SlideShare a Scribd company logo
1 of 9
Download to read offline
International Journal of Engineering Research and Development
e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com
Volume 9, Issue 3 (December 2013), PP. 01-09

Measurements of Laminar Burning Velocities and
Markstein Length for LPG–Hydrogen– Air Mixtures
Miqdam Tariq Chaichan
Machines and Equipment Eng. Dept., UOT, Baghdad, Iraq
Abstract:- An experimental approach to measure the laminar burning velocities and Markstein lengths of
LPG/hydrogen/air mixtures was used. Using thermocouples as sensing probs. Measurements of laminar burning
velocity as a function of flame stretch was directly deduced using data acquisition system without using any fuel
properties. The unstretched laminar burning velocities were obtained through a linear extrapolation to zero
stretch. The Markstein lengths were deduced from the linear relationship between the flame speed and flame
stretch rate. The estimated values of laminar burning velocities were compared to experimental results of the
literature. It was found that the measured laminar burning velocity of LPG increased with increasing hydrogen
volume fraction. Markstein lengths demonstrated the increment in flame instability with increasing hydrogen
volume fraction. Increasing hydrogen volume fractions widen the equivalence ratio range for both lean and rich
sides.
Keywords:- LPG, Hydrogen, laminar burning velocity, Markstein lengths, stretch flame speed, unstretched
flame speed.

I.

INTRODUCTION

Improving engine fuel economy and reducing exhaust emissions have become major research topics in
combustion and engine development with increasing concern about energy shortage and environmental
protection. The main negative effects on the environment by fossil fuel combustion are emissions of NOx, CO,
CO2, and unburned hydrocarbons. The main negative effect of burning fossil fuel on the geopolitical climate is
the lack in supply of these fuels and the effect pollution has on politics [1].
Alternative fuels, such as hydrogen, methane, liquefied petroleum gas and dimethyl- ether, are usually
regarded to be clean fuels compared to diesel and gasoline, thus the introduction of these alternative fuels is
beneficial to the slowing-down of fuel consumption and the reduction of engine exhaust emissions [2].
LPG is one of the best candidates for an alternative fuel because it can be liquefied in a low pressure range
of 0.7–0.8 MPa at atmospheric temperature, and it has a sufficient supply infrastructure. LPG fuel also has a
higher heating value compared with other fuels [3]. LPG is widely used in IC engines yet its fundamental
combustion properties such as laminar burning velocity is still not very well established, which can act as a
basic input for engine modeling. One of the most important intrinsic properties of any combustible mixture is its
laminar burning velocity. It depends on the mixture composition, temperature and pressure. It is measurable
characteristic of the mixture [4]-[5].
Hydrogen holds significant promise as a supplemental fuel to improve the performance and emissions of
spark ignited and compression ignited engines. Hydrogen has the ability to burn at extremely lean equivalence
rations. Hydrogen will burn at mixtures seven times leaner than gasoline and five times leaner than methane.
The flame velocity of hydrogen is much faster than other fuels allowing oxidation with less heat transfer to the
surroundings. This improves thermal efficiencies. Efficiencies are also improved because hydrogen has a very
small gap quenching distance allowing fuel to burn more completely [6]. In order to properly understand the
effect of adding hydrogen to enrich hydrocarbon combustion it is important to understand the basics, Hydrogen
increases the laminar burning velocity when it enriched methane or NG [7].
The laminar flame speed is defined as the speed relative to the unburned gas, with which a planar, onedimensional flame front travels along the normal to its surface [8]. Accurate measurement of unstretched
laminar burning velocity, especially for the heavier hydrocarbon fuels typically used in internal combustion
engine applications, is necessary for assessing combustion theories and the validation of numerical models [9].
Laminar flame speed embodies the fundamental information on diffusivity, reactivity, and exothermicity of
a given mixture and is therefore commonly used to characterize flames. As such, the measurement of laminar
flame speed has received considerable attention in the published literature, particularly with regard to the effects
of flame stretch on the fundamental (unstretched) laminar flame speed and the attainment of highly accurate,
unperturbed measurements [10].
There are many techniques for measuring experimentally the laminar burning velocity of combustible
mixtures, such as counter flow double flames [11], flat flame burner [12]-[13] and spherically expanding flames

1
Measurements of Laminar Burning Velocities and Markstein Length…
[14]-[15]. For a spherically expanding flame in a closed combustion bomb, the stretch imposed on the premixed
flame is well defined. The asymptotic theories and experimental measurements have suggested a linear
relationship between the flame speeds and flame stretches. Therefore, the fundamental burning velocity of
alternative fuel is measured by closed bomb technique. References [14]-[16]-[17]-[18] performed the laminar
burning velocity of Spherically expanding flames measurement for syngas, natural gas–hydrogen–air mixtures,
methanol and hydrogen enriched natural gas.
The stretch rate is a combination of two effects: the flame curvature and the strain rate. Stretch effects
induce modifications on the flame front structure and propagation. The sensitivity of the flame speed to the
stretch rate is characterized by the Markstein length. Investigations on the laminar burning velocity [19]-[20]
have shown the importance of local stretch for the local burning speed. Based on an asymptotic analysis, several
authors [21]-[22] have proposed a linear relation between the stretch rate and the flame speed. This relation is
valid when the propagation phenomena are no longer affected by the initial energy deposition needed to initiate
exothermic reactions. Moreover, the flame thickness has to remain negligible compared to the flame radius. This
linear relation has been extensively applied to outwardly propagating flames [23].
The present paper analyses the laminar burning velocity of enriched hydrogen to LPG-air mixture using the
closed bomb method. Various results for laminar burning velocity of LPG-hydrogen-air mixtures were obtained
at atmospheric pressure and temperature using thermocouples method and results were compared with the
standard available data for propane.

II.

EXPERIMENTAL SETUP

In this study the full descriptions of the experimental setup (Fig.1) are located at [24]. Spark-ignited
premixed LPG-hydrogen-air flames have been investigated at atmospheric pressure and temperature, over a
wide range of equivalence ratios, Ø=0.68-1.53. Experiments were conducted in a constant volume chamber. The
chamber is equipped with six thermocouples which were used as a sensor probe (Fig. 2). The equivalence ratio of
the mixture is measured and regulated by mixing unit. The mixing unit is made of (iron-steel); it has a
cylindrical shape without any skirt to improve the efficiency of mixing operation. Mixer dimensions are
(435mm) length, (270mm) diameter and (5 mm) thickness as shown in Fig. 3. It undergoes a pressure of more
than (60 bar) and also withstands high temperatures. The mixing unit has five holes of (12.7mm) in diameter.
Two holes are used to fix the pressure gauge and vacuum gauge, the third is for admitting the dry air to the
mixing unit from the compressor through the filter dryer, the fourth hole is for admitting the fuel from the fuel
cylinder through pressure gauge regulator and the last hole admits the homogeneous mixture to the combustion
chamber.

Fig. 1: Block diagram of experimental apparatus
A cover is added on one side of the mixer in order to connect the fan to a power source of (12volt) DC.
Through a glass sealed electrical connections, which are sealed completely to prevent any leakage of gas to
improve the mixing operation and obtain a homogenous mixture. All welding in the cylinder is done using
Argon welding, and tested by increasing the internal pressure of the cylinder to avoid any leakage.

2
Measurements of Laminar Burning Velocities and Markstein Length…

Fig. 2: The internal structure of combustion chamber
The mixture is then ignited by centrally located electrodes energized by standard capacitive ignition
system. Minimum spark energy is supplied to ensure free propagation from initial phase of combustion.
The partial pressures were determined by initial pressure, hydrogen fraction (HVF) (the volume
fraction of the hydrogen in the fuel of hydrogen-enriched natural gas), equivalence ratio Ø (the ratio of the
actual fuel/air ratio to the stoichiometric ratio). In this study, hydrogen, with purity of 99.95% was used. The
LPG constitution is listed in Table 1.

Fig. 3: Mixture preparing unit diagram
Flame temperatures were recorded in the experiment by means of thermocouples, where the initial
pressure and temperature kept the same value for mixtures with different hydrogen fractions. The initial
conditions were strictly controlled in the experiments to realize the same initial pressure and temperature. For
avoiding the influence of wall temperature on mixture temperature, an enough interval between two experiments
is set, providing enough time for wall to cool down and keeping the same initial temperature.

