SlideShare a Scribd company logo
1 of 22
Download to read offline
2012.10.30.




         Multimodal Imaging in Neurosciences Course                 Diagnostic neuroimaging modalities
                                                                 CT – Computed Tomography           Structural MRI
                                                                 Brain anatomy                      Fine brain anatomy
                                                                 Stereotactic reference frame       Vascular structure

                                                                      Multi-modal imaging
                                                                 Intra-operative imaging            Diffusion, perfusion MRI

                                                                 field
                                                                          spectrum for
                                                                 modalities, open MRI, low-         Fine pathological
                                                                                                    information

                                                                      1.Diagnostic imaging
                                                                 Positron Emission
                                                                                                    MR Spectroscopy


             Introduction to Multi-modal
                                                                           2.Research
                                                                 Tomography PET
                                                                 Brain metabolism
                                                                 Brain function
                                                                                                    Brain metabolism
                                                                                                    Biochemical mapping

             neuroimaging                                                3.Neurosurgery
                                                                 Electro encephalography,
             Dr. Ervin Berenyi, MD, PhD                                                             Functional MR imaging fMRI
                                                                 LORETTA,
                                                                                                    Brain function
             Dr. András Jakab, MD, PhD                           Magnetoencephalography
             Dr. Peter Katona, MD




        What is multimodality?
                                                                  PET-CT HYBRID
 Combining images and information from multiple
 imaging tools, devices
 Anatomical alignment of images
 Fusion display, co-analysis of multiple
 information sources

  What is needed for multimodality?
 CT, PET, MRI, SPECT, EEG, …
 Hybrid devices – PET-CT, PET-MRI
 Image processing skills to create image fusions,
 etc.
                                                               CT: anatomy + attenuation
                                                               correction
                                                               PET: metabolism, function




PET-MRI HYBRID SCANNER                                                Measuring tissue properties with MRI
                                                                          T1 relaxation

                                                                          T2 relaxation       Structural MRI

                                                                         Proton density

                                                                                                 Diffusion-
                                                                         Tissue diff i
                                                                         Ti     diffusion        weighted
                                                                                                  imaging

                                                                       Diffusion direction
                                                                                                Diffusion tensor
                                                                                                     imaging
                               Acquire PET and MRI                     Diffusion anisotropy
                               together                                                       Diffusion spectral
                               Great technological challenge             Diffusion maps       imaging, HARDI
                               $$$
                                                                           Metabolites        MR spectroscopy




                                                                                                                                          1
2012.10.30.




                                                                                                               removed temporal lobe parts




                                                                            OPTIC RADIATION




                                                                                      CORTICOSPINAL TRACT
VISUALIZATION OF STRUCTURE
Recidive tumor, 2 foci, purple and magenta
Markers on the skin
                                                                     VISUALIZATION OF FIBERS




                                                                                    Part I.
                                                                                    Basics of fMRI and functional
                                                                                      pp g
                                                                                    mapping


                        Multimodal Imaging in Neurosciences Course

                        Functional MR Imaging
                         Dr. Ervin Berenyi, MD, PhD
                         Dr. András Jakab, MD, PhD
                         Dr. Peter Katona, MD




  Brain functions – how to interpret                                    COGNITIVE PROCESSING IN THE BRAIN
    The synchronous activity of neuronal groups                           Primary sensory areas (somato-, auditory, etc.)
    Cerebral cortex                                                       Secondary, tertiary, etc. sensory areas (i.e. visual: 5-9
    Examples of brain functions                                             levels)                     + Parallel processing (not
        Visual processing                                                 Association areas             purely hierarchical!)
        Auditory processing
        Memory functions, recall
                                                                          „Association areas for higher cognitive functions”
        Wernicke area                                                     Motor response behavior
                                                                                 response,
        Broca area
        Movement of limbs                                                                             Somatosensory cortex (SI)
        Emotional response:
        e.g. human face                                                                               Somatosensory cortex (SII)

                                                                                                       Parietal association area
    „not processing anything” -
    default mode networks and                                                                          „DLPFC – higher cognitive processing”
    resting state networks
                                                                                                       Drive, behavioral processing etc.

                                                                                                        Speech motor center




                                                                                                                                                    2
2012.10.30.




    The brain never rests!
      Default network                                                                              Mapping neuronal function
                Default mode network
                Default state network
                Task-negative network                                                               Electric activity of neurons
                                                                                                                             Electro encephalography EEG
                                                                                                      Action potential, propagation of signal
                                                                                                                              Magnetoencephalography MEG
            „Wandering and Wondering”                                                                 Electric current – magnetic field variations
                Posterior cingulate cortex
                Precuneus                                                                           Metabolic activity of neurons emission tomography
                                                                                                                           Positron
                Prefrontal cortex                                                                     Glucose metabolism (18F-FDG) PET

            Daydreaming                                                                             Blood supply of neurons
            Synchronised areas                                                                                                       fMRI
                                                                                                      Vasodilatation, perfusion change
            Age dependency
            Diseases affecting it                                                                   Rapid changes of cell compartments
            Not dreaming!                                                                             Cell swelling?          fDTI
Fair DA, Cohen AL, Power JD et al. (2009). "Functional brain
networks develop from a 'local to distributed' organization". PLoS
Comput Biol 5 (5): e1000381




    History
      “[In Mosso’s experiments] the subject to be observed lay on a
      delicately balanced table which could tip downward either at the head
      or at the foot if the weight of either end were increased. The moment
      emotional or intellectual activity began in the subject, down went the
      balance at the head-end, in consequence of the redistribution of blood
      in his system.”
   -- William James, Principles of Psychology (1890)



                                                                                 Angelo Mosso
                                                                                  (1846-1910)
                                                                                  (1846 1910)




         E = mc2                                                                                                                     Zago et al. (2009) The Mosso
           ???                                                                                                                       method for recording brain
                                                                                                                                     pulsation: The forerunner of
                                                                                                                                     functional neuroimaging.
                                                                                                                                     Neuroimage




    History
      The first evidence for the coupling between energy
      metabolism and brain blood perfusion (animals)
      The blood volumen elevated during brain activity
      Sir C. S. Sherrington, 1890
      Seymour Kety & Carl Schmidt, 1948
            Increased oxigen take-up
                                                                                 Sir Charles
            Dilatation of blood vessels
                                                                               Scott Sherrington
      Near infrared spectroscopy
       ea      a e spec oscopy                                                   (1857 1952)
                                                                                 (1857-1952)
      PET
      fMRI (90’s): Seji Ogawa, Ken Wong




                                                                                                                                Cerebral Cortex. 12:225-233; 2002.




