
IJERA Editor
•
140 vues
IRJET- Optimization of Injection Molding Process Control Variables using Tagu... par IRJET Journal
IRJET- Optimization of Injection Molding Process Control Variables using Tagu...
IRJET Journal
•
13 vues
30120140501006 par IAEME Publication
30120140501006
IAEME Publication
•
510 vues
IRJET- Investigation of Mechanical Properties of Poly Lactic Acid Embedded Na... par IRJET Journal
IRJET- Investigation of Mechanical Properties of Poly Lactic Acid Embedded Na...
IRJET Journal
•
44 vues
ANALYSIS OF SHRINKAGE AND WARPAGE DISPLACEMENT USING CONFORMAL COOLING par IRJET Journal
ANALYSIS OF SHRINKAGE AND WARPAGE DISPLACEMENT USING CONFORMAL COOLING
IRJET Journal
•
6 vues
30120130404044 par IAEME Publication
30120130404044
IAEME Publication
•
361 vues
V4I7_IJERTV4IS070145 par Nasihun Noor Rahbar
V4I7_IJERTV4IS070145
Nasihun Noor Rahbar
•
186 vues
Development of models using genetic programming for turning par IAEME Publication
Development of models using genetic programming for turning
IAEME Publication
•
265 vues
30120130405014 par IAEME Publication
30120130405014
IAEME Publication
•
327 vues
IRJET- Quality Assurance in High Density Plastic Pipes Manufacturing Process ... par IRJET Journal
IRJET- Quality Assurance in High Density Plastic Pipes Manufacturing Process ...
IRJET Journal
•
30 vues
Optimization of surface roughness in high speed end milling operation using par IAEME Publication
Optimization of surface roughness in high speed end milling operation using
IAEME Publication
•
335 vues
Optimization of surface roughness in high speed end milling operation using par IAEME Publication
Optimization of surface roughness in high speed end milling operation using
IAEME Publication
•
808 vues
Investigation of post processing techniques to reduce the surface par iaemedu
Investigation of post processing techniques to reduce the surface
iaemedu
•
275 vues
SPRING BACK PREDICTION OF SHEET METAL IN DEEP DRAWING PROCESS par IAEME Publication
SPRING BACK PREDICTION OF SHEET METAL IN DEEP DRAWING PROCESS
IAEME Publication
•
932 vues
A012450103 par IOSR Journals
A012450103
IOSR Journals
•
159 vues
Production of nylon 6 fr lever using an injection moulding tool and identific... par IAEME Publication
Production of nylon 6 fr lever using an injection moulding tool and identific...
IAEME Publication
•
549 vues
20120140503011 2-3-4 par IAEME Publication
20120140503011 2-3-4
IAEME Publication
•
342 vues
PROCESS PARAMETER OPTIMISATION IN WEDM OF HCHCR STEEL USING TAGUHI METHOD AND... par IAEME Publication
PROCESS PARAMETER OPTIMISATION IN WEDM OF HCHCR STEEL USING TAGUHI METHOD AND...
IAEME Publication
•
423 vues
IRJET- Optimum Design Parameters for Effective Moldability of Gas Sensor par IRJET Journal
IRJET- Optimum Design Parameters for Effective Moldability of Gas Sensor
IRJET Journal
•
10 vues
Plus de IAEME Publication
IAEME_Publication_Call_for_Paper_September_2022.pdf par
IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME Publication
53 vues
•
12 diapositives
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-... par
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
IAEME Publication
36 vues
•
14 diapositives
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS par
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
IAEME Publication
169 vues
•
7 diapositives
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS par
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
IAEME Publication
27 vues
•
8 diapositives
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS par
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
IAEME Publication
65 vues
•
8 diapositives
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS par
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
IAEME Publication
248 vues
•
7 diapositives
Plus de IAEME Publication
(20)
IAEME_Publication_Call_for_Paper_September_2022.pdf par IAEME Publication
IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME Publication
•
53 vues
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-... par IAEME Publication
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
IAEME Publication
•
36 vues
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS par IAEME Publication
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
IAEME Publication
•
169 vues
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS par IAEME Publication
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
IAEME Publication
•
27 vues
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS par IAEME Publication
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
IAEME Publication
•
65 vues
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS par IAEME Publication
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
IAEME Publication
•
248 vues
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO par IAEME Publication
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
IAEME Publication
•
101 vues
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG... par IAEME Publication