Items
Volumetric fractions

Table 1: Compositions of LPG
CH4
C2H6
C3H8
1.2
0.08
47.8

C4H10
32.45

Iso-C4H10
18.47

Laminar burning velocity and Markstein numbers
To calculate the affecting variables [25] calculation method was used, applying the reading from the
experimental rig. For a spherically expending flame, the stretched flame velocity, S n, reflecting the flame
propagation speed, is derived from the flame radius versus time data as
dru
Sn =
(1)
dt

3
Measurements of Laminar Burning Velocities and Markstein Length…
Where ru is the radius of the flame and t is the time. S n can be directly obtained from the flame
measurements.
Flame stretch rate, α, representing the expanding rate of flame front area, in a quiescent mixture is
defined as
α=

d(lnA) 1 dA
=
dt
A dt

(2)

Where A is the area of flame. For a spherically outwardly expanding flame front, the flame stretch rate
can be simplified as
1 dA 2 dru
2
α=
=
=
S
(3)
A dt ru dt
ru n
In respect to the early stage of flame expansion, there exists a linear relationship between the flame speeds
and the flame stretch rates; that is,
Sl −Sn = Lbα,
(4)
Where Sl is the unstretched flame speed, and Lb is the Markstein number (Markstein length) of burned
gases. From eqs. (1) and (3), the stretched flame speed, S n, and flame stretch rate, α, can be calculated.
The unstretched flame speed, Sl, can be obtained as the intercept value at α = 0, in the plot of Sn against
α, and the burned gas Markstein number Lb is the slope of Sn–α curve. Markstein number can reflect the stability
of flame. Positive values of Lb indicate that the flame speed decreases with the increase of flame stretch rate. In
this case, if any kinds of protuberances appear at the flame front (stretch increasing), the flame speed in the
flame protruding position will be suppressed, and this makes the flame stability. In contrast to this, a negative
value of Lb means that the flame speed increases with the increase of flame stretch rate. In this case, if any kinds
of protuberances appear at the flame front, the flame speed in the flame protruding position will be increased,
and this increases the instability of the flame. When the observation is limited to the initial part of the flame
expansion, where the pressure does not vary significantly yet, then a simple relationship links the spatial flame
velocity Sl to unstretched laminar burning velocity ul, given as
ul = ρbSl/ρu
(5)
where ρb and ρu are the densities for burned gases and unburned gases. The equation
ρ
un = S Sn b
(6)
ρu
is used to determine the stretched laminar burning velocity u n, and the stretched mass burning velocity unl,
proposed by [26], is calculated from
un1 =

ρb
u − Sn
ρb − ρu n

(7)

in which S is a rectified function and it depends upon the flame radius and the density ratio, and accounts for the
effect of the flame thickness on the mean density of the burned gases. The expression for S in the present study
used the formula given by [26],
δ1 ρu
S = 1 + 1.2
ru ρb

2.2

δ1 ρu
− 0.15
ru ρb

2.2 2

(8)

Here δl is laminar flame thickness, given by δl = ν/ul, in which ν is the kinetic viscosity of the unburned mixture.

III.

RESULTS and DISCUSSION

The flames of premixed LPG–hydrogen–air mixtures speeds were measured and the flame radiuses
were obtained. Figures 4, 5& 6 show the measured flame radius versus time after ignition for LPG with
hydrogen volume fractions (HVF) of 25, 50 and 75% vol at various equivalence ratios (representing lean
(Ø=0.6), stoichiometric (Ø=1.0) and rich (Ø=1.3) fuels respectively).

4
Measurements of Laminar Burning Velocities and Markstein Length…

After ignition, the flame expands spherically, whose radius increases at different speeds depending on
hydrogen fraction (i.e. fuel constitution), equivalence ratio (mixture lean or rich). With the increase of hydrogen
fraction from 0% vol to 100% vol, the flame expands much more rapidly at all tested conditions (as shown by
the pre-mentioned figures). Equivalence ratio has greater effect on flame propagation speed of the fuel with low
hydrogen fraction than that of the fuel with high hydrogen fraction.
The gradient of ru–t curves reflected different behavior of flame radius with time at different
equivalence ratios. In the case of lean mixture combustion (Ø= 0.6) at fig. 4, the flame radius increases with
time but the increasing rate (gradient of curve) decreases with flame expansion for LPG and for mixtures with
low hydrogen fractions, while there exists a linear correlation between flame radius and time for mixtures with
high hydrogen fractions.
In the case of rich mixture combustion (Ø= 1.3), as fig. 6 shows, the flame radius shows a slowly
increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame
propagation for LPG and for mixtures with low hydrogen fractions, and there also exists a linear correlation
between flame radius and time for mixtures with high hydrogen fractions. In contrast to these, combustion at
stoichiometric mixture demonstrates a linear relationship between flame radius and time for LPG–air flame,
hydrogen–air flame, and natural gas– hydrogen–air flame, as fig. 5 represents.
As shown in Fig. 7. It was also found that the hydrogen-enriched LPG with high hydrogen fraction
(HVF=75%) can sustain relatively wider equivalence ratios than the fuel with low hydrogen fraction
(HVF=25%) does. It was observed that the fuel with high hydrogen fraction has stronger capability to maintain
its flame propagation speed under ultra lean conditions than the fuel with low hydrogen fraction.

5
Measurements of Laminar Burning Velocities and Markstein Length…
The stretched flame speed is the derivative of flame radius with time, which reflects the flame moving
speed relative to the combustion wall. Fig. 8 illustrates the stretched flame speeds of stoichiometric mixtures
versus flame radius. It is clearly shown that the more the hydrogen gas is added, the faster the flame propagates.
For the fuel with (HVF=25%), the stretched flame speed increases with the increase of flame radius in most
cases. However, in the case of the fuel with 75% vol. hydrogen the speed decreases slightly with the increase of
flame radius.
Fig. 9 gives the stretched flame speed versus the flame stretch rate at stoichiometric equivalence ratios
and variable hydrogen fractions. A linear correlation between the stretched flame speed and the flame stretch
rate is found. The unstretched flame speed, Sl, is obtained by extrapolating the line to α = 0, while the gradient
of the Sn–α curve gives the value of the Markstein number.

In the case of a LPG–air flame, the stretched flame speed decreases with the increase of flame stretch
rate. In the case of a mixture with HVF=25%, negative gradients of Sn–α curves are derived, and these
correspond to positive values of Markstein number, indicating the stability of flames of mixture combustion. In
the case of high hydrogen fraction (a mixture with 75% hydrogen), negative values of Markstein number are
presented, and this indicates a stable flame for rich mixture combustion and an unstable flame for lean mixture
combustion in the case of high hydrogen fraction.
The figure shows the Sn–α curve for mixtures with different hydrogen fractions at the stoichiometric
equivalence ratio. The results show that the Markstein number decreases with the increase of hydrogen fraction,
and this indicates that the flame stability will decrease with the increase of hydrogen fraction.
The Markstein length also depends on the hydrogen fraction of the fuel as fig. 10 indicates. For the fuel
with low hydrogen fraction (25% vol. in this study), the Markstein length tends to increase from negative value
to positive one, indicating that the flame tends to become more stable. On the other hand, for the fuel with high
hydrogen fraction (75% vol. in this study), the Markstein length tends to be slightly decreased with the increase
of equivalence ratio.
Measurements showed that the addition of hydrogen can decrease the Markstein number of the laminar
premixed hydrogen-LPG flames as the flame tends to be unstable due to the effect of fast diffusing component
(hydrogen).
The relationship between laminar burning velocities and stretch rate is plotted in Fig. 11. As shown in
the figure, the difference between the stretched laminar burning velocity un and the stretched mass burning
velocity unl can be clearly observed. The stretched laminar burning velocity u n, which denotes the rate of
mixture entrainment, always increases as the stretch rate increases. In contrast, the mass burning velocity u nl,
which is the burning velocity related to the production of unburned gas, is usually decreased as the stretch rate
increases. Speed difference (un− unl) increases with the increase of stretch rate, and this would be due to the
influence of flame thickness on burning velocities. A large value of (un−unl) is seen at small radii (corresponding
to high stretch rate), where the flame thickness is of the same order as the flame radius. As the definition
indicated, a high value of stretch rate corresponds to a small flame radius; thus the influence by flame thickness
becomes great. When stretch rate reaches zero, the flame radius becomes infinity; thus the effect of flame
thickness can be neglected, and un and unl will get the same value, ul, the unstretched laminar burning velocity.