                                                                                                                                                                     3
2012.10.30.




  Activity Increases Flow
            Blood pressure
                                                • sensory stimulation leads to
                                                  increased blood flow
                                                • sciatic nerve, electronic
                                                  stimulation (0,2 V 5-10 Hz),
                                                  rats, automated video
                                                  dimension analyzer
           Arteriole diameter                                    Blood velocity




                             Data Source: Ngai et al., 1988, Am J Physiol
                             Figure Source, Huettel, Song & McCarthy, Functional Magnetic Resonance
                             I    i




Summary of in vivo imaging methods

 Structural imaging                                                                                                    fMRI
    CT
    MRI
      T1 – 3DT1 – „anatomical”
      T2
      FLAIR, DWI, etc.


 Functional imaging
    PET
    fMRI

    …..




     Structural MRI                                  Functional MRI




                                                                                                      OK. Now show
                                                                                                       me the trick.
Good spatial resolution = 0.6 – 1 mm            Bad spatial resolution = 2 – 4 mm

    Short scan time (a few minutes)             Long scan time (10-30 minutes)

           One time point is imaged             Multiple time points, multiple scans

                Good tissue contrast            Bad tissue contrast

No image post-processing is required            Post-processing is required

                The result is robust            The result depends on the patient, the
                                                protocol and paradigm




                                                                                                                                       4
2012.10.30.




                                                                                                        The hemoglobine

                                                                                                                                        -Four globin chains
                                                                                                                                        -Each chain contains a haem molecule

                                                                                                                                        -Each haem has an iron atom in the center
                                                                                                                                        (Fe)

                                                                                                                                        -Each haem can absorb one oxygen
                                                                                                                                        molecule (O2)

                                                                                                                                        -oxy-Hgb (four O2) has DIAMAGNETIC
                                                                                                                                        effect →it does not affect the magnetic
                                                                                                                                        field ΔB

                                                                                                                                        -deoxy-Hgb is PARAMAGNETIC → if
                                                                                                                                         [deoxy-Hgb] ↓ → then local ΔB ↓
                                                                                        25


                                                                                                                              Source: http://wsrv.clas.virginia.edu/~rjh9u/hemoglob.html, Jorge Jovici
                                                                                                                              & Huettel, Song, McCarthy, Functional Magnetic Resonance Imaging




                                                                                              Measuring deoxy-hemoglobine
Diamagnetism and paramagnetism                                                               • During fMRI acquisitions, we get information of the brain’s deoxy-
                                                                                               hemoglobine content

Diamagnetism(oxy- & carbonmonoxyhemoglobine)
                                                                                             • The relative oxygenation changes with the deoxygenated hemoglobine
   No magnetic momentum                                                                        content
   Has paired electrons


Paramagnetism (deoxyhemoglobine)
   Magnetic momentum – atoms behave as small magnets
   Has unpaired electrons




                                                                                                   Seiji Ogawa




How does this work? The BOLD effect!                                                          HEMODYNAMIC RESPONSE
Blood Oxygen Level Dependent
The funcitonal activity is coded in the BOLD effect.
                                            OxyHb and DeoxyHb- their MR
                                            relaxation properties are different!

                                            deoxyHb: paramagnetic!!!

                                            Mxy
                                            Signal
                                                        Mo sinθ
                                                                  T2* task
                                                                          T2* control
                                             Stask
                                             Scontrol                                  ΔS



                                                              TEoptimum         time
 Source:, Huettel, Song & McCarthy, 2004,
 Functional Magnetic Resonance Imaging                       Source: Jorge Jovicich




                                                                                                                                                                                                         5
2012.10.30.




                                                                                                          Part II.
                                                                                                          How to perform an fMRI?
                                                                                                                   p



End of Part I. – any questions?




The MRI recipe                                   1. Patient (water + fat = lot of spins)     MRI sequences
                                                 2. Excite (Shout at the patient with a      Image coded as waves, Fourier transformation is used to „decode” the raw
     Repeat this! This is called SEQUENCE            radiofrequency coil)                    signal and get an image
                                                  3. Wait until the excited spins „relax”
                                                 4. During relaxation, the spins (water +    You can „excite” the spin system in numerous ways to have image signals,
                                                     fat =patient) shout back at you, they   i.e. SPIN ECHO or GRADIENT ECHO sequences.
                                                     send an ECHO
                                                 5. You listen to the echo and record it     GRADIENT ECHO SEQUENCES ARE SENSITIVE FOR
                                                     (this is the k-space acquisition)       DEOXYHEMOGLOBINE CHANGES!
                                    ,
                            Human, made of
                                                   6. Decode the i l t image!
                                                   6 D d th signal, get i   !
                            excitable spins (H
                            ECHO
                              proton spins)




 How does echo planar imaging works?
  Echo-planar imaging (SE-EPI, GRE-EPI)
  T2 contrast
  After one excitation, an entire slice is read out.
  It is a fast MR imaging sequence
  Has many artifacts, i.e. susceptibility




           IMAOIS – www.imaios.com




                                                                                                                                                                        6
2012.10.30.




                                                                             fMRI and all the tools
How to perform an fMRI scan? Checklist!
  Can our MRI device perform fast EPI, what is the
  field strength? 1.5T vs. 3T?
  What are we interested in?
        fMRI experiments are task-specific
        It is necessary to construct a PARADIGM which „observes”
        one specific brain function
  Do
  D we h have i
              image processing skills?
                           i    kill ?
  $$$
  Patient cooperative?
  IQ, attention?
  Do we have enough time?
  Sedation, drugs, etc.