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IAEME Publication
•
53 vues
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY par IAEME Publication
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
IAEME Publication
•
10 vues
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO... par IAEME Publication
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
IAEME Publication
•
18 vues
GANDHI ON NON-VIOLENT POLICE par IAEME Publication
GANDHI ON NON-VIOLENT POLICE
IAEME Publication
•
10 vues
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED... par IAEME Publication
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
IAEME Publication
•
180 vues
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE... par IAEME Publication
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
IAEME Publication
•
11 vues
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD... par IAEME Publication
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
IAEME Publication
•
57 vues
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS... par IAEME Publication
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
IAEME Publication
•
31 vues
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL... par IAEME Publication
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
IAEME Publication
•
24 vues
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ... par IAEME Publication
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
IAEME Publication
•
228 vues
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET... par IAEME Publication
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
IAEME Publication
•
17 vues
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF... par IAEME Publication
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
IAEME Publication
•
66 vues
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT par IAEME Publication
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
IAEME Publication
•
85 vues
Dernier
Igniting Next Level Productivity with AI-Infused Data Integration Workflows par
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software
225 vues
•
86 diapositives
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ... par
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation
25 vues
•
9 diapositives
Roadmap to Become Experts.pptx par
Roadmap to Become Experts.pptx
dscwidyatamanew
11 vues
•
45 diapositives
Kyo - Functional Scala 2023.pdf par
Kyo - Functional Scala 2023.pdf
Flavio W. Brasil
165 vues
•
92 diapositives
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... par
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson
33 vues
•
32 diapositives
AMAZON PRODUCT RESEARCH.pdf par
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta
15 vues
•
13 diapositives
Dernier
(20)
Igniting Next Level Productivity with AI-Infused Data Integration Workflows par Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software
•
225 vues
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ... par Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation
METHOD AND SYSTEM FOR PREDICTING OPTIMAL LOAD FOR WHICH THE YIELD IS MAXIMUM ...
Prity Khastgir IPR Strategic India Patent Attorney Amplify Innovation
•
25 vues
Roadmap to Become Experts.pptx par dscwidyatamanew
Roadmap to Become Experts.pptx
dscwidyatamanew
•
11 vues
Kyo - Functional Scala 2023.pdf par Flavio W. Brasil
Kyo - Functional Scala 2023.pdf
Flavio W. Brasil
•
165 vues
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... par James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson
•
33 vues
AMAZON PRODUCT RESEARCH.pdf par JerikkLaureta
AMAZON PRODUCT RESEARCH.pdf
JerikkLaureta
•
15 vues
Voice Logger - Telephony Integration Solution at Aegis par Nirmal Sharma
Voice Logger - Telephony Integration Solution at Aegis
Nirmal Sharma
•
17 vues
1st parposal presentation.pptx par i238212
1st parposal presentation.pptx
i238212
•
9 vues
Microsoft Power Platform.pptx par Uni Systems S.M.S.A.
Microsoft Power Platform.pptx
Uni Systems S.M.S.A.
•
47 vues
virtual reality.pptx par G036GaikwadSnehal
virtual reality.pptx
G036GaikwadSnehal
•
11 vues
Uni Systems for Power Platform.pptx par Uni Systems S.M.S.A.
Uni Systems for Power Platform.pptx
Uni Systems S.M.S.A.
•
50 vues
Vertical User Stories par Moisés Armani Ramírez
Vertical User Stories
Moisés Armani Ramírez
•
11 vues
Web Dev - 1 PPT.pdf par gdsczhcet
Web Dev - 1 PPT.pdf
gdsczhcet
•
55 vues
Melek BEN MAHMOUD.pdf par MelekBenMahmoud
Melek BEN MAHMOUD.pdf
MelekBenMahmoud
•
14 vues
Business Analyst Series 2023 - Week 3 Session 5 par DianaGray10
Business Analyst Series 2023 - Week 3 Session 5
DianaGray10
•
209 vues
Spesifikasi Lengkap ASUS Vivobook Go 14 par Dot Semarang
Spesifikasi Lengkap ASUS Vivobook Go 14
Dot Semarang
•
35 vues
Case Study Copenhagen Energy and Business Central.pdf par Aitana
Case Study Copenhagen Energy and Business Central.pdf
Aitana
•
12 vues
Data-centric AI and the convergence of data and model engineering:opportunit... par Paolo Missier
Data-centric AI and the convergence of data and model engineering:opportunit...