6
Measurements of Laminar Burning Velocities and Markstein Length…

A comparison of unstretched laminar burning velocities versus equivalence ratios for LPG–air flames
(Fig. 12), while the comparison of unstretched laminar burning velocities of hydrogen–air flames is illustrated in
Fig. 12. The results show that the present work gives data consistent with those of others both for various LPG
and pure hydrogen flames. For LPG–air flames, (as Fig 12 shows) except for the data from [4], which give
values higher than those of others and the maximum values occurred in the rich side, the present work gives
values consistent with other experimental results.
For hydrogen–air flames (as Fig.13 represents), except for the data from [27], which give lower values
compared to those of others, the present work gives values consistent with other experimental results. This
proves the data correctness obtained from this study, as well as it provides data for wider range of equivalence
ratio, compared with other works. Unfortunately there were no available data for hydrogen enriched LPG to
compare with, that means the need for more work in this field to explore the variable behaviors of hydrogen
enriched LPG-air mixtures.

IV.

CONCLUSIONS

Laminar flame characteristics of LPG–hydrogen–air flames were studied in a constant volume bomb at
normal temperature and pressure, using thermocouples method. Laminar burning velocities and Markstein
lengths were obtained at various ratios of hydrogen to LPG (volume fraction from 0 to 100%) and equivalence
ratios (Ø from 0.6 to 1.6). The influence of stretch rate on flame was also analyzed. The results are summarized
as follows:
(1) For lean mixture combustion, flame radius increases with time, but the rate of increase decreases with
flame expansion for LPG and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there
exists a linear correlation between flame radius and time.
For rich mixture combustion, there is also exists a linear correlation between flame radius and time for
mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear
relationship between flame radius and time for LPG–air, hydrogen–air, and LPG–hydrogen–air flames.

7
Measurements of Laminar Burning Velocities and Markstein Length…
(2) Hydrogen–air flame gives a very high value of the stretched flame speed compared to those of natural
gas–air flame and natural gas–hydrogen– air flames, even for high hydrogen fraction.
(3) Enrichment of 25 & 50% hydrogen to LPG-air has very little effect on burning velocities for lean and
rich mixtures and remarkable effect on stoichiometric mixtures.
(4) Enrichment the mixture with hydrogen expands the equivalence ratio range and makes it wider.
(5) Unstretched laminar burning velocities are increased with the increase of hydrogen fraction. Markstein
lengths are decreased with the increase of hydrogen fraction, indicating that the flame instabilities are increased
with the increase of hydrogen fraction.
(6) For a fixed hydrogen fraction, the Markstein length and flame stability increase with the increase of
equivalence ratios.
(7) Very good agreement is obtained between values of laminar burning speed and Markstein length values
determined with the present methodology and values found in the literature.

REFERANCES
[1].
[2].
[3].
[4].

[5].
[6].
[7].

[8].
[9].
[10].
[11].
[12].
[13].

[14].

[15].

[16].
[17].

[18].

F. Parsinejad, C. Arcari and H. Metghalchi, “Flame structure and burning speed of JP-10 air mixtures”,
Combustion Science amd Technology, vol. 178, pp. 975-1000, 2006.
A. S. Huzayin, H. A. Moneib, M. S. Shehatta and A. M. A. Attia, “Laminar burning velocity and
explosion index of LPG–air and propane–air mixtures”, Fuel, vol. 87, pp. 39-57, 2008.
K. Leea and J. Ryu, “An experimental study of the flame propagation and combustion characteristics of
LPG fuel”, Fuel, vol. 84, pp. 1116–1127, 2005.
A. Tripathi, H. Chandra and M. Agrawal, “Effect of mixture constituents on the laminar burning
velocity of LPG-CO2-air mixtures”, Journal of Engineering and Applied Sciences, vol. 5, No. 3, pp. 1621, 2010.
Z. Cheng, R. W. Pitz and J. A. Wehrmeyer, “Lean and ultra-lean stretched propane–air counter-flow
flames”, Combustion and Flame, vol. 145, pp. 647–662, 2006. 2006.
O. A. Powell, P. Papas and C. Dreyer, “Laminar burning velocities for hydrogen, methane, acetylene
and propane-nitrous oxide flames”, Combust. Sci. and Tech., vol. 181, pp. 917–936, 2009.
F. Halter, C. Chauveau, N. Djebaı¨li-Chaumeix and H. G ِ kalp, “Characterization of the effects of
pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air
mixtures”, Proc. Combust. Inst., vol. 30, pp. 201–208, 2005.
S. Balusamy and C. B. Lecordier, “Measurement of laminar burning velocity – A new PIV approach”,
Proceedings of the European Combustion Meeting 2009.
S. Liao, D. Jiang, Z. Huang, “Laminar burning velocities for mixtures of methanol and air at elevated
temperatures”, Energy Conversion and Management, vol. 48, No.3, pp. 857-863, 2007.
T. Tahtouh, F. Halter, C. Mounaïm-Rousselle, “Measurement of laminar burning speeds and Markstein
lengths using a novel methodology”, Combustion and Flame, vol. 156, pp. 1735–1743, 2009.
Y. Huang, C. J. Sung and J. A. Eng, “Laminar flame speeds of primary reference fuels and reformer
gas mixtures”, Combustion and Flame, vol. 139, No. 3, pp. 139-251, 2004.
Igor, V. Dyakov, J. D. Ruyck and A. A. Konnov, “Probe sampling measurements and modeling of
nitric oxide formation in ethane + air flames”, Fuel, vol. 86, No.1-2, pp. 98-105, 2007.
F. H. V. Coppens, J. D. Ruyck and A. A. Konnov, “The effects of composition on burning velocity and
nitric oxide formation in laminar premixed flames of CH 4 + H2 + O2 + N2”, Combustion and Flame,
vol. 149, No. 4, pp. 409-417, 2007.
C. Prathap, A. Ray and M. R. Ravi, “Investigation of nitrogen dilution effects on the laminar burning
velocity and flame stability of syngas fuel at atmospheric condition”, Combustion and Flame, vol. 155,
No. 1-2, pp. 145-160.
S. Jerzembeck, N. Peters, P. Pepiot-Desjardins and H. Pitsch, “Laminar burning velocities at high
pressure for primary reference fuels and gasoline: Experimental and numerical investigation”,
Combustion and Flame, vol. 156, No. 2, pp. 292-301, 2008.
H. Zuohua, Z. Yong and Z. Ke, “Measurements of laminar burning velocities for natural gas–
hydrogen– air mixtures”, Combustion and Flame, vol. 146, No. 1- 2, pp. 302-311, 2006.
M. Haiyan, J. Qi and H Zuohua et al., “Effect of initial pressure on laminar combustion characteristics
of hydrogen enriched natural gas”, International journal of Hydrogen Energy, vol. 33, No. 14, pp.
3876-3885, 2008.
Z. Chen, M. P. Burke and Y. Ju, “The effect of radiation on the determination of laminar flame speed
using propagating spherical flames”, 12th International Conference on Numerical Combustion,
California, USA, 2008.

8
Measurements of Laminar Burning Velocities and Markstein Length…
[19].

[20].

[21].

[22].
[23].

[24].
[25].

[26].

[27].

[28].
[29].
[30].