 The first step: imaging the anatomy
                                                                             Anatomical acquisition
T1 weighted anatomical images as references
    •     High resolution images (1x1x2.5 mm)
    •     3D acquisition
                                                                                                                                                                    VOXEL
    •     pl. 64 anatomical images ~ 5 perc                                                                                                                         (Volumetric Pixel)
                                                                                                      Slice Thickness
                                                                                                      e.g., 6 mm                                         In-plane resolution
                                                                                                                                                         e.g., 192 mm / 64
                                                                                                                                                         = 3 mm
                                                                                                                                                                       3
                                                                                                                                                                       mm           6
                                                                               SAGITTAL SLICE                                                        IN-PLANE
                                                                                                                                                     IN PLANE SLICE                 mm
                                                                                                                                                                               3
                                                                                                                                                                               mm
                                                                                 Number of Slices
                                                                                 e.g., 10




                                                                                                                              Matrix Size
                                                                                                                              e.g., 64 x 64

                                                                                                                        Field of View (FOV)
                                                                                                                        e.g., 19.2 cm




                                                                               Paradigm and block design
Second step: the actual fMRI acquisition                                     Functional images
T2*-weighted images                                                                                             fMRI                           ROI
    •   Image contrast relates to neuronal activity                                                 ~2 sec      signal                         Time
    •   Low spatial resolution (3x3x5 mm)                                                                                                      Course
    •   One volume of the brain is acquired in 2 seconds!                                                       (% change
    •   We acquire many volumes in time (4D), ie. 150
    •   Repeated scanning

                                                                                                                                              Time                    Tasks


                                                                                                                                                      Statistical
                                                                         …                                                                            activation map
                                                                                                                                                      on T1 image

                                                    first volume
                                                    (2 sec to acquire)             Time


                                                                              Region of interest                                      ~ 5 minutes
                                                                              kijelölés (ROI)




                                                                                                                                                                                         7
2012.10.30.




Interpreting fMRI results:                                                                                        TALAIRACH ATLAS
                                                                                                                  - 1988
LOCALIZATION                                                                                                      - 1 SZEMÉLY




Variability of sulci - problematic                                                                                Fathers of Localization (brain atlases)




                                                                                                                             Jean Talairach                                 Gabor Szikla
                                                                                                                      (January 15, 1911, Perpignan
                                                                                                                         – March 15, 2007, Paris)




                                                           Source: Szikla et al., 1977 in Tamraz & Comair, 2000




  Anatomical localization of activity: gyri and sulci                                                             How to display fMRI results?
                                                                                  gray matter
                                                                                  (dendrites & synapses)


                                                                                    white matter
                                                                                    (axons)
                                                                         ANK
                                                                        BA




                                                                                                                       Brain extraction                         Inflation

                  FISSURE
                                                                      FUNDUS




Source: Ludwig & Klingler, 1956 in Tamraz & Comair, 2000


                                                                                                                    Creating 3D visualizations of the individual brain: Skull-stripping,
                                                                                                                    inflating the cortex




                                                                                                                                                                                                    8
2012.10.30.




                                                          Standardization of fMRI images to brain
  Segmentation, filtering, masking                        atlases




Fuzzy thresholding   Anisotropic filtering   Only brain




Displaying fMRI                                           fMRI display




                                                                   Part III.
                                                                   Examples and research applications
                                                                         p                pp



 End of Part II. – any questions?




                                                                                                             9
2012.10.30.




What functions can we image using                                     The logic of a „simple” fMRI experiment
fMRI?
                                                                                             Rest = empty screen


   Paradigm-dependent!
   Vision („vibrating checkboard”)
   Audition (variable frequency stimuli)
   Limb movement – active
   Passive limb movement - infants                                    Task1                          Time                                          Task 2

   Memory (hometown walking test)
   Speech
   … and many others (but not everything!)                   The subject views an object, i.e.
                                                             apple                                                              „Scrambled” – image




                               Results: object recognition   First images of visual activity
                                                                                                 Flickering Checkerboard
                                                                                                 OFF (60 s) - ON (60 s) -OFF (60 s) - ON (60 s) - OFF (60 s)




                                                                                                            Source: Kwong et al., 1992



Kalanit Grill-Spector et al.




                                                             Motor paradigm of the left hand

  CO-ACTIVATION OF V1 -> V2.. AFTER
  VISUAL STIMULUS




                                                                                                                                                                       10
2012.10.30.




                               Lesion in the left precentral gyrus (malformation) – RED
Finger tapping test of the     Hand movement activation: Yellow, CS tract: yellow

right hand




  Source: Katona P.,   DEOEC                                        Jakab, Katona et al.




HOMUNCULUS                     Left hand




                                                                    Source: Berenyi, Emri, Jakab et al




Left foot                      Auditory activation


                                                                                           Task:
                                                                                           Listening
                                                                                           to
                                                                                           orders




Forrás: Berényi E,
Emri M. DEOEC                                                       Forrás: Berényi E, Emri M. DEOEC




                                                                                                         11
2012.10.30.




                                                           Late speech development – pathological
FREQUENCY PROGRESSION OF
                                                           localization of speech centers?
HUMAN AUDITORY CORTEX




                 J Neurophysiol. 91:1282-1296, 2004.                                  Radiology. 2003;229:651-658.




Speech paradigm: say a word beginning                       Localizing swallowing movement
with a,b,c, etc.




                                Jakab A, Katona P et al.                              AJNR. 20:1520-0526. 1999.




                                                                                                                      12
2012.10.30.




        13
2012.10.30.




                                                                                                                                 Patient history
                                                                                                                                 A case of drug resistant epilepsy

                                                                                                                                      8 yrs old right handed boy
                                                                                                                                            Born on term from uneventful pregnancy
 Szentágothai TK -
 Semmelweis Egyetem
 MR Kutatóközpont
                                fMRI in a Case of Childhood Epilepsy                                                                  First seizures at 3.5 yrs
                                                                                                                                            About the time of falling asleep starting with left hand twithcing then
                                                                                                                                            generalizing
                                                                                                                                            Later atypical absence seizures
                                                                                                                                      EEG results
                                                                                                                                          Normal EEG on the onset
                                Lajos R Kozak                                                                                             Later slow spike and wave activity developed with clinical abscence
                                MR Research Center, Semmelweis University, Budapest, Hungary                                              Finally, electric status epilepticus during sleep (ESES), irregular high
                                                                                                                                          amplitude spike and wave activity, during the whole night
                                                                                                                                      Physical examination
                                                                                                                                          Paresis on the left limbs




                      Patient history
                      Imaging
                                                                   Smaller right hemisphere

                                                                   On T1 weighted images (A-B)
                                                                       widespread irregularities of the
                                                                       cortical surface suggestive of
                                                                       multiple small folds with abnormally
                                                                       thick cortex,
                                                                       irregular appearance of the gray
                                                                       matter-white matter junction
                                                                           tt    hit    tt j     ti
                                                                       suggestive of
                                                                       polymicrogyria

                                                                   On FLAIR images (C)
                                                                       numerous high intensity foci
                                                                       predominantly in the subcortical
                                                                       white matter


                                                                   Question: is the malformed
                                                                   cortex functional?
Kozák et al., Clin Neurosci
2009;62(3–4):130–135.




                      fMRI #1
                           #1                                                                                                    fMRI #1
                      no result                                                                                                  The reason for unsuccesful fMRI?

