SlideShare a Scribd company logo
Soumettre la recherche
Mettre en ligne
formulario matematicas
Signaler
Partager
Jaime Arispe
Soporte Técnico à ULTATEK AUTOMATION S.A. DE C.V.
Suivre
•
10 j'aime
•
24,842 vues
1
sur
6
formulario matematicas
•
10 j'aime
•
24,842 vues
Signaler
Partager
Télécharger maintenant
Télécharger pour lire hors ligne
Formation
farmulario calculo,integrales y series de Fourier
Lire la suite
Jaime Arispe
Soporte Técnico à ULTATEK AUTOMATION S.A. DE C.V.
Suivre
Recommandé
Ecuación de bessel par
Ecuación de bessel
Juan Camilo Sacanamboy
18.3K vues
•
15 diapositives
la formula de los vectores par
la formula de los vectores
roger kasa
15.2K vues
•
1 diapositive
Vectores tangente unitario y normal unitario par
Vectores tangente unitario y normal unitario
Rodolfo Alcantara Rosales
15.5K vues
•
10 diapositives
Cinemática Problemas Resueltos y Propuestos par
Cinemática Problemas Resueltos y Propuestos
Cristhian Santoyo
26.8K vues
•
68 diapositives
Campos Electromagneticos - Tema 1 par
Campos Electromagneticos - Tema 1
Diomedes Ignacio Domínguez Ureña
24.6K vues
•
34 diapositives
Solucionario ecuaciones diferenciales par
Solucionario ecuaciones diferenciales
Daniel Mg
318.5K vues
•
87 diapositives
Contenu connexe
Tendances
Reglas basicas de integracion par
Reglas basicas de integracion
Karina Lizbeth
55.2K vues
•
2 diapositives
Informe péndulo simple par
Informe péndulo simple
Katherine Rivera
54K vues
•
3 diapositives
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias. par
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.
Brayan Méndez
65K vues
•
6 diapositives
Formulario de física: Cinemática y vectores par
Formulario de física: Cinemática y vectores
Miguel Ángel Hernández Trejo
27.1K vues
•
7 diapositives
Ondas mecanicas2 par
Ondas mecanicas2
Dane Cachi Eugenio
42.4K vues
•
21 diapositives
Problemas resueltos de relatividad par
Problemas resueltos de relatividad
Cliffor Jerry Herrera Castrillo
12.3K vues
•
13 diapositives
Tendances
(20)
Reglas basicas de integracion par Karina Lizbeth
Reglas basicas de integracion
Karina Lizbeth
•
55.2K vues
Informe péndulo simple par Katherine Rivera
Informe péndulo simple
Katherine Rivera
•
54K vues
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias. par Brayan Méndez
Formulario Cálculo Integral, Derivación, Identidades Trigonométricas, Varias.
Brayan Méndez
•
65K vues
Formulario de física: Cinemática y vectores par Miguel Ángel Hernández Trejo
Formulario de física: Cinemática y vectores
Miguel Ángel Hernández Trejo
•
27.1K vues
Ondas mecanicas2 par Dane Cachi Eugenio
Ondas mecanicas2
Dane Cachi Eugenio
•
42.4K vues
Problemas resueltos de relatividad par Cliffor Jerry Herrera Castrillo
Problemas resueltos de relatividad
Cliffor Jerry Herrera Castrillo
•
12.3K vues
Ecuaciones diferenciales no lineales par Universidad Técnica de Manabí
Ecuaciones diferenciales no lineales
Universidad Técnica de Manabí
•
19.1K vues
Algunos resueltos de capítulo 13 sears par Gladys Ofelia Cruz Villar
Algunos resueltos de capítulo 13 sears
Gladys Ofelia Cruz Villar
•
69K vues
Que es el wronskiano par EIYSC
Que es el wronskiano
EIYSC
•
13.8K vues
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019 par Universidad Francisco de Paula Santander
LEY DE OHM LABORATORIO FÍSICA ELECTROMAGNÉTICA 2019
Universidad Francisco de Paula Santander
•
8.6K vues
Análisis dimensional par JOSÉ LUIS VALDIVIA
Análisis dimensional
JOSÉ LUIS VALDIVIA
•
149.7K vues
Clase 13 PC par Tensor
Clase 13 PC
Tensor
•
8.5K vues
Aceleracion tangencial par Ana Lucìa Sánchez
Aceleracion tangencial
Ana Lucìa Sánchez
•
42.3K vues
Ejercicio 10 par Juan Camilo Andrade Aramburo
Ejercicio 10
Juan Camilo Andrade Aramburo
•
10.7K vues
Laboratorio péndulo simple física III par Fundación Universitaria del Área Andina
Laboratorio péndulo simple física III
Fundación Universitaria del Área Andina
•
151.5K vues
Problemas de aplicación de la segunda ley de newton par Vanessa Aldrete
Problemas de aplicación de la segunda ley de newton
Vanessa Aldrete
•
50.9K vues
Informe 3.-circuitos-serie-paralelo-y-mixto par Dayana Valencia
Informe 3.-circuitos-serie-paralelo-y-mixto
Dayana Valencia
•
112.5K vues
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12 MOVIMIENTO OSCILATORIO LIBRO ALONS... par .. ..
SOLUCIONARIO DE EJERCICIOS DE CAPITULO 12 MOVIMIENTO OSCILATORIO LIBRO ALONS...
.. ..
•
129.6K vues
Series de fourier 22 Ejercicios Resueltos par Joe Arroyo Suárez
Series de fourier 22 Ejercicios Resueltos
Joe Arroyo Suárez
•
306.2K vues
Ejercicios campo electrico y carga puntual par Alain Francisco Rodriguez
Ejercicios campo electrico y carga puntual
Alain Francisco Rodriguez
•
649.3K vues
En vedette
Cálculo y Transformadas de Laplace par
Cálculo y Transformadas de Laplace
Fernando Antonio
7.7K vues
•
11 diapositives
Linealizacion (1) par
Linealizacion (1)
Daniel Sandoval Rodriguez
37.2K vues
•
9 diapositives
Tabela de identidades trigonometricas par
Tabela de identidades trigonometricas
Rodrigo Sócrate
79.8K vues
•
1 diapositive
Practica de identidades trigonometricas par
Practica de identidades trigonometricas
janylorena2
5.2K vues
•
1 diapositive
Tabla de transformadas de laplace par
Tabla de transformadas de laplace
Mauricio Espinoza Fajardo
56.5K vues
•
1 diapositive
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (... par
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...