W. Xiaomin, G. Zhongquan, P. Min and M. Xiangwen, “Investigation of hythane, LPG and DME
laminar flame speed by ionization current method in a constant volume bomb”, Proceedings of the
European Combustion Meeting 2009.
Z. Chen, M. P. Burke and Y. Ju, “Effects of Lewis number and ignition energy on the determination of
laminar flame speed using propagating spherical flames”, Submitted to 32nd International Symposium
on Combustion, 2008.
Z. Chen, M. P. Burke, Y. Ju, “Effects of compression and stretch on the determination of laminar flame
speeds using propagating spherical flames”, Combustion Theory and Modeling, vol.13, pp. 343-364,
2009.
M. P. Burke, Y. Ju and F. L. Dryer, “The effect of flow field perturbations on laminar flame speed
determination using spherical flames”, AIAA paper No. 2008-1049, 2008.
A. P. Kelly and C. K. Law, “Nonlinear effects in the experimental determination of laminar flame
properties from stretched flames”, Fall technical meeting: Eastern states sections of the combustion
institute, Virginia, Paper B-11, 2007.
A. M. Saleh, “Effect of initial pressure upon laminar burning velocity of paraffins gaseous fuel in
closed vessel”, Ph D thesis, University of Technology, Baghdad, Iraq, 2006.
Z. Huang, Y. Zhang, K. Zenga, B. Liu, Q. Wang and D. Jiang, “Measurements of laminar burning
velocities for natural gas–hydrogen–air mixtures”, Combustion and Flame, vol. 146, pp. 302–311,
2006.
D. Bradley, R. A. Hicks, M. Lawes, C. G. W. Sheppard and R. Woolley, “The measurement of laminar
burning velocities and Markstein numbers for iso-octane-air and iso-octane, n–heptanes- air mixtures at
elevated temperatures and pressures in an explosion bomb”, Combustion and Flame, vol. 115, pp. 126–
144, 1998.
K. T. Aung, M. I. Hassan and G. M. Faeth, “Flame stretch interactions of laminar premixed
hydrogen/air flames at normal temperature and pressure”, Combustion and Flame, vol. 109, pp. 1–24,
1997.
M. M. Isam, “The effect of tube diameter on the laminar flame propagation of the gaseous
hydrocarbons-air mixtures”, PhD thesis, University of Technology, Baghdad, Iraq, 2002.
A. E. Dahoe, “Laminar burning velocities of hydrogen–air mixtures from closed vessel gas
explosions”, Journal of Loss Prevention in the Process Industries, vol. 18, pp. 152–166, 2005.
N. Lamoureux, N. Djebaili-Chaumeix and C. Paillard, “Laminar flame velocity determination for H2–
air–He–CO2 mixtures using the spherical bomb method”, Exp Therm Fluid Sci, vol. 27, No. 4, pp.
385–93, 2003.

9

More Related Content

What's hot

The understanding of gas geochemical model to reduce the exploration uncertainty
The understanding of gas geochemical model to reduce the exploration uncertaintyThe understanding of gas geochemical model to reduce the exploration uncertainty
The understanding of gas geochemical model to reduce the exploration uncertaintyRizal Abiyudo
 
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro CombustionSimulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro CombustionIJERA Editor
 
Papers review for Flame Stability
Papers review for Flame StabilityPapers review for Flame Stability
Papers review for Flame StabilityJameel Tawfiq
 
Effect of Ambient Temperature and Composition on Liquid Droplet Combustion
Effect of Ambient Temperature and Composition on Liquid Droplet CombustionEffect of Ambient Temperature and Composition on Liquid Droplet Combustion
Effect of Ambient Temperature and Composition on Liquid Droplet CombustionIJERA Editor
 
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...ijscmcjournal
 
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...ijscmcj
 
Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015Eric Browning
 
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...IRJET Journal
 
Heating Value Estimation for Natural Gas Applications
Heating Value Estimation for Natural Gas ApplicationsHeating Value Estimation for Natural Gas Applications
Heating Value Estimation for Natural Gas ApplicationsVijay Sarathy
 
Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...
Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...
Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...QUESTJOURNAL
 
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...BIBHUTI BHUSAN SAMANTARAY
 
IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...
IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...
IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...IRJET Journal
 
2007 tinga jegtp (2)
2007 tinga jegtp (2)2007 tinga jegtp (2)
2007 tinga jegtp (2)muhammad azam
 
An experimental study on kerosene based pulse detonation engine
An experimental study on kerosene based pulse detonation engineAn experimental study on kerosene based pulse detonation engine
An experimental study on kerosene based pulse detonation engineIAEME Publication
 
Key Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude OilsKey Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude OilsVijay Sarathy
 

What's hot (20)

Ap34248254
Ap34248254Ap34248254
Ap34248254
 
V4408114122
V4408114122V4408114122
V4408114122
 
The understanding of gas geochemical model to reduce the exploration uncertainty
The understanding of gas geochemical model to reduce the exploration uncertaintyThe understanding of gas geochemical model to reduce the exploration uncertainty
The understanding of gas geochemical model to reduce the exploration uncertainty
 
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro CombustionSimulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
Simulation Studies Of Premixed N-Pentane/Air Liquid Micro Combustion
 
Papers review for Flame Stability
Papers review for Flame StabilityPapers review for Flame Stability
Papers review for Flame Stability
 
Effect of Ambient Temperature and Composition on Liquid Droplet Combustion
Effect of Ambient Temperature and Composition on Liquid Droplet CombustionEffect of Ambient Temperature and Composition on Liquid Droplet Combustion
Effect of Ambient Temperature and Composition on Liquid Droplet Combustion
 
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
DESIGN CRITERIA FOR OPTIMIZATION OF THE CROSS IGNITION PROCESS IN GASTURBINE-...
 
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
Design Criteria for Optimization of the Cross Ignition Process in Gasturbine-...
 
Le2418811888
Le2418811888Le2418811888
Le2418811888
 
Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015Browning_Daimler Research Thesis_Summer 2015
Browning_Daimler Research Thesis_Summer 2015
 
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
IRJET- Experimental Investigation on Effect of Chemical Composition on Stabil...
 
30120130406014
3012013040601430120130406014
30120130406014
 
Heating Value Estimation for Natural Gas Applications
Heating Value Estimation for Natural Gas ApplicationsHeating Value Estimation for Natural Gas Applications
Heating Value Estimation for Natural Gas Applications
 
Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...
Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...
Comparison of The Experimental TBP Curve with Results of Empirical Correlatio...
 
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
HEAT TRANSFERCHARACTERISTICS OF A SELF ASPIRATING POROUS RADIANT BURNER FUELE...
 
IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...
IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...
IRJET- Experimental Evaluation of Shell & Tube Heat Exchanger with P – Toluid...
 
Modelling Heat Losses in a Tar Sand Formation during Thermal Recovery Proces...
Modelling Heat Losses in a Tar Sand Formation during Thermal  Recovery Proces...Modelling Heat Losses in a Tar Sand Formation during Thermal  Recovery Proces...
Modelling Heat Losses in a Tar Sand Formation during Thermal Recovery Proces...
 
2007 tinga jegtp (2)
2007 tinga jegtp (2)2007 tinga jegtp (2)
2007 tinga jegtp (2)
 
An experimental study on kerosene based pulse detonation engine
An experimental study on kerosene based pulse detonation engineAn experimental study on kerosene based pulse detonation engine
An experimental study on kerosene based pulse detonation engine
 
Key Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude OilsKey Thermo-Physical Properties of Light Crude Oils
Key Thermo-Physical Properties of Light Crude Oils
 

Viewers also liked

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Kịch bản sư phạm
Kịch bản sư phạmKịch bản sư phạm
Kịch bản sư phạmThanhHoai216
 
Stepping Up To The Challenge - CMO Insignt From The Global C-Suite Study
Stepping Up To The Challenge - CMO Insignt From The Global C-Suite StudyStepping Up To The Challenge - CMO Insignt From The Global C-Suite Study
Stepping Up To The Challenge - CMO Insignt From The Global C-Suite StudyEvgeny Tsarkov
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 

Viewers also liked (7)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Kịch bản sư phạm
Kịch bản sư phạmKịch bản sư phạm
Kịch bản sư phạm
 
Stepping Up To The Challenge - CMO Insignt From The Global C-Suite Study
Stepping Up To The Challenge - CMO Insignt From The Global C-Suite StudyStepping Up To The Challenge - CMO Insignt From The Global C-Suite Study
Stepping Up To The Challenge - CMO Insignt From The Global C-Suite Study
 