              Imaging at 3T
                    Philips Achieva scanner                                                                                           Bad acquisition ?
                    TR=3000ms, TE=30ms,                                                                                                                                                         500-700μV
                    FA=75°, 3x3x3mm2 voxels
                    (80x80 matrix, 240x240
                                                                                                                                      Bad stimulation ?
                    FOV), axial slices, no gap,                                                                                       Overanesthetized ?
                    SENSE factor of 2
                    Block design paradigm,
                                                                WHAT WAS THE
                    24s movement, 24s rest                    PROBLEM WITH THE
                       • flexion/extension of fingers
                         ~0.5-1Hz                                  fMRI?                                                              Electric status
                       • left and right limb moved in
                         separate blocks                                                                                              epilepticus during
                                                                                                                                      sleep (ESES) ?
                                               movement
                                               rest

                                                                                                                                      Clonazepam was
                                                                                                                                      the solution
                                                                                                              Kozák et al., Clin Neurosci
                                                                                                              2009;62(3–4):130–135.




                                                                                                                                                                                                                       14
2012.10.30.




          fMRI #2
               #2                                                           fMRI #2
                                                                                 #2
          right hand movement pre- and postoperatively                      left hand movement pre- and postoperatively




 Preop.                                                           Preop.




 Postop                                                           Postop



                                                                                 Functional reorganization to the healthy hemisphere




          Conclusions

            Passive range-of-movement paradigms are
                    range-of-
            considered useful for the mapping of sensory-
            motor cortex in pediatric epilepsy patients
                                               patients.

            If fMRI fails in this patient population we have to
            check if there is ongoing epileptic activity
            during anesthesia

            These paradigms are able to describe cortical
            reorganization thus they have clear
            reorganization,
            prognostic value in a pre-operative setting
                                  pre-          setting.
                                                                                         Research with fMRI




Summary of facts so far

  fMRI is based on the BOLD = Blood
  Oxygen Level Dependent contrast
  Neurovascular coupling
                                                                  "...the single most critical piece of equipment
  A stringent paradigm is required                                is still the researcher's own brain. All the
                                                                  equipment in the world will not help us if we
  (protocol)
  (       l)                                                      do not know how to use it properly, which
                                                                  requires more than just knowing how to
  Mapping brain activity can be                                   operate it. Aristotle would not necessarily
                                                                  have been more profound had he owned a
  achieved in living humans                                       laptop and known how to program. What is
                                                                  badly needed now, with all these scanners

  Many factors can influence the                                  whirring away, is an understanding of exactly
                                                                  what we are observing, and seeing, and
  results                                                         measuring, and wondering about."


  fMRI = localization                                             -- Endel Tulving, interview in Cognitive
                                                                  Neuroscience (2002, Gazzaniga , Ivry &
                                                                  Mangun, Eds., NY: Norton, p. 323)




                                                                                                                                         15
2012.10.30.




                       A new localizationism?                                                            Example for a BAD fMRI experiment
                           The accepted application
                                                                                                                     ~2 sec
                                 Surgical planning
                               For cognitive neuroscience, localization
                               itself has INFERIOR significance
                               Popularity, factoid literature

                                                                                                                                                 Task 2: Subject observes a
                                                                                                                                                      3:
                                                                                                                                                      1:
                                                                                                                                                 noise + a screen
                                                                                                                                                 car on(control)
                                                                                                                                                 CAR Elmo Muppet




                                                                                                             Time




                                                                                                           The brain before the fMRI era
BAD INTERPRETATION OF FMRI RESULTS CAN
STILL MAKE A JOURNAL PUBLICATION?




                           -                                       =
CAR against noise                         Elmo + CAR                        Elmo (negative
                                                                              elmo)




Visual areas for „car           Visual areas for „car + elmo           Elmo Brain Area ???                            Polyak, in Savoy, 2001, Acta Psychologica
  observation”                    observation”




  THE BRAIN AFTER FMRI (INCOMPLETE)                                                                        Basic types of fMRI research
 reaching and
   pointing
                                                                                                            Testing models, theories
                                                                                                            Localize the activations after stimuli
                                             motor
                                            control
                                                              touch

 retinotopic visual maps
                                        eye
                                                                                                            Activating networks after stimuli
                                     movements

                   executive
                                                               grasping
                                                                                                            Spatial encoding of the brain:
                    control                                                 motion
                                                                           near head                          Retinotopy, somatotopy, frequency
                memory                                                         orientation selectivity
                                                                                                              coding
                                                                                  motion perception
                                                                                                            Behavior and cognition
                                                                                                            Diseases, i.e. psychiatry
                                 scenes
                                                  moving bodies static
                                                 social cognition bodies
                                                                               faces      objects           Inter-species comparisons




                                                                                                                                                                                  16
2012.10.30.




                                                                  ULTRA-LOW-FIELD IMAGING
  The future of functional brain imaging
                                                                   Earth magnetic field
                                                                   SQUID MAGNETOMETRY
      3T, 4T, 7T, … ?                                                 Los Alamos, USA

      Ultra-low-field imaging
      Arterial spin labeling
      Functional diffusion tensor
      imaging (Le Bihan)
                                                                                            The small electric currents of
                                                                                            neuronal activity induce changes
                                                                                            in the magnetic field, which
                                                                                            interferes with the Earth’s and
                                                                                            imaging can be performed




Arterial Spin Labeling - ASL                                    Arterial Spin Labeling - ASL
           z (=B0)                       inversion
                                         slab


             excitation blood
                    y
  x        inversion
                                              imaging
                                              i   i
                                              plane
  • Perfusion: delivery of metabolites (via local blood
    flow) (BOLD - hemoglobin)                                     • Represents an interesting physiological parameter
  • Arterial Spin Labeling (ASL): invert of in-flowing            • Quantitative: fit kinetic curve for perfusion in
    blood                                                           ml/100g/min
  • IMAGEperfusion = IMAGEuninverted - IMAGEinverted       99     • Lower SNR than BOLD                                         100


                                                                  • Limited coverage (~5 slices)




Arterial Spin Labeling - ASL                                    Arterial Spin Labeling - ASL




                       Magn Reson Med, 48:242-254 (2002)                                   Magn Reson Med, 48:242-254 (2002)




                                                                                                                                       17
2012.10.30.