Paolo Missier
•
34 vues
Scaling Knowledge Graph Architectures with AI par Enterprise Knowledge
Scaling Knowledge Graph Architectures with AI
Enterprise Knowledge
•
24 vues
Report 2030 Digital Decade par Massimo Talia
Report 2030 Digital Decade
Massimo Talia
•
14 vues
30120140505017 2-3
1.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 157 OPTIMIZATION OF PROCESS PARAMETERS OF PLASTIC INJECTION MOLDING FOR POLYPROPYLENE TO ENHANCE PRODUCTIVITY AND REDUCE TIME FOR DEVELOPMENT Mr. A.B. HUMBE(1) , Dr. M.S. KADAM(2) (1) Student, M.E. Manufacturing, Mechanical Engineering Department, Jawaharlal Nehru Engineering College, Aurangabad, Maharashtra, India (2) Professor and Head, Mechanical Engineering Department, Jawaharlal Nehru Engineering College, Aurangabad, Maharashtra, India ABSTRACT The injection molding process itself is a complex mix of time, temperature and pressure variables with a multitude of manufacturing defects that can occur without the right combination of processing parameters and design components. In this analysis input processing parameters are melt temperature (MT), Injection pressure(IP), holding pressure(HP) and cooling time(Cool Time) and responses considered for investigation of plastic injection molding process are cycle time and tensile strength. The material used for experimentation is polypropylene. The cycle time and tensile strength are obtained through series of experiments according to Taguchi’s L-9 Orthogonal Array to develop the equation. Experimental results are analyzed through Response Surface Method and the method is adopted to analyze the effect of each parameter on the cycle time and tensile strength to achieve minimum cycle time and maximum tensile strength. For optimization of input plastic injection molding processing parameters with responses RSM’s D-Optimal method. Keywords: Plastic Injection Molding, DOE, RSM’s D-Optimal Method. 1. INTRODUCTION Increasing the productivity and the quality of the plastic injected parts are the main challenges of plastic based industries, so there has been increased interest in the monitoring all aspects of the plastic injection molding parameters. Most production engineers have been using trial- and-error method to determine initial settings for a number of parameters, including melt temperature, injection pressure, injection velocity, injection time, packing pressure, packing time, cooling temperature, and cooling time which depend on the engineers’ experience and intuition to INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ISSN 0976 – 6340 (Print) ISSN 0976 – 6359 (Online) Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME: www.iaeme.com/ijmet.asp Journal Impact Factor (2014): 7.5377 (Calculated by GISI) www.jifactor.com IJMET © I A E M E
2.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 158 determine initial process parameter settings. However, the trial-and-error process is costly and time consuming. Chang et al [1] studied the relationship between input process parameters for injection molded Dog-bone bar and outputs as weld line width and tensile impact using Taguchi method. He considered 7 input parameters such as melt and mold temperatures, injection and hold pressures, cooling and holding times, and back pressure and found that the melt and mold temperature, injection pressure, and holding time are the most effective, while hold pressure, holding time and back pressure are least important parameter. Loera et al [2] introduced a concept for deliberately varying the wall thicknesses of an injection molded part within recommended dimensional tolerance to reduce part warpage using Taguchi method. From the results, it is seen that varying wall thicknesses exhibited better warpage characteristics compared to the constant wall thicknesses. Instead of PIM, rotational molding (RM) is one of the most important polymer processing techniques for producing hollow plastic part. However, part warpage caused by inappropriate mould design and processing conditions is the problem that confounds the overall success of this technique. Yanwei Huyong [3] applied Taguchi method to systematically investigate the effects of processing parameters on the shrinkage behavior (along and across the flow directions) of three plastic materials. The results from the research shown that the mould and melt temperature, along with holding pressure and holding time, are the most significant factors to the shrinkage behavior of the three materials, although their impact is different for each material. Shuaib et al [4] studied the factors that contribute to warpage for a thin shallow injection-molded part. The process is performed by experimental method by Taguchi and ANOVA techniques are employed. The factors that been taking into considerations includes the mold temperature, melt temperature, filling time, packing pressure and packing time. The result shows that by S/N response and percentage contribution in ANOVA, packing time has been identified to be the most significant factors on affecting the warpage on thin shallow part. Longzhi et al [5] inestigated to avoid the surface sink marks on the automobile dashboard decorative covers, the combined effects of multi-molding process parameters are analyzed by the combination of orthogonal experiments and Mold flow simulation tests. By this method, it can gain the experiment data which can reflect the overall situation using fewer number of simulation test. Furthermore, the effects degree of different molding process parameters for surface sink marks are investigated, and the reasonable gate location and optimized parameter combination is obtained. It can solve the unreasonable appearance of process parameter settings. The mold design can fasten the mold developing schedule, thus shorten the cycle of product development, and improve the quality of products and the competitive ability of enterprise. Wen-ChinChen et al [6] in this research Taguchi method, back-propagation neural networks (BPNN), and Genetic algorithms (GA) are applied to the problem of process parameter settings for Multiple-Input Single-Output (MISO) Plastic injection molding. Taguchi method is adopted to arrange the number of experimental runs. Injection time, velocity pressure switch position, packing pressure, and injection velocity are engaged as process control parameters, and product weight as the target quality. Then, BPNN and GA are applied for searching the final optimal parameter settings. 2. EXPERIMENTAL WORK For plastic injection molding thermoplastics are used. The material used for this experimentation is polypropylene and L&T Demage plastic injection molding machine 40T to 250T capacity (shot capacity-50gm to 1000gm) is used while conducting experiments. We have selected 6 different parts which are of polypropylene material and divided them into two categories (large and small) and three parts in each. The cycle time and tensile strength are obtained through series of experiment according to Taguchi’s L-9 Orthogonal Array. The process parameters used and their levels are presented in table 1 and table 2.