Yeina Pedroza
350K vues
•
40 diapositives
En vedette
(6)
Cálculo y Transformadas de Laplace par Fernando Antonio
Cálculo y Transformadas de Laplace
Fernando Antonio
•
7.7K vues
Linealizacion (1) par Daniel Sandoval Rodriguez
Linealizacion (1)
Daniel Sandoval Rodriguez
•
37.2K vues
Tabela de identidades trigonometricas par Rodrigo Sócrate
Tabela de identidades trigonometricas
Rodrigo Sócrate
•
79.8K vues
Practica de identidades trigonometricas par janylorena2
Practica de identidades trigonometricas
janylorena2
•
5.2K vues
Tabla de transformadas de laplace par Mauricio Espinoza Fajardo
Tabla de transformadas de laplace
Mauricio Espinoza Fajardo
•
56.5K vues
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (... par Yeina Pedroza
Aplicaciones de las ecuaciones diferenciales a problemas vaciado de tanques (...
Yeina Pedroza
•
350K vues
Similaire à formulario matematicas
FORMULARIO-MATEMATICAS-FIME-2015-V2.pdf par
FORMULARIO-MATEMATICAS-FIME-2015-V2.pdf
JorgeEnrique649232
157 vues
•
6 diapositives
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx par
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
JulioRodrguezBerroca1
50 vues
•
90 diapositives
formulario básico de Cálculo y Geometría.pdf par
formulario básico de Cálculo y Geometría.pdf
GuerraAlfaroJorgeAle
41 vues
•
5 diapositives
Roger formulario1 par
Roger formulario1
tecoari
197 vues
•
2 diapositives
Series asociada de legendre par
Series asociada de legendre
hector leon cervantes cuellar
182 vues
•
4 diapositives
Matematica daniel parra par
Matematica daniel parra
Daniel Parra
375 vues
•
11 diapositives
Similaire à formulario matematicas
(20)
FORMULARIO-MATEMATICAS-FIME-2015-V2.pdf par JorgeEnrique649232
FORMULARIO-MATEMATICAS-FIME-2015-V2.pdf
JorgeEnrique649232
•
157 vues
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx par JulioRodrguezBerroca1
DIDCLTFCIMPROPIAS-octubre 23 2022-II-TELLO GODOY.pptx
JulioRodrguezBerroca1
•
50 vues
formulario básico de Cálculo y Geometría.pdf par GuerraAlfaroJorgeAle
formulario básico de Cálculo y Geometría.pdf
GuerraAlfaroJorgeAle
•
41 vues
Roger formulario1 par tecoari
Roger formulario1
tecoari
•
197 vues
Series asociada de legendre par hector leon cervantes cuellar
Series asociada de legendre
hector leon cervantes cuellar
•
182 vues
Matematica daniel parra par Daniel Parra
Matematica daniel parra
Daniel Parra
•
375 vues
Ecuaciones diferenciales aplicadas a la cinetica quimica par JOSUÉ NEFTALÍ GUTIÉRREZ CORONA
Ecuaciones diferenciales aplicadas a la cinetica quimica
JOSUÉ NEFTALÍ GUTIÉRREZ CORONA
•
254 vues
Entregable 4 par Universidad Tecnologica de Puebla
Entregable 4
Universidad Tecnologica de Puebla
•
86 vues
Potencia algebra folmula 1 par tecoarirap777
Potencia algebra folmula 1
tecoarirap777
•
42 vues
formulas de Potencia algebraica completo. par roger kasa
formulas de Potencia algebraica completo.
roger kasa
•
299 vues
CI EJEMPLO DE EVALUACIÓN 1 SISTEMAS DE CONTROL CURSOS ANTERIORES.pdf par AVINADAD MENDEZ
CI EJEMPLO DE EVALUACIÓN 1 SISTEMAS DE CONTROL CURSOS ANTERIORES.pdf
AVINADAD MENDEZ
•
184 vues
Formulario de variable compleja par Alfonso Prado
Formulario de variable compleja
Alfonso Prado
•
3.8K vues
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICO par Jaime Velastegui
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICO
Jaime Velastegui
•
490 vues
Ecuaciones diferenciales par marialejvegas
Ecuaciones diferenciales
marialejvegas
•
463 vues
INFORME MATEMATICA III.docx par DanielRamosGonzales
INFORME MATEMATICA III.docx
DanielRamosGonzales
•
28 vues
Conexidad por trayectorias par Lizeth Vargas Vera
Conexidad por trayectorias
Lizeth Vargas Vera
•
423 vues
Ejercicios de fenomenos de transporte bird par Raul del Angel Santos Serena
Ejercicios de fenomenos de transporte bird
Raul del Angel Santos Serena
•
6.2K vues
formulario de Matemática completa y mejorada par Roger CK
formulario de Matemática completa y mejorada
Roger CK
•
68 vues
4 guia integración de potencias trigonométricas par raul_agudelo
4 guia integración de potencias trigonométricas
raul_agudelo
•
14.1K vues
Ejercicios Resueltos de Calculo II par Carlos Aviles Galeas
Ejercicios Resueltos de Calculo II
Carlos Aviles Galeas
•
13.3K vues
Dernier
FORTI-DICIEMBRE.2023.pdf par
FORTI-DICIEMBRE.2023.pdf
El Fortí
144 vues
•
40 diapositives
Tema 6 (anexo 04).- NPS.pdf par
Tema 6 (anexo 04).- NPS.pdf
Daniel Ángel Corral de la Mata, Ph.D.
29 vues
•
18 diapositives
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero par
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero
Heyssen J. Cordero Maraví
44 vues
•
61 diapositives
Proteinas 2023.pdf par
Proteinas 2023.pdf
IES Vicent Andres Estelles
52 vues
•
52 diapositives
5°_GRADO_-_ACTIVIDAD_DEL_22_DE_NOVIEMBRE.doc par
5°_GRADO_-_ACTIVIDAD_DEL_22_DE_NOVIEMBRE.doc
josetejada220380
132 vues
•
39 diapositives
expresion algebraica.pdf par
expresion algebraica.pdf
WilkerlySoto
25 vues
•
15 diapositives
Dernier
(20)
FORTI-DICIEMBRE.2023.pdf par El Fortí
FORTI-DICIEMBRE.2023.pdf
El Fortí
•
144 vues
Tema 6 (anexo 04).- NPS.pdf par Daniel Ángel Corral de la Mata, Ph.D.
Tema 6 (anexo 04).- NPS.pdf
Daniel Ángel Corral de la Mata, Ph.D.