                       Stroke. 2000;31:680-687.




                                                           Part IV.
                                                           The functional brain connectome



End of Part III. – any questions?




  Resting state fMRI                              Spontaneous synchronity in the brain =
                                                  low frequency oscillations




                                                  <0.1 Hz neuronal activity is present during „rest”
                                                  Background for continuous sensory processing?
  Don’t do anything.                              What regions are „synced” ?




                                                                                                               18
2012.10.30.




                                                                          THE SHORT HISTORY OF
       Correlated time courses = networks
                                                                          CONNECTOMICS
                              1. Regional slow neuronal activity


                                                                           Theodor Meynert
                                                                           Jules Dejerine
                                                                           Tracing studies
                                                                           „In vivo methods”:
                                        3. Their correlation (temporal)    Diffusion tensor imaging
                                                                           Functional MR imaging
                                                                           Functional Connectivity

                                  2. Regional slow neuronal activity


Hypothesis: if two neuronal time courses are                               This is called FUNCTIONAL CONNECTIVITY
correlated, the regions are interconnected.




                                                                                                                            19
2012.10.30.




Modeling the brain’s connections                                        Modeling the brain’s connections
Brain regions: network nodes                                            Brain regions: network nodes
Structural OR functional brain connection strength: network edges       Structural OR functional brain connection strength: network edges

   Graph-theoretical analysis, a purely mathematical approach              Graph-theoretical analysis, a purely mathematical approach
                       Node (region)

                            Edge
                            (connection)




                                       Short path-length, Low degree                                        Long path-length, Low degree


How can information be exchanged among brain regions?                   How can information be exchanged among brain regions?




Modeling the brain’s connections                                        Modeling the brain’s connections
Brain regions: network nodes                                            Brain regions: network nodes
Structural OR functional brain connection strength: network edges       Structural OR functional brain connection strength: network edges

   Graph-theoretical analysis, a purely mathematical approach              Graph-theoretical analysis, a purely mathematical approach

                                                                                                      Hub




                                       Short path-length, High degree                                             Example of a highly
                                       (low efficiency)                                                            efficient network

How can information be exchanged among brain regions?                   How can information be exchanged among brain regions?




                                                                                                                                                   20
2012.10.30.




Modeling the brain’s connections                                                                      What is the cortico-cortical brain network like?
                                                                                                                  cortico-                       like?
Brain regions: network nodes                                                                         CORTEX           The internet                        Facebook
Structural OR functional brain connection strength: network edges

      Graph-theoretical analysis, a purely mathematical approach



                                                                                                                                                                         Source: Paul Weinstein’s blog




                                                           Example of an inefficient
                                                           network (almost random)
                                                                                                     Modha & Singh. Network architecture of the
                                                                                                     long-distance pathways in the macaque
 How can information be exchanged among brain regions?                                               brain. PNAS, 2010                                        Small World Networks




                 Network properties of the brain:
                                           brain:                                                                     Network properties of the brain:
                                                                                                                                                brain:
                     normal development                                                                                  normal and pathological
              Network cost                                          Network efficiency




               cost=sum(wij)
Gong et al. Age- and Gender-Related Differences in the Cortical Anatomical Network. The Journal of   Gong et al. Age- and Gender-Related Differences in the Cortical Anatomical Network. The Journal of
Neuroscience 2009; 29: 15684-15693.                                                                  Neuroscience 2009; 29: 15684-15693.




                 Network properties of the brain:
                                           brain:                                                                     Network properties of the brain:
                                                                                                                                                  brain:
                      gender differences                                                                                correlation with intelligence
              Network cost                                          Network efficiency




                                                                                                                                    Path length negatively correlates
                                                                                                                                    with IQ, especially in the left
                                                                                                                                    frontal medial cortex
               cost=sum(wij)
Gong et al. Age- and Gender-Related Differences in the Cortical Anatomical Network. The Journal of   Van Heuvel et al. Efficiency of Functional Brain Networks and Intellectual Performance
Neuroscience 2009; 29: 15684-15693.                                                                  The Journal of Neuroscience, 2009, 29(23): 7619-7624.




                                                                                                                                                                                                          21
2012.10.30.




                                                                                                                              Network properties of the brain:
                                                                                                                                                        brain:
 Detecting areas with similar connectivity profiles
                                                                                                                                      schizophrenia

                       -Exekutív
                       skill
                        +Exekutív                                                                                        LOSS OF HIERARCHICAL
                        skill                                                                                          ORGANIZATION IN FRONTAL
                                                                                                                               REGIONS




Jakab A et al. Mapping changes of in vivo connectivity patterns in the human mediodorsal                  Bassett, D. S. et al. 2008
thalamus: correlations with higher cognitive and executive functions. Brain Imaging and                                                Van Heuvel. et al. 2010
Behavior 2012; DOI: 10.1007/s11682-012-9172-5




                  Network properties of the brain:
                                              brain:
                   high functioning autistic adults

                                                                                                              Thank you for your attention!
                                                                                n=9 (HLFA)                    Presentation credits:
                                                                                vs. n=40 (controls)

                                                                                Suggests the impairment
                                                                                of long-range
                                                                                                              Dr. András Jakab, M.D. Ph.D.
                                                                                association fibers,           Dr. Ervin Berényi, M.D. Ph.D.
                                                                                especially in the
                                                                                left fronto-temporo-          Dr. Péter Katona, M.D.
                                                                                ocipital connectivities
                                                                                                              Dr. Miklós Emri, Ph.D.
                                                                                                              Tamás Spisák, M.sc.