3.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 159 Table 1: Factors and operating levels for large category components SR. NO. PART NAME / FACTORS MT (°c) IP(MPa) HP(MPa) COOL TIME(Sec) 1 Part Size L=125mm*B=55mm* H=15mm Thickness MIN=1mm; MAX=5mm 222 81 55 20 225 84 52 22 228 85 56 23 2 Part Size L=100mm* B=50mm* H=10mm Thickness MIN=1mm; MAX=2mm 217 71 50 19 219 76 48 21 221 79 53 22 3 Part Size L=90mm* B=40mm* H=10mm Thickness MIN=0.5mm;MAX=2mm 209 68 40 17 212 71 38 18 215 74 43 19 Table 2: Factors and operating levels for small category components SR. NO. PART NAME / FACTORS MT (°c) IP(MPa) HP(MPa) COOL TIME(sec) 4 Part Size L=70mm* B=30mm* H=15mm Thickness MIN=2mm; MAX=4mm 202 61 36 14 205 65 32 16 208 67 38 17 5 Part Size L=65mm* B=20mm* H=20mm Thickness MIN=1mm; MAX=3mm 198 55 27 15 200 58 26 14 202 62 31 16 6 Part Size L=60mm* B=25mm* H=15mm Thickness MIN=1mm; MAX=3mm 192 40 24 12 196 45 26 14 199 48 30 16 Result through experimental work is recorded and experimental data obtained for cycle time and tensile strength is analyzed. 3 DATA ANALYSIS 3.1 Mathematical equations for size L=125mm*B=55mm* H=15mm -The regression equation is for cycle time Cycle Time = - 121 + 0.611 MT + 0.038 IP+ 0.011 HP+ 0.857 Cool Time S = 0.614239 R-Sq = 95.28% R-Sq(adj) = 90.57% The parameter R2 describes the amount of variation observed in cycle time is explained by the input factors. R2 is obtained for above equation is 95.28%, indicate that the model is able to predict the response with high accuracy. Adjusted R2 is a modified R2 that has been adjusted for the number of terms in the model. If unnecessary terms are included in the model, R2 can be artificially high, but adjusted R2 (90.57 % obtained for above equation) may get smaller. The standard deviation of errors in the modeling, S=0.614239 Comparing the p-value to a commonly used α-level = 0.05, it
4.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 160 is found that if the p-value is less than or equal to α, it can be concluded that the effect is significant. This clearly indicates that the MT has greatest influence on cycle time, followed by cool time, HP and IP. The p-values for MT, IP, HP and Cool time are 0.002, 0.765, 1.000 and 0.006 respectively. It can be seen that the most influencing parameters to cycle time for polypropylene material is melt temperature and cooling time followed by injection pressure and holding pressure. The same conclusion is carried out for following equations -The regression equation for tensile strength Tensile Strength = - 137 + 0.611 MT (°c) + 0.247 IP(MPa) + 0.0244 HP(MPa) + 0.133 Cool Time(sec) S = 0.424088 R-Sq = 96.84% R-Sq(adj) = 93.67% Graph 1: Residual Plots for cycle time of size L=125mm*B=55mm* H=15mm Graph 2: Residual Plots for tensile strength of size L=125mm*B=55mm* H=15mm 3.2 Mathematical Equations for Size L=100mm* B=50mm* H=10mm -The regression equation for cycle time Cycle Time = - 244 + 1.00 MT + 0.007 IP + 0.439 HP+ 1.88 Cool Time S = 1.41798 R-Sq = 90.95% R-Sq(adj) = 81.90% 1.00.50.0-0.5-1.0 99 90 50 10 1 Residual Percent 42.040.539.037.536.0 0.5 0.0 -0.5 -1.0 Fitted Value Residual 0.500.250.00-0.25-0.50-0.75 3 2 1 0 Residual Frequency 987654321 0.5 0.0 -0.5 -1.0 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Cycle Time(Sec) 0.80.40.0-0.4-0.8 99 90 50 10 1 Residual Percent 2726252423 0.50 0.25 0.00 -0.25 -0.50 Fitted Value Residual 0.60.40.20.0-0.2-0.4 4 3 2 1 0 Residual Frequency 987654321 0.50 0.25 0.00 -0.25 -0.50 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Tensile Strength(MPa)