•
29 vues
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero par Heyssen J. Cordero Maraví
ESCUELA SABÁTICA MISIONERA | By Pr. Heyssen Cordero
Heyssen J. Cordero Maraví
•
44 vues
Proteinas 2023.pdf par IES Vicent Andres Estelles
Proteinas 2023.pdf
IES Vicent Andres Estelles
•
52 vues
5°_GRADO_-_ACTIVIDAD_DEL_22_DE_NOVIEMBRE.doc par josetejada220380
5°_GRADO_-_ACTIVIDAD_DEL_22_DE_NOVIEMBRE.doc
josetejada220380
•
132 vues
expresion algebraica.pdf par WilkerlySoto
expresion algebraica.pdf
WilkerlySoto
•
25 vues
Plan analítico en la NEM (2).pptx par Norberto Millán Muñoz
Plan analítico en la NEM (2).pptx
Norberto Millán Muñoz
•
189 vues
Perspectivas teóricas y modelos par darianavalera54
Perspectivas teóricas y modelos
darianavalera54
•
27 vues
BDA MATEMATICAS (2).pptx par luisahumanez2
BDA MATEMATICAS (2).pptx
luisahumanez2
•
40 vues
Act#14 BT. 3.4 Organizacion Seres Vivos 2023 Online.pptx par Integrated Sciences 8 (2023- 2024)
Act#14 BT. 3.4 Organizacion Seres Vivos 2023 Online.pptx
Integrated Sciences 8 (2023- 2024)
•
41 vues
semana 2 .pdf par ValdezsalvadorMayleM
semana 2 .pdf
ValdezsalvadorMayleM
•
87 vues
Semana 4.pptx par ValdezsalvadorMayleM
Semana 4.pptx
ValdezsalvadorMayleM
•
55 vues
Infografia María Fuenmayor S _20231126_070624_0000.pdf par mariafuenmayor20
Infografia María Fuenmayor S _20231126_070624_0000.pdf
mariafuenmayor20
•
33 vues
Inteligencia Artificial en las aulas par Lorena Fernández
Inteligencia Artificial en las aulas
Lorena Fernández
•
97 vues
primer clase y diferencias comunicacion e informacion.pptx par NohemiCastillo14
primer clase y diferencias comunicacion e informacion.pptx
NohemiCastillo14
•
43 vues
5°_GRADO_-_ACTIVIDAD_DEL_24_DE_NOVIEMBRE.doc par josetejada220380
5°_GRADO_-_ACTIVIDAD_DEL_24_DE_NOVIEMBRE.doc
josetejada220380
•
26 vues
Mujeres privadas de libertad en Bolivia 2022 par LuisFernando672460
Mujeres privadas de libertad en Bolivia 2022
LuisFernando672460
•
117 vues
Misión en favor de los poderosos.pdf par AlejandrinoHalire
Misión en favor de los poderosos.pdf
AlejandrinoHalire
•
65 vues
Aprendiendo a leer :Ma me mi mo mu..pdf par camiloandres593920
Aprendiendo a leer :Ma me mi mo mu..pdf
camiloandres593920
•
34 vues
2324_s3_Orientaciones_Tercera_Sesion_Preescolar_Primaria_Secundaria.pdf par Norberto Millán Muñoz
2324_s3_Orientaciones_Tercera_Sesion_Preescolar_Primaria_Secundaria.pdf
Norberto Millán Muñoz
•
211 vues
formulario matematicas
1.
MATEMÁTICAS – FIME