Jakab A, Spisak T, Szeman-Nagy A, Beres M, Molnar P, Emri M, Berenyi E. Pathological patterns of
functional connectivity and white matter anisotropy in high functioning autistic adults. Under review @
PLoS One




                                                                                                                                                                         22

More Related Content

What's hot

Real Time Object Tracking
Real Time Object TrackingReal Time Object Tracking
Real Time Object TrackingVanya Valindria
 
Deep learning for medical imaging
Deep learning for medical imagingDeep learning for medical imaging
Deep learning for medical imaginggeetachauhan
 
fMRI Presentation
fMRI PresentationfMRI Presentation
fMRI Presentationricksw78
 
Wavelet transform in image compression
Wavelet transform in image compressionWavelet transform in image compression
Wavelet transform in image compressionjeevithaelangovan
 
Echo Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh ShresthaEcho Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh ShresthaAvinesh Shrestha
 
Diffusion Weighted MRI (2011-09-29 이정원)
Diffusion Weighted MRI (2011-09-29 이정원)Diffusion Weighted MRI (2011-09-29 이정원)
Diffusion Weighted MRI (2011-09-29 이정원)이정원 JeongwonLee
 
Prospects of Deep Learning in Medical Imaging
Prospects of Deep Learning in Medical ImagingProspects of Deep Learning in Medical Imaging
Prospects of Deep Learning in Medical ImagingGodswll Egegwu
 
Medical image processing studies
Medical image processing studiesMedical image processing studies
Medical image processing studiesBằng Nguyễn Kim
 
fMRI in machine learning
fMRI in machine learningfMRI in machine learning
fMRI in machine learningUjjawal
 
Brain tumor detection by scanning MRI images (using filtering techniques)
Brain tumor detection by scanning MRI images (using filtering techniques)Brain tumor detection by scanning MRI images (using filtering techniques)
Brain tumor detection by scanning MRI images (using filtering techniques)Vivek reddy
 
Brain Tumor Segmentation in MRI Images
Brain Tumor Segmentation in MRI ImagesBrain Tumor Segmentation in MRI Images
Brain Tumor Segmentation in MRI ImagesIJRAT
 
Threshold Selection for Image segmentation
Threshold Selection for Image segmentationThreshold Selection for Image segmentation
Threshold Selection for Image segmentationParijat Sinha
 
Skin Cancer Detection Using Deep Learning Techniques
Skin Cancer Detection Using Deep Learning TechniquesSkin Cancer Detection Using Deep Learning Techniques
Skin Cancer Detection Using Deep Learning TechniquesIRJET Journal
 
Intro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AI
Intro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AIIntro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AI
Intro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AISeth Grimes
 
Multimedia Database
Multimedia DatabaseMultimedia Database
Multimedia Databaseshaikh2016
 

What's hot (20)

Real Time Object Tracking
Real Time Object TrackingReal Time Object Tracking
Real Time Object Tracking
 
Deep learning for medical imaging
Deep learning for medical imagingDeep learning for medical imaging
Deep learning for medical imaging
 
fMRI Presentation
fMRI PresentationfMRI Presentation
fMRI Presentation
 
Wavelet transform in image compression
Wavelet transform in image compressionWavelet transform in image compression
Wavelet transform in image compression
 
Echo Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh ShresthaEcho Planar Imaging-Avinesh Shrestha
Echo Planar Imaging-Avinesh Shrestha
 
Introduction to fMRI
Introduction to fMRIIntroduction to fMRI
Introduction to fMRI
 
Diffusion Weighted MRI (2011-09-29 이정원)
Diffusion Weighted MRI (2011-09-29 이정원)Diffusion Weighted MRI (2011-09-29 이정원)
Diffusion Weighted MRI (2011-09-29 이정원)
 
Prospects of Deep Learning in Medical Imaging
Prospects of Deep Learning in Medical ImagingProspects of Deep Learning in Medical Imaging
Prospects of Deep Learning in Medical Imaging
 
Medical image processing studies
Medical image processing studiesMedical image processing studies
Medical image processing studies
 
fMRI in machine learning
fMRI in machine learningfMRI in machine learning
fMRI in machine learning
 
Mri cardic imaging
Mri cardic imaging Mri cardic imaging
Mri cardic imaging
 
Application of image processing
Application of image processingApplication of image processing
Application of image processing
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 
Brain tumor detection by scanning MRI images (using filtering techniques)
Brain tumor detection by scanning MRI images (using filtering techniques)Brain tumor detection by scanning MRI images (using filtering techniques)
Brain tumor detection by scanning MRI images (using filtering techniques)
 
Brain Tumor Segmentation in MRI Images
Brain Tumor Segmentation in MRI ImagesBrain Tumor Segmentation in MRI Images
Brain Tumor Segmentation in MRI Images
 
Threshold Selection for Image segmentation
Threshold Selection for Image segmentationThreshold Selection for Image segmentation
Threshold Selection for Image segmentation
 
Skin Cancer Detection Using Deep Learning Techniques
Skin Cancer Detection Using Deep Learning TechniquesSkin Cancer Detection Using Deep Learning Techniques
Skin Cancer Detection Using Deep Learning Techniques
 
Intro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AI
Intro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AIIntro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AI
Intro to Deep Learning for Medical Image Analysis, with Dan Lee from Dentuit AI
 
Multimedia Database
Multimedia DatabaseMultimedia Database
Multimedia Database
 

Viewers also liked

Fields of digital image processing slides
Fields of digital image processing slidesFields of digital image processing slides
Fields of digital image processing slidesSrinath Dhayalamoorthy
 
Digital image processing using matlab
Digital image processing using matlab Digital image processing using matlab
Digital image processing using matlab Amr Rashed
 
Image processing fundamentals
Image processing fundamentalsImage processing fundamentals
Image processing fundamentalsA B Shinde
 
Applications of Digital image processing in Medical Field
Applications of Digital image processing in Medical FieldApplications of Digital image processing in Medical Field
Applications of Digital image processing in Medical FieldAshwani Srivastava
 
Digital Image Processing Fundamental
Digital Image Processing FundamentalDigital Image Processing Fundamental
Digital Image Processing FundamentalThuong Nguyen Canh
 
Introduction to digital image processing
Introduction to digital image processingIntroduction to digital image processing
Introduction to digital image processingHossain Md Shakhawat
 
Image processing
Image processingImage processing
Image processingVarun Raj
 
Introduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLABIntroduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLABRay Phan
 
Digital Image Processing
Digital Image ProcessingDigital Image Processing
Digital Image ProcessingSahil Biswas
 
Digital image processing img smoothning
Digital image processing img smoothningDigital image processing img smoothning
Digital image processing img smoothningVinay Gupta
 

Viewers also liked (10)

Fields of digital image processing slides
Fields of digital image processing slidesFields of digital image processing slides
Fields of digital image processing slides
 