5.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 161 -The regression equation for tensile strength Tensile Strength = - 189 + 0.917 MT + 0.133 IP + 0.0193 HP + 0.133 Cool Time S = 0.380516 R-Sq = 97.45% R-Sq(adj) = 94.91% Graph 3: Residual Plots for cycle time of size L=100mm* B=50mm* H=10mm Graph 4: Residual Plots for tensile strength of size L=100mm* B=50mm* H=10mm 3.3 Mathematical Equations of Size L=90mm* B=40mm* H=10mm -The regression equation for cycle time Cycle Time = - 135 + 0.556 MT - 0.111 IP + 0.053 HP + 3.00 Cool Time S = 0.800219 R-Sq = 96.54% R-Sq(adj) = 93.08% -The regression equation for tensile strength Tensile Strength = - 122 + 0.611 MT + 0.183 IP + 0.0193 HP + 0.183 Cool Time S = 0.369031 R-Sq = 97.60% R-Sq(adj) = 95.21% 210-1-2 99 90 50 10 1 Residual Percent 40.037.535.032.530.0 1 0 -1 -2 Fitted Value Residual1.51.00.50.0-0.5-1.0-1.5 3 2 1 0 Residual Frequency 987654321 1 0 -1 -2 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Cycle Time(Sec) 0.500.250.00-0.25-0.50 99 90 50 10 1 Residual Percent 2726252423 0.4 0.2 0.0 -0.2 -0.4 Fitted Value Residual 0.60.40.20.0-0.2-0.4 4 3 2 1 0 Residual Frequency 987654321 0.4 0.2 0.0 -0.2 -0.4 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Tensile Strength(MPa)
6.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 162 Graph 5: Residual Plots for cycle time of Size L=90mm* B=40mm* H=10mm Graph 6: Residual Plots for tensile strength of Size L=90mm* B=40mm* H=10mm 3.4 Mathematical Equations of Size L=70mm* B=30mm* H=15mm -The regression equation for cycle time Cycle Time = - 5.52 + 0.0556 MT + 0.152 IP + 0.0609 HP+ 0.411 Cool Time S = 0.262398 R-Sq = 92.25% R-Sq(adj) = 84.51% -The regression equation is Tensile Strength = - 94.3 + 0.533 MT+ 0.123 IP+ 0.0280 HP+ 0.011 Cool Time S = 0.492526 R-Sq = 94.38% R-Sq(adj) = 88.76% 1.00.50.0-0.5-1.0 99 90 50 10 1 Residual Percent 35.032.530.027.525.0 0.5 0.0 -0.5 -1.0 Fitted Value Residual 0.60.40.20.0-0.2-0.4-0.6-0.8 4 3 2 1 0 Residual Frequency 987654321 0.5 0.0 -0.5 -1.0 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Cycle Time(Sec) 0.500.250.00-0.25-0.50 99 90 50 10 1 Residual Percent 262422 0.6 0.4 0.2 0.0 -0.2 Fitted Value Residual 0.40.20.0-0.2 3 2 1 0 Residual Frequency 987654321 0.6 0.4 0.2 0.0 -0.2 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Tensile Strength(MPa)
7.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 163 Graph 7: Residual Plots for cycle time of Size L=70mm* B=30mm* H=15mm Graph 8: Residual Plots for tensile strength of Size L=70mm* B=30mm* H=15mm 3.5 Mathematical Equations of Size L=65mm* B=20mm* H=20mm -The regression equation for cycle time Cycle Time = - 67.2 + 0.333 MT + 0.0979 IP - 0.145 HP+ 1.31 Cool Time S = 0.432661 R-Sq = 95.19% R-Sq(adj) = 90.37% -The regression equation for tensile strength Tensile Strength = - 93.7 + 0.567 MT + 0.0797 IP+ 0.0007 HP- 0.0499 Cool Time S = 0.178819 R-Sq = 98.46% R-Sq(adj) = 96.93% 0.500.250.00-0.25-0.50 99 90 50 10 1 Residual Percent 25.024.524.023.523.0 0.4 0.2 0.0 -0.2 Fitted Value Residual 0.40.30.20.10.0-0.1-0.2 3 2 1 0 Residual Frequency 987654321 0.4 0.2 0.0 -0.2 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Cycle Time(Sec) 1.00.50.0-0.5-1.0 99 90 50 10 1 Residual Percent 2625242322 0.5 0.0 -0.5 Fitted Value Residual 0.750.500.250.00-0.25 4.8 3.6 2.4 1.2 0.0 Residual Frequency 987654321 0.5 0.0 -0.5 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Tensile Strength(MPa)
8.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 164 Graph 9: Residual Plots for cycle time of Size L=65mm* B=20mm* H=20mm Graph 10: Residual Plots for tensile strength of Size L=65mm* B=20mm* H=20mm 3.6 Mathematical Equations of Size L=60mm* B=25mm* H=15mm -The regression equation is Cycle Time = - 23.8 + 0.189 MT + 0.0010 IP - 0.107 HP+ 0.667 Cool Time S = 0.102259 R-Sq = 99.70% R-Sq(adj) = 99.40% -The regression equation is Tensile Strength = - 15.0 + 0.185 MT + 0.0565 IP+ 0.0048 HP + 0.0011 Cool Time S = 0.0882733 R-Sq = 98.91% R-Sq(adj) = 97.83% 0.80.40.0-0.4-0.8 99 90 50 10 1 Residual Percent 2322212019 0.5 0.0 -0.5 Fitted Value Residual 0.750.500.250.00-0.25 6.0 4.5 3.0 1.5 0.0 Residual Frequency 987654321 0.5 0.0 -0.5 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Cycle Time(Sec) 0.300.150.00-0.15-0.30 99 90 50 10 1 Residual Percent 25242322 0.2 0.1 0.0 -0.1 -0.2 Fitted Value Residual 0.20.10.0-0.1-0.2 4.8 3.6 2.4 1.2 0.0 Residual Frequency 987654321 0.2 0.1 0.0 -0.1 -0.2 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Tensile Strength(MPa)