2
22
2
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 

Similar to International Journal of Engineering Research and Development (IJERD)

Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...
Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...
Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...inventionjournals
 
Fundamental Aspects of Droplet Combustion Modelling
Fundamental Aspects of Droplet Combustion ModellingFundamental Aspects of Droplet Combustion Modelling
Fundamental Aspects of Droplet Combustion ModellingIJERA Editor
 
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...BIBHUTI BHUSAN SAMANTARAY
 
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...ijcsa
 
The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...
The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...
The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...IOSR Journals
 
Effect of Pilot Flame Instabilities on Pressure in Case of Assisted Combustion
Effect of Pilot Flame Instabilities on Pressure in Case of Assisted CombustionEffect of Pilot Flame Instabilities on Pressure in Case of Assisted Combustion
Effect of Pilot Flame Instabilities on Pressure in Case of Assisted CombustionDiego Scarpa
 
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...ijsrd.com
 
Biogas –diesel dual fuel engine exhaust gas emissions
Biogas –diesel dual fuel engine exhaust gas emissionsBiogas –diesel dual fuel engine exhaust gas emissions
Biogas –diesel dual fuel engine exhaust gas emissionsIAEME Publication
 
Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...
Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...
Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...IJPEDS-IAES
 
The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...Jameel Tawfiq
 
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...BIBHUTI BHUSAN SAMANTARAY
 
Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...IJECEIAES
 
FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...
FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...
FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...Dan Martin
 

Similar to International Journal of Engineering Research and Development (IJERD) (19)

Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...
Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...
Numerical Simulation of Flow in a Solid Rocket Motor: Combustion Coupled Pres...
 
Fundamental Aspects of Droplet Combustion Modelling
Fundamental Aspects of Droplet Combustion ModellingFundamental Aspects of Droplet Combustion Modelling
Fundamental Aspects of Droplet Combustion Modelling
 
8.ponnusamy 82 92
8.ponnusamy 82 928.ponnusamy 82 92
8.ponnusamy 82 92
 
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
CHARACTERIZATION AND EMISSION ANALYSIS OF PREMIXED AND PREHEATED POROUS RADIA...
 
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
MODELLING FOR CROSS IGNITION TIME OF A TURBULENT COLD MIXTURE IN A MULTI BURN...
 
The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...
The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...
The CFD Analysis of Turbulence Characteristics in Combustion Chamber with Non...
 
Effect of Pilot Flame Instabilities on Pressure in Case of Assisted Combustion
Effect of Pilot Flame Instabilities on Pressure in Case of Assisted CombustionEffect of Pilot Flame Instabilities on Pressure in Case of Assisted Combustion
Effect of Pilot Flame Instabilities on Pressure in Case of Assisted Combustion
 
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
A REVIEW PAPER ON EXPERIMENTAL AND NUMERICAL INVESTIGATION OF PARAMETRIC STUD...
 
computation-08-00086.pdf
computation-08-00086.pdfcomputation-08-00086.pdf
computation-08-00086.pdf
 
Biogas –diesel dual fuel engine exhaust gas emissions
Biogas –diesel dual fuel engine exhaust gas emissionsBiogas –diesel dual fuel engine exhaust gas emissions
Biogas –diesel dual fuel engine exhaust gas emissions
 
Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...
Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...
Thermodynamic modeling and Exergy Analysis of Gas Turbine Cycle for Different...
 
The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...The blowoff limits and flashback limits for different diameter to length rati...
The blowoff limits and flashback limits for different diameter to length rati...
 
Fm35978984
Fm35978984Fm35978984
Fm35978984
 
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
Performance Improvement Of Self-Aspirating Porous Radiant Burner By Controlli...
 
Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...Combined heat and power - optimal power flow based on thermodynamic model wit...
Combined heat and power - optimal power flow based on thermodynamic model wit...
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...
FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...
FINAL Report for Development of Enclosed Combustion Right for SCRAMJET Fuel S...
 
Hq3613511354
Hq3613511354Hq3613511354
Hq3613511354
 
Hq3613511354
Hq3613511354Hq3613511354
Hq3613511354
 

More from IJERD Editor

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksIJERD Editor
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEIJERD Editor
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...IJERD Editor
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’IJERD Editor
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignIJERD Editor
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationIJERD Editor
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...IJERD Editor
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRIJERD Editor
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingIJERD Editor
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string valueIJERD Editor
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...IJERD Editor
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeIJERD Editor
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...IJERD Editor
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraIJERD Editor
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...IJERD Editor
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...IJERD Editor
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingIJERD Editor
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...IJERD Editor
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart GridIJERD Editor
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderIJERD Editor
 

More from IJERD Editor (20)

A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service AttacksA Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
A Novel Method for Prevention of Bandwidth Distributed Denial of Service Attacks
 
MEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACEMEMS MICROPHONE INTERFACE
MEMS MICROPHONE INTERFACE
 
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...Influence of tensile behaviour of slab on the structural Behaviour of shear c...
Influence of tensile behaviour of slab on the structural Behaviour of shear c...
 
Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’Gold prospecting using Remote Sensing ‘A case study of Sudan’
Gold prospecting using Remote Sensing ‘A case study of Sudan’
 
Reducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding DesignReducing Corrosion Rate by Welding Design
Reducing Corrosion Rate by Welding Design
 
Router 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and VerificationRouter 1X3 – RTL Design and Verification
Router 1X3 – RTL Design and Verification
 
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
Active Power Exchange in Distributed Power-Flow Controller (DPFC) At Third Ha...
 
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVRMitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
Mitigation of Voltage Sag/Swell with Fuzzy Control Reduced Rating DVR
 
Study on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive ManufacturingStudy on the Fused Deposition Modelling In Additive Manufacturing
Study on the Fused Deposition Modelling In Additive Manufacturing
 
Spyware triggering system by particular string value
Spyware triggering system by particular string valueSpyware triggering system by particular string value
Spyware triggering system by particular string value
 
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
A Blind Steganalysis on JPEG Gray Level Image Based on Statistical Features a...
 
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid SchemeSecure Image Transmission for Cloud Storage System Using Hybrid Scheme
Secure Image Transmission for Cloud Storage System Using Hybrid Scheme
 
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
Application of Buckley-Leverett Equation in Modeling the Radius of Invasion i...
 
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web CameraGesture Gaming on the World Wide Web Using an Ordinary Web Camera
Gesture Gaming on the World Wide Web Using an Ordinary Web Camera
 
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
Hardware Analysis of Resonant Frequency Converter Using Isolated Circuits And...
 
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
Simulated Analysis of Resonant Frequency Converter Using Different Tank Circu...
 
Moon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF DxingMoon-bounce: A Boon for VHF Dxing
Moon-bounce: A Boon for VHF Dxing
 
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
“MS-Extractor: An Innovative Approach to Extract Microsatellites on „Y‟ Chrom...
 
Importance of Measurements in Smart Grid
Importance of Measurements in Smart GridImportance of Measurements in Smart Grid
Importance of Measurements in Smart Grid
 
Study of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powderStudy of Macro level Properties of SCC using GGBS and Lime stone powder
Study of Macro level Properties of SCC using GGBS and Lime stone powder
 

Recently uploaded

How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century educationjfdjdjcjdnsjd
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024The Digital Insurer
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 

Recently uploaded (20)

How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024Finology Group – Insurtech Innovation Award 2024
Finology Group – Insurtech Innovation Award 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 

International Journal of Engineering Research and Development (IJERD)