– E2015 C CALCULO DIFERENCIAL 𝐷 𝑥(𝑢) 𝑛 = 𝑛(𝑢) 𝑛−1 𝑑𝑢 𝐷 𝑥[𝑢 ∗ 𝑣] = 𝑢𝐷 𝑥 𝑣 + 𝑣𝐷 𝑥 𝑢 𝐷 𝑥 [ 𝑢 𝑣 ] = 𝑣𝐷 𝑥 𝑢−𝑢𝐷 𝑥 𝑣 𝑣2 𝐷 𝑥[𝑙𝑛𝑢] = 1 𝑢 𝐷 𝑥 𝑢 𝐷 𝑥 [𝐿𝑜𝑔 𝑎 𝑢] = 1 𝑢𝑙𝑛𝑎 𝐷 𝑥 𝑢 𝐷 𝑥[𝑒 𝑢] = 𝑒 𝑢 𝐷 𝑥 𝑢 𝐷 𝑥[𝑎 𝑢] = 𝑎 𝑢 ln𝑎𝐷 𝑥 𝑢 𝐷 𝑥[𝑆𝑒𝑛𝑢] = 𝐶𝑜𝑠𝑢𝐷 𝑥 𝑢 𝐷 𝑥[𝐶𝑜𝑠𝑢] = −𝑆𝑒𝑛𝑢𝐷 𝑥 𝑢 𝐷 𝑥[𝑇𝑎𝑛𝑢] = 𝑆𝑒𝑐2 𝑢𝐷 𝑥 𝑢 𝐷 𝑥[𝐶𝑜𝑡𝑢] = −𝐶𝑠𝑐2 𝑢𝐷 𝑥 𝑢 𝐷 𝑥[𝑆𝑒𝑐𝑢] = 𝑆𝑒𝑐𝑢𝑇𝑎𝑛𝑢𝐷 𝑥 𝑢 𝐷 𝑥[𝐶𝑠𝑐𝑢] = −𝐶𝑠𝑐𝑢𝐶𝑜𝑡𝑢𝐷 𝑥 𝑢 𝐷 𝑥[𝑆𝑒𝑛ℎ𝑢] = 𝐶𝑜𝑠ℎ(𝑢)𝐷𝑢 𝐷 𝑥[𝐶𝑜𝑠ℎ𝑢] = 𝑆𝑒𝑛ℎ(𝑢)𝐷𝑢 𝐷 𝑥[𝑇𝑎𝑛ℎ𝑢] = 𝑆𝑒𝑐ℎ2 (𝑢)𝐷𝑢 𝐷 𝑥[𝐶𝑜𝑡ℎ𝑢] = −𝐶𝑠𝑐ℎ2 (𝑢)𝐷𝑢 𝐷 𝑥[𝑆𝑒𝑐ℎ𝑢] = −𝑆𝑒𝑐ℎ(𝑢)𝑇𝑎𝑛ℎ(𝑢)𝐷𝑢 𝐷 𝑥[𝐶𝑠𝑐ℎ𝑢] = −𝐶𝑠𝑐ℎ(𝑢)𝐶𝑜𝑡ℎ(𝑢)𝐷𝑢 𝐷𝑥[ 𝐴𝑟𝑐𝑆𝑒𝑛𝑢] = 𝐷 𝑥 𝑢 √1−𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑜𝑠𝑢] = −𝐷 𝑥 𝑢 √1−𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝑇𝑎𝑛𝑢] = 𝐷 𝑥 𝑢 1+ 𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑜𝑡𝑢] = −𝐷 𝑥 𝑢 1+ 𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝑆𝑒𝑐𝑢] = 𝐷 𝑥 𝑢 |𝑢|√𝑢2−1 𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑠𝑐𝑢] = −𝐷 𝑥 𝑢 |𝑢|√𝑢2−1 𝐷 𝑥[ 𝑆𝑒𝑛ℎ−1 𝑢] = 𝐷 𝑥 𝑢 √𝑢2+ 1 𝐷 𝑥[ 𝐶𝑜𝑠ℎ−1 𝑢] = 𝐷 𝑥 𝑢 √𝑢2− 1 𝐷 𝑥[ 𝑇𝑎𝑛ℎ−1 𝑢] = 𝐷 𝑥 𝑢 1 − 𝑢2 𝐷 𝑥[ 𝐶𝑜𝑡ℎ−1 𝑢] = 𝐷 𝑥 𝑢 1 − 𝑢2 𝐷 𝑥[ 𝑆𝑒𝑐ℎ−1 𝑢] = − 𝐷 𝑥 𝑢 𝑢 √1−𝑢2 𝐷 𝑥[ 𝐶𝑠𝑐ℎ−1 𝑢] = − 𝐷 𝑥 𝑢 |𝑢|√1−𝑢2 REGLAS BASICAS DE LA INTEGRACION ∫[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥) ± ∫ 𝑔(𝑥)𝑑𝑥 ∫ 𝑑𝑥 = 𝑥 + 𝐶 ∫ 𝑥 𝑛 𝑑𝑥 = 𝑥 𝑛+1 𝑛+1 + 𝐶 ∫ 𝐾𝑓(𝑥)𝑑𝑥 = 𝐾 ∫ 𝑓(𝑥)𝑑𝑥 𝐊 = 𝐜𝐭𝐞 CAMBIO DE VARIABLE ∫ 𝑒 𝑢 𝑑𝑢 = 𝑒 𝑢 + 𝐶 ∫ 𝑎 𝑢 𝑑𝑢 = 𝑎 𝑢 ln 𝑎 + 𝐶 ∫ 𝑢 𝑛 𝑑𝑢 = 𝑢 𝑛+1 𝑛+1 + 𝐶 𝐧 ≠ −𝟏 En donde u es una función polinomial o trascendental 𝒆 = 𝑪𝒕𝒆. 𝒅𝒆 𝑬𝒖𝒍𝒆𝒓 = 𝟐. 𝟕𝟏𝟖 𝑃𝑟𝑜𝑝𝑖𝑒𝑑𝑎𝑑: 𝑒 𝑙𝑛𝑥 = 𝑥 FUNCION LOGARITMICA 𝐿𝑛 1 = 0 ∫ 𝑑𝑢 𝑢 = 𝑙𝑛|𝑢| + 𝐶 Propiedades: Ln (pq) = Ln p + Ln q Ln e=1 Ln( 𝑝 𝑞 ) = 𝐿𝑛(𝑝) − 𝐿𝑛(𝑞) Ln 𝑝 𝑟 = 𝑟 𝐿𝑛 𝑝 FUNCIONES EXPONENCIALES FUNCIONES TRIGONOMÉTRICAS ∫ 𝑆𝑒𝑛(𝑢)𝑑𝑢 = −𝐶𝑜𝑠(𝑢) + 𝐶 ∫ 𝐶𝑜𝑠(𝑢)𝑑𝑢 = 𝑆𝑒𝑛(𝑢) + 𝐶 ∫ 𝑇𝑎𝑛(𝑢)𝑑𝑢 = ln|𝑆𝑒𝑐(𝑢)| + 𝐶 = −ln|𝐶𝑜𝑠(𝑢)| + 𝐶 ∫ 𝐶𝑜𝑡(𝑢)𝑑𝑢 = −ln|𝐶𝑠𝑐(𝑢)| + 𝐶 = ln|𝑆𝑒𝑛(𝑢)| + 𝐶 ∫ 𝑆𝑒𝑐(𝑢)𝑑𝑢 = ln|𝑆𝑒𝑐(𝑢) + 𝑇𝑎𝑛(𝑢)| + 𝐶 ∫ 𝐶𝑠𝑐(𝑢)𝑑𝑢 = ln|𝐶𝑠𝑐(𝑢) − 𝐶𝑜𝑡 (𝑢)| + 𝐶 ∫ 𝑆𝑒𝑐2(𝑢)𝑑𝑢 = 𝑇𝑎𝑛(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐2(𝑢)𝑑𝑢 = − 𝐶𝑜𝑡(𝑢) + 𝐶 ∫ 𝑆𝑒𝑐(𝑢)𝑇𝑎𝑛(𝑢)𝑑𝑢 = 𝑆𝑒𝑐(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐(𝑢)𝐶𝑜𝑡(𝑢)𝑑𝑢 = −𝐶𝑠𝑐(𝑢) + 𝐶
2.
FUNCIONES HIPERBÓLICAS ∫ 𝑆𝑒𝑛ℎ(𝑢)𝑑𝑢
= 𝐶𝑜𝑠ℎ(𝑢) + 𝐶 ∫ 𝐶𝑜𝑠ℎ(𝑢)𝑑𝑢 = 𝑆𝑒𝑛ℎ(𝑢) + 𝐶 ∫ 𝑇𝑎𝑛ℎ(𝑢)𝑑𝑢 = 𝑙𝑛|𝐶𝑜𝑠ℎ 𝑢| + 𝐶 ∫ 𝐶𝑜𝑡ℎ(𝑢)𝑑𝑢 = 𝑙𝑛|𝑆𝑒𝑛ℎ 𝑢| + 𝐶 ∫ 𝑆𝑒𝑐ℎ2(𝑢)𝑑𝑢 = 𝑇𝑎𝑛ℎ(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐ℎ2(𝑢)𝑑𝑢 = − 𝐶𝑜𝑡ℎ(𝑢) + 𝐶 ∫ 𝑆𝑒𝑐ℎ(𝑢)𝑇𝑎𝑛ℎ(𝑢)𝑑𝑢 = −𝑆𝑒𝑐ℎ(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐ℎ(𝑢)𝐶𝑜𝑡ℎ(𝑢)𝑑𝑢 = −𝐶𝑠𝑐ℎ(𝑢) + 𝐶 FUNCIONES TRIGONOMÉTRICAS INVERSAS ∫ 𝑑𝑢 √𝑎2− 𝑢2 = 𝑆𝑒𝑛−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑎2+ 