9.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 165 Graph 4.11: Residual Plots for cycle time of Size L=60mm* B=25mm* H=15mm Graph 12: Residual Plots for tensile strength of Size L=60mm* B=25mm* H=15mm 4. RESULT AND DISCUSSIONS To optimize processing parameters with result in the plastic injection process of polypropylene RSM’s D-Optimal method is used for optimum result. By graph no 13 following observations are made. Melt Temperature (MT):- By increasing melt temperature responses like cycle time and tensile strength increases. Therefore optimal setting is in the middle of the range (222.1818) because goal is to minimize cycle time and maximize tensile strength. Vertical faint line in the second column of graph represents optimal setting of melt temperature. Injection Pressure (IP):- Increasing IP also increases both the responses like cycle time and tensile strength also, but effect on cycle time is minimum as compare to tensile strength. Therefore composite desirability decreases by increasing pulse on time. Hence optimal setting is in the lower of the range (81.9293) because goal is to maximize tensile strength and minimize cycle time. Vertical faint line in the third column of graph represents optimal setting of IP. Holding Pressure (HP):- Increasing holding pressure tensile strength and cycle time decreases, but goal is to increase tensile strength and decrease cycle time .Therefore composite desirability increases by increasing holding pressure. Hence optimal setting is in the higher of the range (56) 0.20.10.0-0.1-0.2 99 90 50 10 1 Residual Percent 2221201918 0.10 0.05 0.00 -0.05 -0.10 Fitted Value Residual 0.100.050.00-0.05-0.10-0.15 3 2 1 0 Residual Frequency 987654321 0.10 0.05 0.00 -0.05 -0.10 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Cycle Time (sec) 0.10.0-0.1 99 90 50 10 1 Residual Percent 24.524.023.523.0 0.10 0.05 0.00 -0.05 -0.10 Fitted Value Residual 0.100.050.00-0.05-0.10 2.0 1.5 1.0 0.5 0.0 Residual Frequency 987654321 0.10 0.05 0.00 -0.05 -0.10 Observation Order Residual Normal Probability Plot Versus Fits Histogram Versus Order Residual Plots for Tensile Strength(MPa)
10.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 166 because goal is to minimize cycle time and maximize tensile strength. Vertical faint line in the fourth column of graph represents optimal setting of holding pressure. Cooling Time (Cool Time):- Increasing cooling time cycle time and tensile strength increases, but goal is to decreases cycle time. Therefore composite desirability decreases slightly by decreasing. Hence optimal setting is in the lower of the range (20) because goal is to maximize tensile strength and minimize cycle time. Vertical faint line in the fifth column of graph represents optimal setting of cool time. By the similar way observations are made for graph no. 14 to graph no.18 of different size. Graph 13: Optimization Plot for cycle time and tensile strength of size L=125mm*B=55mm* H=15mm Graph 14: Optimization Plot for cycle time and tensile strength of size L=100mm* B=50mm* H=10mm Graph 15: Optimization Plot for cycle time and tensile strength Size of component L=90mm* B=40mm* H=10mm Cur High Low0.98923 D Optimal d = 0.97858 Minimum Cycle Ti y = 35.1285 d = 1.0000 Maximum Tensile y = 23.0043 0.98923 Desirability Composite 20.0 23.0 52.0 56.0 81.0 85.0 222.0 228.0 IP(MPa) HP(MPa) Cool TimMT (°c) [222.1818] [81.9293] [56.0] [20.0] Cur High Low0.90220 D Optimal d = 0.81435 Minimum Cycle Ti y = 33.8565 d = 0.99953 Maximum Tensile y = 26.9982 0.90220 Desirability Composite 19.0 22.0 48.0 53.0 71.0 79.0 217.0 221.0 IP(MPa) HP(MPa) Cool TimMT (°c) [220.8788] [79.0] [48.0] [19.0] Cur High Low0.90102 D Optimal d = 0.81387 Minimum Cycle Ti y = 28.6752 d = 0.99751 Maximum Tensile y = 26.7883 0.90102 Desirability Composite 17.0 19.0 38.0 43.0 68.0 74.0 209.0 215.0 IP(MPa) HP(MPa) Cool TimMT (°c) [214.6364] [74.0] [38.0] [17.0]