  • 1. International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 9, Issue 3 (December 2013), PP. 01-09 Measurements of Laminar Burning Velocities and Markstein Length for LPG–Hydrogen– Air Mixtures Miqdam Tariq Chaichan Machines and Equipment Eng. Dept., UOT, Baghdad, Iraq Abstract:- An experimental approach to measure the laminar burning velocities and Markstein lengths of LPG/hydrogen/air mixtures was used. Using thermocouples as sensing probs. Measurements of laminar burning velocity as a function of flame stretch was directly deduced using data acquisition system without using any fuel properties. The unstretched laminar burning velocities were obtained through a linear extrapolation to zero stretch. The Markstein lengths were deduced from the linear relationship between the flame speed and flame stretch rate. The estimated values of laminar burning velocities were compared to experimental results of the literature. It was found that the measured laminar burning velocity of LPG increased with increasing hydrogen volume fraction. Markstein lengths demonstrated the increment in flame instability with increasing hydrogen volume fraction. Increasing hydrogen volume fractions widen the equivalence ratio range for both lean and rich sides. Keywords:- LPG, Hydrogen, laminar burning velocity, Markstein lengths, stretch flame speed, unstretched flame speed. I. INTRODUCTION Improving engine fuel economy and reducing exhaust emissions have become major research topics in combustion and engine development with increasing concern about energy shortage and environmental protection. The main negative effects on the environment by fossil fuel combustion are emissions of NOx, CO, CO2, and unburned hydrocarbons. The main negative effect of burning fossil fuel on the geopolitical climate is the lack in supply of these fuels and the effect pollution has on politics [1]. Alternative fuels, such as hydrogen, methane, liquefied petroleum gas and dimethyl- ether, are usually regarded to be clean fuels compared to diesel and gasoline, thus the introduction of these alternative fuels is beneficial to the slowing-down of fuel consumption and the reduction of engine exhaust emissions [2]. LPG is one of the best candidates for an alternative fuel because it can be liquefied in a low pressure range of 0.7–0.8 MPa at atmospheric temperature, and it has a sufficient supply infrastructure. LPG fuel also has a higher heating value compared with other fuels [3]. LPG is widely used in IC engines yet its fundamental combustion properties such as laminar burning velocity is still not very well established, which can act as a basic input for engine modeling. One of the most important intrinsic properties of any combustible mixture is its laminar burning velocity. It depends on the mixture composition, temperature and pressure. It is measurable characteristic of the mixture [4]-[5]. Hydrogen holds significant promise as a supplemental fuel to improve the performance and emissions of spark ignited and compression ignited engines. Hydrogen has the ability to burn at extremely lean equivalence rations. Hydrogen will burn at mixtures seven times leaner than gasoline and five times leaner than methane. The flame velocity of hydrogen is much faster than other fuels allowing oxidation with less heat transfer to the surroundings. This improves thermal efficiencies. Efficiencies are also improved because hydrogen has a very small gap quenching distance allowing fuel to burn more completely [6]. In order to properly understand the effect of adding hydrogen to enrich hydrocarbon combustion it is important to understand the basics, Hydrogen increases the laminar burning velocity when it enriched methane or NG [7]. The laminar flame speed is defined as the speed relative to the unburned gas, with which a planar, onedimensional flame front travels along the normal to its surface [8]. Accurate measurement of unstretched laminar burning velocity, especially for the heavier hydrocarbon fuels typically used in internal combustion engine applications, is necessary for assessing combustion theories and the validation of numerical models [9]. Laminar flame speed embodies the fundamental information on diffusivity, reactivity, and exothermicity of a given mixture and is therefore commonly used to characterize flames. As such, the measurement of laminar flame speed has received considerable attention in the published literature, particularly with regard to the effects of flame stretch on the fundamental (unstretched) laminar flame speed and the attainment of highly accurate, unperturbed measurements [10]. There are many techniques for measuring experimentally the laminar burning velocity of combustible mixtures, such as counter flow double flames [11], flat flame burner [12]-[13] and spherically expanding flames 1
  • 2. Measurements of Laminar Burning Velocities and Markstein Length… [14]-[15]. For a spherically expanding flame in a closed combustion bomb, the stretch imposed on the premixed flame is well defined. The asymptotic theories and experimental measurements have suggested a linear relationship between the flame speeds and flame stretches. Therefore, the fundamental burning velocity of alternative fuel is measured by closed bomb technique. References [14]-[16]-[17]-[18] performed the laminar burning velocity of Spherically expanding flames measurement for syngas, natural gas–hydrogen–air mixtures, methanol and hydrogen enriched natural gas. The stretch rate is a combination of two effects: the flame curvature and the strain rate. Stretch effects induce modifications on the flame front structure and propagation. The sensitivity of the flame speed to the stretch rate is characterized by the Markstein length. Investigations on the laminar burning velocity [19]-[20] have shown the importance of local stretch for the local burning speed. Based on an asymptotic analysis, several authors [21]-[22] have proposed a linear relation between the stretch rate and the flame speed. This relation is valid when the propagation phenomena are no longer affected by the initial energy deposition needed to initiate exothermic reactions. Moreover, the flame thickness has to remain negligible compared to the flame radius. This linear relation has been extensively applied to outwardly propagating flames [23]. The present paper analyses the laminar burning velocity of enriched hydrogen to LPG-air mixture using the closed bomb method. Various results for laminar burning velocity of LPG-hydrogen-air mixtures were obtained at atmospheric pressure and temperature using thermocouples method and results were compared with the standard available data for propane. II. EXPERIMENTAL SETUP In this study the full descriptions of the experimental setup (Fig.1) are located at [24]. Spark-ignited premixed LPG-hydrogen-air flames have been investigated at atmospheric pressure and temperature, over a wide range of equivalence ratios, Ø=0.68-1.53. Experiments were conducted in a constant volume chamber. The chamber is equipped with six thermocouples which were used as a sensor probe (Fig. 2). The equivalence ratio of the mixture is measured and regulated by mixing unit. The mixing unit is made of (iron-steel); it has a cylindrical shape without any skirt to improve the efficiency of mixing operation. Mixer dimensions are (435mm) length, (270mm) diameter and (5 mm) thickness as shown in Fig. 3. It undergoes a pressure of more than (60 bar) and also withstands high temperatures. The mixing unit has five holes of (12.7mm) in diameter. Two holes are used to fix the pressure gauge and vacuum gauge, the third is for admitting the dry air to the mixing unit from the compressor through the filter dryer, the fourth hole is for admitting the fuel from the fuel cylinder through pressure gauge regulator and the last hole admits the homogeneous mixture to the combustion chamber. Fig. 1: Block diagram of experimental apparatus A cover is added on one side of the mixer in order to connect the fan to a power source of (12volt) DC. Through a glass sealed electrical connections, which are sealed completely to prevent any leakage of gas to improve the mixing operation and obtain a homogenous mixture. All welding in the cylinder is done using Argon welding, and tested by increasing the internal pressure of the cylinder to avoid any leakage. 2
  • 3. Measurements of Laminar Burning Velocities and Markstein Length… Fig. 2: The internal structure of combustion chamber The mixture is then ignited by centrally located electrodes energized by standard capacitive ignition system. Minimum spark energy is supplied to ensure free propagation from initial phase of combustion. The partial pressures were determined by initial pressure, hydrogen fraction (HVF) (the volume fraction of the hydrogen in the fuel of hydrogen-enriched natural gas), equivalence ratio Ø (the ratio of the actual fuel/air ratio to the stoichiometric ratio). In this study, hydrogen, with purity of 99.95% was used. The LPG constitution is listed in Table 1. Fig. 3: Mixture preparing unit diagram Flame temperatures were recorded in the experiment by means of thermocouples, where the initial pressure and temperature kept the same value for mixtures with different hydrogen fractions. The initial conditions were strictly controlled in the experiments to realize the same initial pressure and temperature. For avoiding the influence of wall temperature on mixture temperature, an enough interval between two experiments is set, providing enough time for wall to cool down and keeping the same initial temperature. Items Volumetric fractions Table 1: Compositions of LPG CH4 C2H6 C3H8 1.2 0.08 47.8 C4H10 32.45 Iso-C4H10 18.47 Laminar burning velocity and Markstein numbers To calculate the affecting variables [25] calculation method was used, applying the reading from the experimental rig. For a spherically expending flame, the stretched flame velocity, S n, reflecting the flame propagation speed, is derived from the flame radius versus time data as dru Sn = (1) dt 3