𝑢2 = 1 𝑎 𝑇𝑎𝑛−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑢 √𝑢2− 𝑎2 = 1 𝑎 𝑆𝑒𝑐−1 ( 𝑢 𝑎 ) + 𝐶 FUNCIONES HIPERBOLICAS INVERSAS ∫ 𝑑𝑢 √𝑎2+ 𝑢2 = 𝑆𝑒𝑛ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 √𝑢2− 𝑎2 = 𝐶𝑜𝑠ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑢 √𝑎2+ 𝑢2 = −1 𝑎 𝐶𝑠𝑐ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑢 √𝑎2− 𝑢2 = −1 𝑎 𝑆𝑒𝑐ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑎2− 𝑢2 = 1 𝑎 𝑇𝑎𝑛ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 √ 𝑢2± 𝑎2 = ln (𝑢 + √ 𝑢2 ± 𝑎2) + 𝐶 ∫ 𝑑𝑢 𝑎2− 𝑢2 = 1 2𝑎 𝑙𝑛 | 𝑎+𝑢 𝑎−𝑢 | + 𝐶 ∫ 𝑑𝑢 𝑢 √ 𝑎2± 𝑢2 = − 1 𝑎 𝑙𝑛 ( 𝑎+√ 𝑎2± 𝑢2 |𝑢| ) + 𝐶 Forma equivalente de las integrales que dan como resultado HIPERBÓLICAS INVERSAS SUSTITUCIÓN TRIGONOMÉTRICA Forma Sustitución la raíz se sustituye por: √𝑎2 − 𝑢2 u= aSen𝜃 aCos𝜃 √𝑎2 + 𝑢2 u= aTan𝜃 aSec𝜃 √𝑢2 − 𝑎2 u= aSec𝜃 aTan𝜃 INTEGRAL POR PARTES ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 CASOS TRIGONOMÉTRICOS ∫ 𝑆𝑒𝑛 𝑛(𝑢)𝑑𝑢; ∫ 𝐶𝑜𝑠 𝑛(𝑢)𝑑𝑢 CASO I. En donde n es entero impar positivo Expresar: 𝑆𝑒𝑛 𝑛(𝑢) = 𝑆𝑒𝑛 𝑛−1(𝑢) 𝑆𝑒𝑛 (𝑢) Usar: 𝑺𝒆𝒏 𝟐(𝒖) = 𝟏 − 𝑪𝒐𝒔 𝟐(𝒖) 𝐶𝑜𝑠 𝑛(𝑢) = 𝐶𝑜𝑠 𝑛−1(𝑢) 𝐶𝑜𝑠(𝑢) Usar: 𝑪𝒐𝒔 𝟐(𝒖) = 𝟏 − 𝑺𝒆𝒏 𝟐(𝒖) CASO II : ∫ 𝑆𝑒𝑛 𝑛(𝑢) 𝐶𝑜𝑠 𝑚(𝑢)𝑑𝑢 ; En donde al menos un exponente es entero impar positivo, utilizar: 𝑺𝒆𝒏 𝟐(𝒖) + 𝑪𝒐𝒔 𝟐(𝒖) = 𝟏 de manera similar al CASO I NOTA: Si los dos exponentes son enteros impares positivos se cambia el impar menor 𝐴𝑥 + 𝐵 𝑎𝑥2 + 𝑏𝑥 + 𝑐 CASO III. Factores cuadráticos distintos. A cada factor cuadrático (𝑎𝑥2 + 𝑏𝑥 + 𝑐) le corresponde una fracción de la forma 𝐴1 𝑥 + 𝐵1 𝑎𝑥2 + 𝑏𝑥 + 𝑐 + ⋯ + 𝐴 𝑘 𝑥 + 𝐵 𝑘 (𝑎𝑥2 + 𝑏𝑥 + 𝑐) 𝑘 CASO IV. Factores cuadráticos repetidos. A cada factor cuadrático repetido (𝑎𝑥2 + 𝑏𝑥 + 𝑐) 𝑘 le corresponde la suma de k fracciones parciales de la forma: TEOREMAS DE SUMATORIAS Sean m y n enteros positivos, c= constante 1. ∑ 𝒄 𝒇(𝒊) = 𝒄 ∑ 𝒇(𝒊)𝒏 𝒊=𝟏 𝒏 𝒊=𝟏 2. ∑ [𝒇(𝒊) ± 𝒈(𝒊)] = ∑ 𝒇(𝒊) ± ∑ 𝒈(𝒊)𝒏 𝒊=𝟏 𝒏 𝒊=𝟏 𝒏 𝒊=𝟏 3. ∑ 𝒇(𝒊) = ∑ 𝒇(𝒊) + ∑ 𝒇(𝒊) 𝒎 < 𝒏𝒏 𝒊=𝒎+𝟏 𝒎 𝒊=𝟏 𝒏 𝒊=𝟏 4. ∑ 𝒄 = 𝒏𝒄𝒏 𝒊=𝟏 5. ∑ 𝒊𝒏 𝒊=𝟏 = 𝒏(𝒏+𝟏) 𝟐 6. ∑ 𝒊 𝟐 = 𝒏(𝒏+𝟏)(𝟐𝒏+𝟏) 𝟔 𝒏 𝒊=𝟏 7. ∑ 𝒊 𝟑 = [ 𝒏(𝒏+𝟏) 𝟐 ] 𝟐 𝒏 𝒊=𝟏 SUMA DE RIEMANN ∫ 𝑓(𝑥)𝑑𝑥 = lim 𝑛→∞ ∑ 𝑓(𝑐𝑖)∆𝑥𝑛 𝑖=1 𝑏 𝑎 ∆𝑥 = 𝑏−𝑎 𝑛 , 𝑐𝑖 = 𝑎 + 𝑖 ∗ ∆𝑥 FRACCIONES PARCIALES 𝐴 𝑎𝑥 + 𝑏 CASO I: Factores lineales distintos. A cada factor lineal (ax + b) le corresponde una fracción de la forma: 𝐴1 𝑎𝑥 + 𝑏 + 𝐴2 (𝑎𝑥 + 𝑏)2 + ⋯ + 𝐴 𝑘 (𝑎𝑥 + 𝑏) 𝑘 CASO II: Factores lineales repetidos. A cada factor lineal repetido (ax + b) 𝑘 . Le corresponde la suma de k fracciones parciales de la forma:
3.