Digital image processing using matlab
Digital image processing using matlab Digital image processing using matlab
Digital image processing using matlab
 
Image processing fundamentals
Image processing fundamentalsImage processing fundamentals
Image processing fundamentals
 
Applications of Digital image processing in Medical Field
Applications of Digital image processing in Medical FieldApplications of Digital image processing in Medical Field
Applications of Digital image processing in Medical Field
 
Digital Image Processing Fundamental
Digital Image Processing FundamentalDigital Image Processing Fundamental
Digital Image Processing Fundamental
 
Introduction to digital image processing
Introduction to digital image processingIntroduction to digital image processing
Introduction to digital image processing
 
Image processing
Image processingImage processing
Image processing
 
Introduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLABIntroduction to Digital Image Processing Using MATLAB
Introduction to Digital Image Processing Using MATLAB
 
Digital Image Processing
Digital Image ProcessingDigital Image Processing
Digital Image Processing
 
Digital image processing img smoothning
Digital image processing img smoothningDigital image processing img smoothning
Digital image processing img smoothning
 

Similar to Week 1. Basics of multimodal imaging and image processing. Functional magnetic resonance imaging.

Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...
Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...
Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...Dr. Jakab András
 
Week 4. Image guided therapies.
Week 4. Image guided therapies.Week 4. Image guided therapies.
Week 4. Image guided therapies.Dr. Jakab András
 
Week 3. Neurosurgical planning with multimodal imaging
Week 3. Neurosurgical planning with multimodal imagingWeek 3. Neurosurgical planning with multimodal imaging
Week 3. Neurosurgical planning with multimodal imagingDr. Jakab András
 
International Journal of Image Processing (IJIP) Volume (2) Issue (1)
International Journal of Image Processing (IJIP) Volume (2) Issue (1)International Journal of Image Processing (IJIP) Volume (2) Issue (1)
International Journal of Image Processing (IJIP) Volume (2) Issue (1)CSCJournals
 
Hahn proton talk (cancer ci 2013) stephen m. hahn
Hahn proton talk (cancer ci 2013) stephen m. hahnHahn proton talk (cancer ci 2013) stephen m. hahn
Hahn proton talk (cancer ci 2013) stephen m. hahnDr. Vijay Anand P. Reddy
 
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...IntesarAldweri
 
Techniques in measuring Brain Function
Techniques in measuring Brain FunctionTechniques in measuring Brain Function
Techniques in measuring Brain FunctionOrlando Pistan, MAEd
 
MRI AND NMRI ppt.pptx
MRI AND NMRI ppt.pptxMRI AND NMRI ppt.pptx
MRI AND NMRI ppt.pptxARJUNATHARE
 
Introduction to Magnetic resonance imaging (mri)
Introduction to Magnetic resonance imaging (mri)Introduction to Magnetic resonance imaging (mri)
Introduction to Magnetic resonance imaging (mri)CHINENYE OZOTA
 
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...CSCJournals
 
DUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptx
DUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptxDUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptx
DUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptxdushyantverma25
 
New techniques-in-radiotherapy-1194294751859014-3
New techniques-in-radiotherapy-1194294751859014-3New techniques-in-radiotherapy-1194294751859014-3
New techniques-in-radiotherapy-1194294751859014-3Meenakshi Mittal
 
Image Processing Technique for Brain Abnormality Detection
Image Processing Technique for Brain Abnormality DetectionImage Processing Technique for Brain Abnormality Detection
Image Processing Technique for Brain Abnormality DetectionCSCJournals
 
Week 5. Basics and clinical uses of MR spectroscopy.
Week 5. Basics and clinical uses of MR spectroscopy.Week 5. Basics and clinical uses of MR spectroscopy.
Week 5. Basics and clinical uses of MR spectroscopy.Dr. Jakab András
 
Efficient Brain Tumor Detection Using Wavelet Transform
Efficient Brain Tumor Detection Using Wavelet TransformEfficient Brain Tumor Detection Using Wavelet Transform
Efficient Brain Tumor Detection Using Wavelet TransformIJERA Editor
 

Similar to Week 1. Basics of multimodal imaging and image processing. Functional magnetic resonance imaging. (20)

Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...
Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...
Week 2. Diffusion magnetic resonance imaging, tractography, mapping the brain...
 
Week 4. Image guided therapies.
Week 4. Image guided therapies.Week 4. Image guided therapies.
Week 4. Image guided therapies.
 
Week 3. Neurosurgical planning with multimodal imaging
Week 3. Neurosurgical planning with multimodal imagingWeek 3. Neurosurgical planning with multimodal imaging
Week 3. Neurosurgical planning with multimodal imaging
 
International Journal of Image Processing (IJIP) Volume (2) Issue (1)
International Journal of Image Processing (IJIP) Volume (2) Issue (1)International Journal of Image Processing (IJIP) Volume (2) Issue (1)
International Journal of Image Processing (IJIP) Volume (2) Issue (1)
 
Hahn proton talk (cancer ci 2013) stephen m. hahn
Hahn proton talk (cancer ci 2013) stephen m. hahnHahn proton talk (cancer ci 2013) stephen m. hahn
Hahn proton talk (cancer ci 2013) stephen m. hahn
 
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
Emerging MRI and metabolic neuroimaging techniques in mild traumatic brain in...
 
Introduction to Medical Image Processing
Introduction to Medical Image ProcessingIntroduction to Medical Image Processing
Introduction to Medical Image Processing
 
Techniques in measuring Brain Function
Techniques in measuring Brain FunctionTechniques in measuring Brain Function
Techniques in measuring Brain Function
 
Brain imaging in psychiatry
Brain imaging in psychiatryBrain imaging in psychiatry
Brain imaging in psychiatry
 
MRI AND NMRI ppt.pptx
MRI AND NMRI ppt.pptxMRI AND NMRI ppt.pptx
MRI AND NMRI ppt.pptx
 
Introduction to Magnetic resonance imaging (mri)
Introduction to Magnetic resonance imaging (mri)Introduction to Magnetic resonance imaging (mri)
Introduction to Magnetic resonance imaging (mri)
 
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
Fully Automatic Method for 3D T1-Weighted Brain Magnetic Resonance Images Seg...
 