  • 4. Measurements of Laminar Burning Velocities and Markstein Length… Where ru is the radius of the flame and t is the time. S n can be directly obtained from the flame measurements. Flame stretch rate, α, representing the expanding rate of flame front area, in a quiescent mixture is defined as α= d(lnA) 1 dA = dt A dt (2) Where A is the area of flame. For a spherically outwardly expanding flame front, the flame stretch rate can be simplified as 1 dA 2 dru 2 α= = = S (3) A dt ru dt ru n In respect to the early stage of flame expansion, there exists a linear relationship between the flame speeds and the flame stretch rates; that is, Sl −Sn = Lbα, (4) Where Sl is the unstretched flame speed, and Lb is the Markstein number (Markstein length) of burned gases. From eqs. (1) and (3), the stretched flame speed, S n, and flame stretch rate, α, can be calculated. The unstretched flame speed, Sl, can be obtained as the intercept value at α = 0, in the plot of Sn against α, and the burned gas Markstein number Lb is the slope of Sn–α curve. Markstein number can reflect the stability of flame. Positive values of Lb indicate that the flame speed decreases with the increase of flame stretch rate. In this case, if any kinds of protuberances appear at the flame front (stretch increasing), the flame speed in the flame protruding position will be suppressed, and this makes the flame stability. In contrast to this, a negative value of Lb means that the flame speed increases with the increase of flame stretch rate. In this case, if any kinds of protuberances appear at the flame front, the flame speed in the flame protruding position will be increased, and this increases the instability of the flame. When the observation is limited to the initial part of the flame expansion, where the pressure does not vary significantly yet, then a simple relationship links the spatial flame velocity Sl to unstretched laminar burning velocity ul, given as ul = ρbSl/ρu (5) where ρb and ρu are the densities for burned gases and unburned gases. The equation ρ un = S Sn b (6) ρu is used to determine the stretched laminar burning velocity u n, and the stretched mass burning velocity unl, proposed by [26], is calculated from un1 = ρb u − Sn ρb − ρu n (7) in which S is a rectified function and it depends upon the flame radius and the density ratio, and accounts for the effect of the flame thickness on the mean density of the burned gases. The expression for S in the present study used the formula given by [26], δ1 ρu S = 1 + 1.2 ru ρb 2.2 δ1 ρu − 0.15 ru ρb 2.2 2 (8) Here δl is laminar flame thickness, given by δl = ν/ul, in which ν is the kinetic viscosity of the unburned mixture. III. RESULTS and DISCUSSION The flames of premixed LPG–hydrogen–air mixtures speeds were measured and the flame radiuses were obtained. Figures 4, 5& 6 show the measured flame radius versus time after ignition for LPG with hydrogen volume fractions (HVF) of 25, 50 and 75% vol at various equivalence ratios (representing lean (Ø=0.6), stoichiometric (Ø=1.0) and rich (Ø=1.3) fuels respectively). 4
  • 5. Measurements of Laminar Burning Velocities and Markstein Length… After ignition, the flame expands spherically, whose radius increases at different speeds depending on hydrogen fraction (i.e. fuel constitution), equivalence ratio (mixture lean or rich). With the increase of hydrogen fraction from 0% vol to 100% vol, the flame expands much more rapidly at all tested conditions (as shown by the pre-mentioned figures). Equivalence ratio has greater effect on flame propagation speed of the fuel with low hydrogen fraction than that of the fuel with high hydrogen fraction. The gradient of ru–t curves reflected different behavior of flame radius with time at different equivalence ratios. In the case of lean mixture combustion (Ø= 0.6) at fig. 4, the flame radius increases with time but the increasing rate (gradient of curve) decreases with flame expansion for LPG and for mixtures with low hydrogen fractions, while there exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. In the case of rich mixture combustion (Ø= 1.3), as fig. 6 shows, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for LPG and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. In contrast to these, combustion at stoichiometric mixture demonstrates a linear relationship between flame radius and time for LPG–air flame, hydrogen–air flame, and natural gas– hydrogen–air flame, as fig. 5 represents. As shown in Fig. 7. It was also found that the hydrogen-enriched LPG with high hydrogen fraction (HVF=75%) can sustain relatively wider equivalence ratios than the fuel with low hydrogen fraction (HVF=25%) does. It was observed that the fuel with high hydrogen fraction has stronger capability to maintain its flame propagation speed under ultra lean conditions than the fuel with low hydrogen fraction. 5
  • 6. Measurements of Laminar Burning Velocities and Markstein Length… The stretched flame speed is the derivative of flame radius with time, which reflects the flame moving speed relative to the combustion wall. Fig. 8 illustrates the stretched flame speeds of stoichiometric mixtures versus flame radius. It is clearly shown that the more the hydrogen gas is added, the faster the flame propagates. For the fuel with (HVF=25%), the stretched flame speed increases with the increase of flame radius in most cases. However, in the case of the fuel with 75% vol. hydrogen the speed decreases slightly with the increase of flame radius. Fig. 9 gives the stretched flame speed versus the flame stretch rate at stoichiometric equivalence ratios and variable hydrogen fractions. A linear correlation between the stretched flame speed and the flame stretch rate is found. The unstretched flame speed, Sl, is obtained by extrapolating the line to α = 0, while the gradient of the Sn–α curve gives the value of the Markstein number. In the case of a LPG–air flame, the stretched flame speed decreases with the increase of flame stretch rate. In the case of a mixture with HVF=25%, negative gradients of Sn–α curves are derived, and these correspond to positive values of Markstein number, indicating the stability of flames of mixture combustion. In the case of high hydrogen fraction (a mixture with 75% hydrogen), negative values of Markstein number are presented, and this indicates a stable flame for rich mixture combustion and an unstable flame for lean mixture combustion in the case of high hydrogen fraction. The figure shows the Sn–α curve for mixtures with different hydrogen fractions at the stoichiometric equivalence ratio. The results show that the Markstein number decreases with the increase of hydrogen fraction, and this indicates that the flame stability will decrease with the increase of hydrogen fraction. The Markstein length also depends on the hydrogen fraction of the fuel as fig. 10 indicates. For the fuel with low hydrogen fraction (25% vol. in this study), the Markstein length tends to increase from negative value to positive one, indicating that the flame tends to become more stable. On the other hand, for the fuel with high hydrogen fraction (75% vol. in this study), the Markstein length tends to be slightly decreased with the increase of equivalence ratio. Measurements showed that the addition of hydrogen can decrease the Markstein number of the laminar premixed hydrogen-LPG flames as the flame tends to be unstable due to the effect of fast diffusing component (hydrogen). The relationship between laminar burning velocities and stretch rate is plotted in Fig. 11. As shown in the figure, the difference between the stretched laminar burning velocity un and the stretched mass burning velocity unl can be clearly observed. The stretched laminar burning velocity u n, which denotes the rate of mixture entrainment, always increases as the stretch rate increases. In contrast, the mass burning velocity u nl, which is the burning velocity related to the production of unburned gas, is usually decreased as the stretch rate increases. Speed difference (un− unl) increases with the increase of stretch rate, and this would be due to the influence of flame thickness on burning velocities. A large value of (un−unl) is seen at small radii (corresponding to high stretch rate), where the flame thickness is of the same order as the flame radius. As the definition indicated, a high value of stretch rate corresponds to a small flame radius; thus the influence by flame thickness becomes great. When stretch rate reaches zero, the flame radius becomes infinity; thus the effect of flame thickness can be neglected, and un and unl will get the same value, ul, the unstretched laminar burning velocity. 6