Tipo de Integral
Condición Identidad útil 1 ∫ 𝑆𝑒𝑛 𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑜𝑠 𝑛 𝑢 𝑑𝑢, donde n es un entero impar positivo 𝑆𝑒𝑛2 𝑢 + 𝐶𝑜𝑠2 𝑢 = 1 2 ∫ 𝑆𝑒𝑛 𝑛 𝑢 𝐶𝑜𝑠 𝑚 𝑢 𝑑𝑢, donde n o m es un entero impar positivo 𝑆𝑒𝑛2 𝑢 + 𝐶𝑜𝑠2 𝑢 = 1 3 ∫ 𝑆𝑒𝑛 𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑜𝑠 𝑛 𝑢 𝑑𝑢, ∫ 𝑆𝑒𝑛 𝑛 𝑢 𝐶𝑜𝑠 𝑚 𝑢 𝑑𝑢, donde n y m son enteros pares positivos 𝑆𝑒𝑛2 𝑢 = 1−𝐶𝑜𝑠 2𝑢 2 𝐶𝑜𝑠2 𝑢 = 1+𝐶𝑜𝑠 2𝑢 2 𝑆𝑒𝑛 𝑢 𝐶𝑜𝑠 𝑢 = 1 2 𝑆𝑒𝑛 2𝑢 4 ∫ 𝑆𝑒𝑛 (𝑚𝑢) 𝐶𝑜𝑠(𝑛𝑢)𝑑𝑢 ∫ 𝑆𝑒𝑛 (𝑚𝑢) 𝑆𝑒𝑛(𝑛𝑢)𝑑𝑢 ∫ 𝐶𝑜𝑠 (𝑚𝑢) 𝐶𝑜𝑠(𝑛𝑢)𝑑𝑢 donde n y m son cualquier número 𝑆𝑒𝑛 𝐴 𝐶𝑜𝑠 𝐵 = 1 2 [𝑆𝑒𝑛 (𝐴 − 𝐵) + 𝑆𝑒𝑛 (𝐴 + 𝐵)] 𝑆𝑒𝑛 𝐴 𝑆𝑒𝑛 𝐵 = 1 2 [ 𝐶𝑜𝑠 (𝐴 − 𝐵) − 𝐶𝑜𝑠 (𝐴 + 𝐵)] 𝐶𝑜𝑠 𝐴 𝐶𝑜𝑠 𝐵 = 1 2 [ 𝐶𝑜𝑠 (𝐴 − 𝐵) + 𝐶𝑜𝑠 (𝐴 + 𝐵)] 5 ∫ 𝑇𝑎𝑛 𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑜𝑡 𝑛 𝑢 𝑑𝑢 donde n es cualquier número entero 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 6 ∫ 𝑆𝑒𝑐 𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑠𝑐 𝑛 𝑢 𝑑𝑢 donde n es un entero par positivo 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 1 + 𝐶𝑜𝑡2 𝑢 = 𝐶𝑠𝑐2 𝑢 7 ∫ 𝑇𝑎𝑛 𝑚 𝑢 𝑆𝑒𝑐 𝑛 𝑢 𝑑𝑢 ∫ 𝐶𝑜𝑡 𝑚 𝑢 𝐶𝑠𝑐 𝑛 𝑢 𝑑𝑢 donde n es un entero par positivo 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 1 + 𝐶𝑜𝑡2 𝑢 = 𝐶𝑠𝑐2 𝑢 8 ∫ 𝑇𝑎𝑛 𝑚 𝑢 𝑆𝑒𝑐 𝑛 𝑢 𝑑𝑢 ∫ 𝐶𝑜𝑡 𝑚 𝑢 𝐶𝑠𝑐 𝑛 𝑢 𝑑𝑢 donde m es un entero impar positivo 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 1 + 𝐶𝑜𝑡2 𝑢 = 𝐶𝑠𝑐2 𝑢 CASOS TRIGONOMETRICOS APLICACIONES DE LA INTEGRAL DEFINIDA 𝐴 = ∫ [(𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑎𝑟𝑟𝑖𝑏𝑎) − (𝑓𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑎𝑏𝑎𝑗𝑜)]𝑑𝑥 𝑏 𝑎 𝐴 = ∫ [(𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒𝑟𝑒𝑐ℎ𝑎) − (𝑓𝑢𝑛𝑐𝑖ó𝑛 𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑎)]𝑑𝑦 𝑏 𝑎 ÁREA: 𝑉 = 2𝜋 ∫ 𝑟(𝑦)ℎ(𝑦)𝑑𝑦 𝑏 𝑎 𝑉 = 2𝜋 ∫ 𝑟(𝑥)ℎ(𝑥)𝑑𝑥 𝑏 𝑎 VOLUMEN / METODO DE CAPAS O CORTEZA Cuando el eje de revolución es horizontal Cuando el eje de revolución es vertical VOLUMEN / METODO DEL DISCO O ARANDELA V= 𝜋 ∫ [(𝑅2(𝑥) − 𝑟2 (𝑥)]𝑑𝑥 𝑏 𝑎 V= 𝜋 ∫ [(𝑅2(𝑦) − 𝑟2 (𝑦)]𝑑𝑦 𝑏 𝑎 LONGITUD DE ARCO 𝑆 = ∫ √1 + [𝑓´(𝑥)]2 𝑑𝑥 𝑏 𝑎 𝑆 = ∫ √1 + [𝑔´(𝑦)]2 𝑑𝑦 𝑑 𝑐 TRABAJO 𝑾 = ∫ 𝑭(𝒙)𝒅𝒙 𝒃 𝒂CALCULO DE INTEGRALES DOBLES ∬ 𝑓(𝑥, 𝑦)𝑑𝐴𝑅 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 𝑔2(𝑥) 𝑔1(𝑥) 𝑏 𝑎 ∬ 𝑓(𝑥, 𝑦)𝑑𝐴𝑅 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 𝑔2(𝑦) 𝑔1(𝑦) 𝑏 𝑎