11.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 167 Graph 16: Optimization Plot for cycle time and tensile strength Size of component: L=70mm* B=30mm* H=15mm Graph 17: Optimization Plot for cycle time and tensile strength Size of component: L=65mm* B=20mm* H=20mm Graph 18: Optimization Plot for cycle time and tensile strength Size of component: L=60mm* B=25mm* H=15mm To overcome the problem of conflicting responses of single response optimization, multi response optimization was carried out using desirability function in conjunction with response surface methodology. Various multi-characteristic models have been developed. Goals and limits were established for each response in order to accurately determine their impact on overall desirability. A maximum or minimum level is provided for all response characteristics which are to be optimized. The ranges and goals of input parameters viz. melt temperature, injection pressure, holding pressure and cooling time and the response characteristics cycle time and tensile strength are given. The goal of optimization is to find a good set of conditions that will meet all the goals. It is not necessary that the desirability value is 1.0 as the value is completely dependent on how closely Cur High Low0.93538 D Optimal d = 0.99814 Minimum Cycle Ti y = 23.0037 d = 0.87657 Maximum Tensile y = 25.2309 0.93538 Desirability Composite 14.0 17.0 32.0 38.0 61.0 67.0 202.0 208.0 IP(MPa) HP(MPa) Cool TimMT (°c) [208.0] [61.0606] [32.0] [14.0] Cur High Low0.86638 D Optimal d = 0.78870 Minimum Cycle Ti y = 19.8452 d = 0.95172 Maximum Tensile y = 24.8696 0.86638 Desirability Composite 14.0 16.0 26.0 31.0 55.0 62.0 198.0 202.0 IP(MPa) HP(MPa) Cool TimMT (°c) [202.0] [59.8081] [31.0] [14.0] Cur High Low0.90227 D Optimal d = 0.84829 Minimum Cycle Ti y = 18.6068 d = 0.95967 Maximum Tensile y = 24.6274 0.90227 Desirability Composite 12.0 16.0 24.0 30.0 40.0 48.0 192.0 199.0 IP(MPa) HP(MPa) Cool TimMT (°c) [199.0] [48.0] [30.0] [12.0]
12.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 168 the lower and upper limits are set relative to the actual optimum. A set of 9 optimal solutions is derived along with one global solution for the specified design space constraints. 5. CONCLUSION In present work, experimental investigation has been reported on plastic injection molding process of Polypropylene material part. Response surface methodology (RSM) has been utilized to investigate the influence of four important parameters of PIM – melt temperature, injection pressure, holding pressure and cooling time on two responses namely cycle time and tensile strength. Taguchi design was employed to conduct the experiments and to develop a correlation between the PIM parameters and each response. The analysis of experimental work is performed using MINITAB 16 statistical software. The important conclusions found that most significant factors for cycle time are melt temperature and cooling time least significant factors are injection pressure and holding pressure. For tensile strength most significant factors are melt temperature and injection pressure and least significant factors are holding pressure and cooling time. The influence of all factors has been identified and believed can be a key factor in helping mould designers in determining optimum process conditions injection moulding parameters to enhance productivity and reduce time for new product development. Table 3: Optimal Setting with responses for large type component using RSM’s D-Optimal Method SR. NO. PART NAME/ OPTIMIZE SETING PARAMETERS AND RESPONSE MT (°c) IP (MPa) HP (MPa) COOL TIME(Sec) CYCLE TIME(Sec) TENSILE STRENGTH (MPa) 1 Part Size L=125mm*B=55mm*H=15mm Thickness MIN=1mm; MAX=5mm 222.1 81.9 56 20 35.1285 23.0043 2 Part Size L=100mm* B=50mm* H=10mm Thickness MIN=1mm; MAX=2mm 220.8 79 48 19 33.8565 26.9982 3 Part Size L=90mm* B=40mm* H=10mm Thickness MIN=0.5mm;MAX=2mm 214.6 74 38 17 28.6752 26.7883 Table 4: Optimal Setting with responses for small type component using RSM’s D-Optimal Method SR. NO. PART NAME/ OPTIMIZE SETING PARAMETERS AND RESPONSE MT (°c) IP (MPa) HP (MPa) COOL TIME(Sec) CYCLE TIME(Sec) TENSILE STRENGTH (MPa) 4 Part Size L=70mm* B=30mm* H=15mm Thickness MIN=2mm;MAX=4mm 208 61.06 32 14 23.0037 25.2309 5 Part Size L=65mm* B=20mm* H=20mm Thickness MIN=1mm;MAX=3mm 202 59.808 31 14 19.8452 24.8696 6 Part Size L=60mm* B=25mm* H=15mm Thickness MIN=1mm;MAX=3mm 199 48 30 12 18.6068 24.6274
13.