  • 7. Measurements of Laminar Burning Velocities and Markstein Length… A comparison of unstretched laminar burning velocities versus equivalence ratios for LPG–air flames (Fig. 12), while the comparison of unstretched laminar burning velocities of hydrogen–air flames is illustrated in Fig. 12. The results show that the present work gives data consistent with those of others both for various LPG and pure hydrogen flames. For LPG–air flames, (as Fig 12 shows) except for the data from [4], which give values higher than those of others and the maximum values occurred in the rich side, the present work gives values consistent with other experimental results. For hydrogen–air flames (as Fig.13 represents), except for the data from [27], which give lower values compared to those of others, the present work gives values consistent with other experimental results. This proves the data correctness obtained from this study, as well as it provides data for wider range of equivalence ratio, compared with other works. Unfortunately there were no available data for hydrogen enriched LPG to compare with, that means the need for more work in this field to explore the variable behaviors of hydrogen enriched LPG-air mixtures. IV. CONCLUSIONS Laminar flame characteristics of LPG–hydrogen–air flames were studied in a constant volume bomb at normal temperature and pressure, using thermocouples method. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to LPG (volume fraction from 0 to 100%) and equivalence ratios (Ø from 0.6 to 1.6). The influence of stretch rate on flame was also analyzed. The results are summarized as follows: (1) For lean mixture combustion, flame radius increases with time, but the rate of increase decreases with flame expansion for LPG and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, there is also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for LPG–air, hydrogen–air, and LPG–hydrogen–air flames. 7
  • 8. Measurements of Laminar Burning Velocities and Markstein Length… (2) Hydrogen–air flame gives a very high value of the stretched flame speed compared to those of natural gas–air flame and natural gas–hydrogen– air flames, even for high hydrogen fraction. (3) Enrichment of 25 & 50% hydrogen to LPG-air has very little effect on burning velocities for lean and rich mixtures and remarkable effect on stoichiometric mixtures. (4) Enrichment the mixture with hydrogen expands the equivalence ratio range and makes it wider. (5) Unstretched laminar burning velocities are increased with the increase of hydrogen fraction. Markstein lengths are decreased with the increase of hydrogen fraction, indicating that the flame instabilities are increased with the increase of hydrogen fraction. (6) For a fixed hydrogen fraction, the Markstein length and flame stability increase with the increase of equivalence ratios. (7) Very good agreement is obtained between values of laminar burning speed and Markstein length values determined with the present methodology and values found in the literature. REFERANCES [1]. [2]. [3]. [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. [13]. [14]. [15]. [16]. [17]. [18]. F. Parsinejad, C. Arcari and H. Metghalchi, “Flame structure and burning speed of JP-10 air mixtures”, Combustion Science amd Technology, vol. 178, pp. 975-1000, 2006. A. S. Huzayin, H. A. Moneib, M. S. Shehatta and A. M. A. Attia, “Laminar burning velocity and explosion index of LPG–air and propane–air mixtures”, Fuel, vol. 87, pp. 39-57, 2008. K. Leea and J. Ryu, “An experimental study of the flame propagation and combustion characteristics of LPG fuel”, Fuel, vol. 84, pp. 1116–1127, 2005. A. Tripathi, H. Chandra and M. Agrawal, “Effect of mixture constituents on the laminar burning velocity of LPG-CO2-air mixtures”, Journal of Engineering and Applied Sciences, vol. 5, No. 3, pp. 1621, 2010. Z. Cheng, R. W. Pitz and J. A. Wehrmeyer, “Lean and ultra-lean stretched propane–air counter-flow flames”, Combustion and Flame, vol. 145, pp. 647–662, 2006. 2006. O. A. Powell, P. Papas and C. Dreyer, “Laminar burning velocities for hydrogen, methane, acetylene and propane-nitrous oxide flames”, Combust. Sci. and Tech., vol. 181, pp. 917–936, 2009. F. Halter, C. Chauveau, N. Djebaı¨li-Chaumeix and H. G ِ kalp, “Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane–hydrogen–air mixtures”, Proc. Combust. Inst., vol. 30, pp. 201–208, 2005. S. Balusamy and C. B. Lecordier, “Measurement of laminar burning velocity – A new PIV approach”, Proceedings of the European Combustion Meeting 2009. S. Liao, D. Jiang, Z. Huang, “Laminar burning velocities for mixtures of methanol and air at elevated temperatures”, Energy Conversion and Management, vol. 48, No.3, pp. 857-863, 2007. T. Tahtouh, F. Halter, C. Mounaïm-Rousselle, “Measurement of laminar burning speeds and Markstein lengths using a novel methodology”, Combustion and Flame, vol. 156, pp. 1735–1743, 2009. Y. Huang, C. J. Sung and J. A. Eng, “Laminar flame speeds of primary reference fuels and reformer gas mixtures”, Combustion and Flame, vol. 139, No. 3, pp. 139-251, 2004. Igor, V. Dyakov, J. D. Ruyck and A. A. Konnov, “Probe sampling measurements and modeling of nitric oxide formation in ethane + air flames”, Fuel, vol. 86, No.1-2, pp. 98-105, 2007. F. H. V. Coppens, J. D. Ruyck and A. A. Konnov, “The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH 4 + H2 + O2 + N2”, Combustion and Flame, vol. 149, No. 4, pp. 409-417, 2007. C. Prathap, A. Ray and M. R. Ravi, “Investigation of nitrogen dilution effects on the laminar burning velocity and flame stability of syngas fuel at atmospheric condition”, Combustion and Flame, vol. 155, No. 1-2, pp. 145-160. S. Jerzembeck, N. Peters, P. Pepiot-Desjardins and H. Pitsch, “Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation”, Combustion and Flame, vol. 156, No. 2, pp. 292-301, 2008. H. Zuohua, Z. Yong and Z. Ke, “Measurements of laminar burning velocities for natural gas– hydrogen– air mixtures”, Combustion and Flame, vol. 146, No. 1- 2, pp. 302-311, 2006. M. Haiyan, J. Qi and H Zuohua et al., “Effect of initial pressure on laminar combustion characteristics of hydrogen enriched natural gas”, International journal of Hydrogen Energy, vol. 33, No. 14, pp. 3876-3885, 2008. Z. Chen, M. P. Burke and Y. Ju, “The effect of radiation on the determination of laminar flame speed using propagating spherical flames”, 12th International Conference on Numerical Combustion, California, USA, 2008. 8
  • 9. Measurements of Laminar Burning Velocities and Markstein Length… [19]. [20]. [21]. [22]. [23]. [24]. [25]. [26]. [27]. [28]. [29]. [30]. W. Xiaomin, G. Zhongquan, P. Min and M. Xiangwen, “Investigation of hythane, LPG and DME laminar flame speed by ionization current method in a constant volume bomb”, Proceedings of the European Combustion Meeting 2009. Z. Chen, M. P. Burke and Y. Ju, “Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames”, Submitted to 32nd International Symposium on Combustion, 2008. Z. Chen, M. P. Burke, Y. Ju, “Effects of compression and stretch on the determination of laminar flame speeds using propagating spherical flames”, Combustion Theory and Modeling, vol.13, pp. 343-364, 2009. M. P. Burke, Y. Ju and F. L. Dryer, “The effect of flow field perturbations on laminar flame speed determination using spherical flames”, AIAA paper No. 2008-1049, 2008. A. P. Kelly and C. K. Law, “Nonlinear effects in the experimental determination of laminar flame properties from stretched flames”, Fall technical meeting: Eastern states sections of the combustion institute, Virginia, Paper B-11, 2007. A. M. Saleh, “Effect of initial pressure upon laminar burning velocity of paraffins gaseous fuel in closed vessel”, Ph D thesis, University of Technology, Baghdad, Iraq, 2006. Z. Huang, Y. Zhang, K. Zenga, B. Liu, Q. Wang and D. Jiang, “Measurements of laminar burning velocities for natural gas–hydrogen–air mixtures”, Combustion and Flame, vol. 146, pp. 302–311, 2006. D. Bradley, R. A. Hicks, M. Lawes, C. G. W. Sheppard and R. Woolley, “The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane, n–heptanes- air mixtures at elevated temperatures and pressures in an explosion bomb”, Combustion and Flame, vol. 115, pp. 126– 144, 1998. K. T. Aung, M. I. Hassan and G. M. Faeth, “Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure”, Combustion and Flame, vol. 109, pp. 1–24, 1997. M. M. Isam, “The effect of tube diameter on the laminar flame propagation of the gaseous hydrocarbons-air mixtures”, PhD thesis, University of Technology, Baghdad, Iraq, 2002. A. E. Dahoe, “Laminar burning velocities of hydrogen–air mixtures from closed vessel gas explosions”, Journal of Loss Prevention in the Process Industries, vol. 18, pp. 152–166, 2005. N. Lamoureux, N. Djebaili-Chaumeix and C. Paillard, “Laminar flame velocity determination for H2– air–He–CO2 mixtures using the spherical bomb method”, Exp Therm Fluid Sci, vol. 27, No. 4, pp. 385–93, 2003. 9