4.
IDENTIDADES TRIGONOMÉTRICAS INVERSAS 𝑆𝑒𝑛(𝑢) = 1 𝐶𝑠𝑐(𝑢) Csc(𝑢)
= 1 𝑆𝑒𝑛(𝑢) 𝐶𝑜𝑠(𝑢) = 1 𝑆𝑒𝑐(𝑢) 𝑆𝑒𝑐(𝑢) = 1 𝐶𝑜𝑠(𝑢) 𝑇𝑎𝑛(𝑢) = 1 𝐶𝑜𝑡(𝑢) 𝐶𝑜𝑡(𝑢) = 1 𝑇𝑎𝑛(𝑢) FORMA DE COCIENTE 𝑇𝑎𝑛(𝑢) = 𝑆𝑒𝑛(𝑢) 𝐶𝑜𝑠(𝑢) 𝐶𝑜𝑡(𝑢) = 𝐶𝑜𝑠(𝑢) 𝑆𝑒𝑛(𝑢) PITAGÓRICAS 𝑆𝑒𝑛2(𝑢) = 1 − 𝐶𝑜𝑠2 (𝑢) 𝐶𝑜𝑠2(𝑢) = 1 − 𝑆𝑒𝑛2 (𝑢) 𝑆𝑒𝑐2(𝑢) = 1 + 𝑇𝑎𝑛2 (𝑢) 𝑇𝑎𝑛2(𝑢) = 𝑆𝑒𝑐2(𝑢) − 1 𝐶𝑠𝑐2(𝑢) = 1 + 𝐶𝑜𝑡2 (𝑢) 𝐶𝑜𝑡2(𝑢) = 𝐶𝑠𝑐2(𝑢) − 1 ANGULO DOBLE Sen2u= 2Sen(u)Cos(u) Cos2u = 𝐶𝑜𝑠2(𝑢) − 𝑆𝑒𝑛2(𝑢) 𝑆𝑒𝑛2(𝑢) = 1−cos(2𝑢) 2 𝐶𝑜𝑠2(𝑢) = 1+cos(2𝑢) 2 IDENTIDADES HIPERBÓLICAS 𝑐𝑜𝑠ℎ2(𝑢) − 𝑠𝑒𝑛ℎ2(𝑢) = 1 𝑠𝑒𝑐ℎ2(𝑢) + 𝑡𝑎𝑛ℎ2(𝑢) = 1 𝑐𝑜𝑡ℎ2(𝑢) − 𝑐𝑠𝑐ℎ2(𝑢) = 1 𝑠𝑒𝑛ℎ(2𝑢) = 2𝑠𝑒𝑛ℎ(𝑢)cosh(𝑢) cosh(2𝑢) = 𝑐𝑜𝑠ℎ2(𝑢) + 𝑠𝑒𝑛ℎ2(𝑢) 𝑡𝑎𝑛ℎ(2𝑢) = 2tanh(𝑢) 1+𝑡𝑎𝑛ℎ2(𝑢) 𝑠𝑒𝑛ℎ2(𝑢) = 𝑐𝑜𝑠ℎ(2𝑢)−1 2 𝑐𝑜𝑠ℎ2(𝑢) = 𝑐𝑜𝑠ℎ(2𝑢)+1 2 𝑠𝑒𝑛ℎ 𝑥 = 𝑒 𝑥−𝑒−𝑥 2 𝐶𝑜𝑠ℎ 𝑥 = 𝑒 𝑥+𝑒−𝑥 2 𝑇𝑎𝑛ℎ 𝑥 = 𝑠𝑒𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑥 𝐶𝑜𝑡ℎ 𝑥 = 𝑐𝑜𝑠ℎ𝑥 𝑠𝑒𝑛ℎ𝑥 𝑆𝑒𝑛ℎ 𝑥𝐶𝑠𝑐ℎ𝑥 = 1 𝐶𝑜𝑠ℎ 𝑥𝑆𝑒𝑐ℎ𝑥 = 1 𝑇𝑎𝑛ℎ 𝑥𝐶𝑜𝑡ℎ𝑥 = 1 FUNCIONES TRIGONOMÉTRICAS 𝑆𝑒𝑛𝜃 = 𝐶.𝑂. 𝐻𝑖𝑝 𝐶𝑜𝑡𝜃 = 𝐶.𝐴. 𝐶.𝑂. 𝐶𝑜𝑠𝜃 = 𝐶.𝐴. 𝐻𝑖𝑝 𝑆𝑒𝑐𝜃 = 𝐻𝑖𝑝. 𝐶.𝐴. 𝑇𝑎𝑛𝜃 = 𝐶.𝑂. 𝐶.𝐴. 𝐶𝑠𝑐𝜃 = 𝐻𝑖𝑝. 𝐶.𝑂. 𝑆𝑒𝑛(−𝐴) = −𝑠𝑒𝑛(𝐴) 𝐶𝑜𝑠(−𝐵) = cos(𝐵) 𝑠𝑒𝑛(0) = 0 𝑠𝑒𝑛(𝜋) = 0 𝑠𝑒𝑛(2𝜋) = 0 𝑠𝑒𝑛(𝑛𝜋) = 0 𝑠𝑒𝑛 [(2𝑛 − 1) 𝜋 2 ] = −(−1) 𝑛 = (−1) 𝑛+1 𝑐𝑜𝑠(0) = 1 𝑐𝑜𝑠(𝜋) = −1 𝑐𝑜𝑠(2𝜋) = 1 𝑐𝑜𝑠(2𝑛𝜋) = 1 𝑐𝑜𝑠 [(2𝑛 − 1) 𝜋 2 ] = 𝑐𝑜𝑠 [(1 − 2𝑛) 𝜋 2 ] = 0 𝑐𝑜𝑠(−𝑛𝜋) = 𝑐𝑜𝑠(𝑛𝜋) = (−1) 𝑛 VALORES IMPORTANTES DEL SENO Y COSENO 𝑆𝑒𝑛 (𝑛𝑊𝑜𝑡) = 1 2𝑗 (𝑒 𝑗𝑛𝑊𝑜𝑡 − 𝑒−𝑗𝑛𝑊𝑜𝑡 ) 𝐶𝑜𝑠 (𝑛𝑊𝑜𝑡) = 1 2 (𝑒 𝑗𝑛𝑊𝑜𝑡 + 𝑒−𝑗𝑛𝑊𝑜𝑡 ) 𝑠𝑒𝑛 ( 𝜋 2 ) = 1 𝑠𝑒𝑛 ( 3 2 𝜋) = −1 𝑠𝑒𝑛(−𝑛𝜋) = −𝑠𝑒𝑛(𝑛𝜋) = 0 𝑐𝑜𝑠 ( 𝜋 2 ) = 0 𝑐𝑜𝑠 ( 3 2 𝜋) = 0 𝑐𝑜𝑠(2𝑛 − 1)𝜋 = −1 𝑐𝑜𝑠(𝑛𝜋) = (−1) 𝑛 𝑒±𝑗𝑛𝜋 = cos(𝑛𝜋) ± 𝑗 𝑠𝑒𝑛(𝑛𝜋) 𝑎 𝑚 𝑎 𝑛 = 𝑎 𝑚+𝑛 ( 𝑎 𝑏 ) 𝑚 = 𝑎 𝑚 𝑏 𝑚 (𝑎 𝑚 ) 𝑛 = 𝑎 𝑚𝑛 𝑎−𝑛 = 1 𝑎 𝑛 (𝑎𝑏) 𝑚 = 𝑎 𝑚 𝑏 𝑚 𝑎 𝑝 𝑞 = √ 𝑎 𝑝𝑞 𝑎 𝑚 𝑎 𝑛 = 𝑎 𝑚−𝑛 𝑚 > 𝑛 𝑎0 = 1 𝑎 𝑚 𝑎 𝑛 = 1 𝑎 𝑛−𝑚 𝑚 < 𝑛 LEYES DE EXPONENTES
5.