International Journal of
Mechanical Engineering and Technology (IJMET), ISSN 0976 – 6340(Print), ISSN 0976 – 6359(Online), Volume 5, Issue 5, May (2014), pp. 157-169 © IAEME 169 REFERENCES [1] “Optimization of Weld Line Quality in Injection Molding Using an Experimental Design Approach” Tao C. Chang and Ernest Faison, Journal of Injection Moulding Technology, JUNE 1999, Vol. 3, No. 2 PP 61-66. [2] “Setting the Processing Parameters in Injection Molding Through Multiple-Criteria Optimization: A Case Study” Velia Garc´ıa Loera, José M. Castro, Jesus Mireles Diaz, O´ scar L. Chaco´n Mondragon, , IEEE 2008 PP 710-715. [3] “Processing Parameter Optimization For Injection Moulding Products In Agricultural Equipment Based On Orthogonal Experiment And Analysis” Yanwei1 Huyong IEEE 2011 PP 560-564. [4] “Warpage Factors Effectiveness of a Thin Shallow Injection-Molded Part using Taguchi Method” N.A.Shuaib, M.F. Ghazali, Z. Shay full, M.Z.M. Zain, S.M. Nasir. International Journal of Engineering & Technology IJET-IJENS Vol: 11 No: 01 PP 182-187. [5] “Optimization of Plastics Injection Molding Processing Parameters Based on the Minimization of Sink Marks” Zhao Longzhi1, Chen Binghui1, Li Jianyun, Zhang Shangbing IEEE 2010 PP 1-3 [6] “Optimization of Injection Molding Process Parameters in the Moulding of MISO” Wen-Chinchen, Xian G, Pu HT, Yi XS, Pan Y J Cell Plast 45:197. [7] “Application of Taguchi Method in the Optimization of Injection Moulding Parameters for Manufacturing Products from Plastic Blends” Kamaruddin , Zahid A. Khan and S. H. Foong. IACSIT International Journal of Engineering and Technology, Vol.2, No.6, December 2010 PP 574-580. [8] “Injection molding parameter optimization using the taguchi method for highest green strength for bimodal powder mixture with SS316L in peg and pmma” K. R. Jamaludina, N. Muhamad, M. N. Ab. Rahman, S. Y. M. Amin, Murtadhahadi, M. H. Ismail, IEEE 2006, PP 1-8. [9] “ANN and GA-based process parameter optimization for MIMO plastic injection molding” Wen-Chin Chen, Gong-Loung Fu, Pei-Hao Tai, Wei-Jaw deng, Yang-chih IEEE 2007, PP 1909-1917. [10] “Optimization of Warpage Defect in Injection Moulding Process using ABS Materia” A. H. Ahmad, Z. Leman, M. A. Azmir, K. F. Muhamad, W.S.W. Harun, A. Juliawati, A.B.S. Alias IEEE 2009 PP 470-474. [11] “Reducing Shrinkage in Plastic Injection Moulding using Taguchi Method in Tata Magic Head Light” Mohd. Muktar Alam, Deepak Kumar, International Journal of Science and Research (IJSR), India Online ISSN: 2319-7064. [12] “Optimization of Critical Processing Parameters for Plastic Injection Molding of Polypropylene for Enhanced Productivity and Reduced Time for New Product Development”, A.B. Humbe and Dr. M.S. Kadam, International Journal of Mechanical Engineering & Technology (IJMET), Volume 5, Issue 1, 2014, pp. 108 - 115, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359. [13] “Reduction of Short Shots by Optimizing Injection Molding Process Parameters”, M.G. Rathi and Manoj D. Salunke,International Journal of Mechanical Engineering & Technology (IJMET), Volume 3, Issue 3, 2012, pp. 285 - 293, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359. [14] “Optimization of Critical Processing Parameters for Plastic Injection Molding for Enhanced Productivity and Reduced Time for Development”, Anandrao B. Humbe and Dr. M.S. Kadam, International Journal of Mechanical Engineering & Technology (IJMET), Volume 4, Issue 6, 2013, pp. 223 - 226, ISSN Print: 0976 – 6340, ISSN Online: 0976 – 6359.
Télécharger maintenant