TABLA DE TRANSFORMADAS
ELEMENTALES f(t) F(s) 1 C 𝑪 𝒔 , 𝒔 > 0 2 t 𝟏 𝒔 𝟐 , 𝒔 > 0 3 𝒕 𝒏 𝒏! 𝒔 𝒏+𝟏 , 𝒔 > 0 4 𝒆 𝒂𝒕 𝟏 𝒔 − 𝒂 , 𝒔 > 𝑎 5 𝑺𝒆𝒏 𝒂𝒕 𝒂 𝒔 𝟐 + 𝒂 𝟐 , 𝒔 > 0 6 Cos at 𝒔 𝒔 𝟐 + 𝒂 𝟐 , 𝒔 > 0 7 Senh at 𝒂 𝒔 𝟐 − 𝒂 𝟐 , 𝒔 > |𝑎| 8 Cosh at 𝒔 𝒔 𝟐 − 𝒂 𝟐 , 𝒔 > |𝑎| 9 𝒕 𝒏 𝒆 𝒂𝒕 𝒏! (𝒔 − 𝒂) 𝒏+𝟏 10 𝒆 𝒃𝒕 𝑺𝒆𝒏 𝒂𝒕 𝒂 (𝒔 − 𝒃) 𝟐 + 𝒂 𝟐 11 𝒆 𝒃𝒕 𝑪𝒐𝒔 𝒂𝒕 𝒔 − 𝒃 (𝒔 − 𝒃) 𝟐 + 𝒂 𝟐 12 𝒆 𝒃𝒕 𝑺𝒆𝒏𝒉 𝒂𝒕 𝒂 (𝒔 − 𝒃) 𝟐 − 𝒂 𝟐 13 𝒆 𝒃𝒕 𝑪𝒐𝒔𝒉 𝒂𝒕 𝒔 − 𝒃 (𝒔 − 𝒃) 𝟐 − 𝒂 𝟐 TRANSFORMADAS DE LAPLACE TABLA DE TRANSFORMADAS INVERSAS ELEMENTALES F(s) f(t) 1 𝑪 𝒔 C 2 𝟏 𝒔 𝟐 t 3 𝟏 𝒔 𝒏+𝟏 𝒕 𝒏 𝒏! 4 𝟏 𝒔 − 𝒂 𝒆 𝒂𝒕 5 𝟏 𝒔 𝟐 + 𝒂 𝟐 𝑺𝒆𝒏 𝒂𝒕 𝒂 6 𝒔 𝒔 𝟐 + 𝒂 𝟐 Cos at 7 𝟏 𝒔 𝟐 − 𝒂 𝟐 𝑺𝒆𝒏𝒉 𝒂𝒕 𝒂 8 𝒔 𝒔 𝟐 − 𝒂 𝟐 Cosh at 9 𝟏 (𝒔 − 𝒂) 𝒏+𝟏 𝒕 𝒏 𝒆 𝒂𝒕 𝒏! 10 𝟏 (𝒔 − 𝒃) 𝟐 + 𝒂 𝟐 𝒆 𝒃𝒕 𝑺𝒆𝒏 𝒂𝒕 𝒂 11 𝒔 − 𝒃 (𝒔 − 𝒃) 𝟐 + 𝒂 𝟐 𝒆 𝒃𝒕 𝑪𝒐𝒔 𝒂𝒕 12 𝟏 (𝒔 − 𝒃) 𝟐 − 𝒂 𝟐 𝒆 𝒃𝒕 𝑺𝒆𝒏𝒉 𝒂𝒕 𝒂 13 𝒔 − 𝒃 (𝒔 − 𝒃) 𝟐 − 𝒂 𝟐 𝒆 𝒃𝒕 𝑪𝒐𝒔𝒉 𝒂𝒕 ℒ{𝑓(𝑛) (𝑡)} = 𝑠 𝑛 𝐹(𝑠) − 𝑠 𝑛−1 𝐹(0) − 𝑠 𝑛−2 𝐹′(0) − ⋯ − 𝑠𝐹(𝑛−2) (0) − 𝐹(𝑛−1) (0) ℒ {∫ 𝑓(𝑡)𝑑𝑡 𝑡 0 } = 𝐹(𝑠) 𝑠 ℒ{𝑡 𝑛 𝑓(𝑡)} = (−1) 𝑛 𝐹 𝑛 (𝑠) ℒ−1{𝑓(𝑠 − 𝑎)} = 𝑒 𝑎𝑡 𝐹(𝑡) ℒ−1 {𝐹 𝑛 (𝑠)} = (−1) 𝑛 𝑡 𝑛 𝑓(𝑡) ℒ−1 { 𝐹(𝑠) 𝑠 𝑛 } = ∫ … ∫ 𝑓(𝑡)𝑑𝑡 … 𝑑𝑡 𝑡 0 𝑡 0 ℒ−1{𝐹(𝑠)𝐺(𝑠)} = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢 𝑡 0 = ∫ 𝑔(𝑢)𝑓(𝑡 − 𝑢)𝑑𝑢 𝑡 0 Transformada de la derivada Transformada de la Integral Multiplicación por 𝐭 𝐧 Primera Propiedad de Traslación Transformada Inversa de la Derivada División por s Teorema de Convolución o Transformada Inversa del Producto Si ℒ−1{𝐹(𝑠)} = 𝑓(𝑡) 𝑦 ℒ−1{𝐺(𝑠)} = 𝑔(𝑡), entonces:
6.
𝑓(𝑡) = 1 2 𝑎0 +
∑[𝑎 𝑛 cos(𝑛𝜔0 𝑡) + 𝑏 𝑛 sen(𝑛𝜔0 𝑡)] ∞ 𝑛=1 Fórmula General 𝑎0 = 2 𝑇 ∫ f(t) 𝑑𝑡 𝑇 2⁄ −𝑇 2⁄ 𝑎 𝑛 = 2 𝑇 ∫ f(t)cos(𝑛𝜔0 𝑡)𝑑𝑡 𝑇 2⁄ −𝑇 2⁄ 𝑏 𝑛 = 2 𝑇 ∫ f(t)sen(𝑛𝜔0 𝑡)𝑑𝑡 𝑇 2⁄ −𝑇 2⁄ Simetría Par 𝑎0 = 4 𝑇 ∫ f(t) 𝑑𝑡 𝑇 2⁄ 0 𝑎 𝑛 = 4 𝑇 ∫ f(t)cos(𝑛𝜔0 𝑡)𝑑𝑡 𝑇 2⁄ 0 𝑏 𝑛 = 0 Simetría Impar 𝑎0 = 0 𝑎 𝑛 = 0 𝑏 𝑛 = 4 𝑇 ∫ f(t)sen(𝑛𝜔0 𝑡)𝑑𝑡 𝑇 2⁄ 0 Simetría de Media Onda 𝑎0 = 0 𝑎2𝑛−1 = 4 𝑇 ∫ f(t)cos[(2𝑛 − 1)(𝜔0 𝑡)]𝑑𝑡 𝑇 2⁄ 0 𝑏2𝑛−1 = 4 𝑇 ∫ f(t)sen[(2𝑛 − 1)(𝜔0 𝑡)]𝑑𝑡 𝑇 2⁄ 0 Simetría de un cuarto de onda Par 𝑎0 = 0 𝑎2𝑛−1 = 8 𝑇 ∫ f(t)cos[(2𝑛 − 1)(𝜔0 𝑡)]𝑑𝑡 𝑇 4⁄ 0 𝑏2𝑛−1 = 0 Simetría de un cuarto de onda Impar 𝑎0 = 0 𝑎2𝑛−1 = 0 𝑏2𝑛−1 = 8 𝑇 ∫ f(t)sen[(2𝑛 − 1)(𝜔0 𝑡)]𝑑𝑡 𝑇 4⁄ 0 SERIES DE FOURIER 𝐶 𝑛 = 1 𝑇 ∫ 𝑓(𝑡)𝑒−𝑗𝑛𝑊𝑜𝑡 𝑑𝑡 𝑇 2⁄ −𝑇 2⁄ 𝑓(𝑡) = ∑ 𝐶 𝑛 ∞ 𝑛=−∞ 𝑒 𝑗𝑛𝑊𝑜𝑡 Serie De Fourier (FORMA COMPLEJA) n= 0±1±2±3… 𝐶 𝑛 = 1 2 (𝑎 𝑛−𝑗 𝑏 𝑛) 𝐶0 = 1 2 𝑎0 Si se conoce 𝐚 𝐧, 𝐚 𝟎 y 𝐛 𝐧 se obtiene: 𝑎 𝑛 = 2𝑅𝑒[𝐶 𝑛] 𝑏 𝑛 = −2𝐼𝑚[𝐶 𝑛] 𝑎0 = 2𝐶0 Si se conoce 𝐂 𝐧, 𝐂 𝟎 se obtiene: 𝜔𝑜 = 2𝜋 𝑇