Dti basics
Dti basicsDti basics
Dti basics
 
DUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptx
DUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptxDUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptx
DUSHYANT VERMA - BRAIN TECHNIQUES FOR MIND MAPPING.pptx
 
Ll2419251928
Ll2419251928Ll2419251928
Ll2419251928
 
New techniques-in-radiotherapy-1194294751859014-3
New techniques-in-radiotherapy-1194294751859014-3New techniques-in-radiotherapy-1194294751859014-3
New techniques-in-radiotherapy-1194294751859014-3
 
call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...call for papers, research paper publishing, where to publish research paper, ...
call for papers, research paper publishing, where to publish research paper, ...
 
Image Processing Technique for Brain Abnormality Detection
Image Processing Technique for Brain Abnormality DetectionImage Processing Technique for Brain Abnormality Detection
Image Processing Technique for Brain Abnormality Detection
 
Week 5. Basics and clinical uses of MR spectroscopy.
Week 5. Basics and clinical uses of MR spectroscopy.Week 5. Basics and clinical uses of MR spectroscopy.
Week 5. Basics and clinical uses of MR spectroscopy.
 
Efficient Brain Tumor Detection Using Wavelet Transform
Efficient Brain Tumor Detection Using Wavelet TransformEfficient Brain Tumor Detection Using Wavelet Transform
Efficient Brain Tumor Detection Using Wavelet Transform
 

More from Dr. Jakab András

Nemiszervek anatómiája - OLKD hallgatók részére
Nemiszervek anatómiája - OLKD hallgatók részéreNemiszervek anatómiája - OLKD hallgatók részére
Nemiszervek anatómiája - OLKD hallgatók részéreDr. Jakab András
 
Központi idegrendszer anatómiája OLKD-soknak, 2012
Központi idegrendszer anatómiája OLKD-soknak, 2012Központi idegrendszer anatómiája OLKD-soknak, 2012
Központi idegrendszer anatómiája OLKD-soknak, 2012Dr. Jakab András
 
Hasi zsigerek OLKDA anatómia konzultáció
Hasi zsigerek OLKDA anatómia konzultációHasi zsigerek OLKDA anatómia konzultáció
Hasi zsigerek OLKDA anatómia konzultációDr. Jakab András
 
05 - Légzőszervek anatómiája OLKDAsoknak
05 - Légzőszervek anatómiája OLKDAsoknak05 - Légzőszervek anatómiája OLKDAsoknak
05 - Légzőszervek anatómiája OLKDAsoknakDr. Jakab András
 
02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületek
02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületek02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületek
02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületekDr. Jakab András
 
01 - Funkcionális Anatómia (OLKD, I. évf.): Bevezetés
01 - Funkcionális Anatómia (OLKD, I. évf.): Bevezetés01 - Funkcionális Anatómia (OLKD, I. évf.): Bevezetés
01 - Funkcionális Anatómia (OLKD, I. évf.): BevezetésDr. Jakab András
 
Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...
Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...
Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...Dr. Jakab András
 
Charting the human thalamus - basic contepts and recent developments
Charting the human thalamus - basic contepts and recent developmentsCharting the human thalamus - basic contepts and recent developments
Charting the human thalamus - basic contepts and recent developmentsDr. Jakab András
 
Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...
Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...
Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...Dr. Jakab András
 
A gerincvelő funkcionális anatómiája - OLKDA
A gerincvelő funkcionális anatómiája - OLKDAA gerincvelő funkcionális anatómiája - OLKDA
A gerincvelő funkcionális anatómiája - OLKDADr. Jakab András
 
A központi idegrendszer funkcionális anatómiája I
A központi idegrendszer funkcionális anatómiája IA központi idegrendszer funkcionális anatómiája I
A központi idegrendszer funkcionális anatómiája IDr. Jakab András
 
1 Diffúziós jelenségeken alapuló képalkotás
1 Diffúziós jelenségeken alapuló képalkotás1 Diffúziós jelenségeken alapuló képalkotás
1 Diffúziós jelenségeken alapuló képalkotásDr. Jakab András
 

More from Dr. Jakab András (20)

Nemiszervek anatómiája - OLKD hallgatók részére
Nemiszervek anatómiája - OLKD hallgatók részéreNemiszervek anatómiája - OLKD hallgatók részére
Nemiszervek anatómiája - OLKD hallgatók részére
 
Központi idegrendszer anatómiája OLKD-soknak, 2012
Központi idegrendszer anatómiája OLKD-soknak, 2012Központi idegrendszer anatómiája OLKD-soknak, 2012
Központi idegrendszer anatómiája OLKD-soknak, 2012
 
Hasi zsigerek OLKDA anatómia konzultáció
Hasi zsigerek OLKDA anatómia konzultációHasi zsigerek OLKDA anatómia konzultáció
Hasi zsigerek OLKDA anatómia konzultáció
 
05 - Légzőszervek anatómiája OLKDAsoknak
05 - Légzőszervek anatómiája OLKDAsoknak05 - Légzőszervek anatómiája OLKDAsoknak
05 - Légzőszervek anatómiája OLKDAsoknak
 
02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületek
02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületek02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületek
02 - Funkcionális Anatómia (OLKD, I. évf.): Izomtan, ízületek
 
01 - Funkcionális Anatómia (OLKD, I. évf.): Bevezetés
01 - Funkcionális Anatómia (OLKD, I. évf.): Bevezetés01 - Funkcionális Anatómia (OLKD, I. évf.): Bevezetés
01 - Funkcionális Anatómia (OLKD, I. évf.): Bevezetés
 
Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...
Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...
Agykutatás hete 2012 - Dr. Jakab András - "Digitális agykutatás a III. évezre...
 
Neuroplasticity
NeuroplasticityNeuroplasticity
Neuroplasticity
 
Charting the human thalamus - basic contepts and recent developments
Charting the human thalamus - basic contepts and recent developmentsCharting the human thalamus - basic contepts and recent developments
Charting the human thalamus - basic contepts and recent developments
 
Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...
Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...
Connectivity-augmented Surgical Targeting: Individualization of a 3D Atlas of...
 
Flirt
FlirtFlirt
Flirt
 
Dtifit
DtifitDtifit
Dtifit
 
Fdt3
Fdt3Fdt3
Fdt3
 
Fdt2
Fdt2Fdt2
Fdt2
 
Fdt1
Fdt1Fdt1
Fdt1
 
Bet2
Bet2Bet2
Bet2
 
A gerincvelő funkcionális anatómiája - OLKDA
A gerincvelő funkcionális anatómiája - OLKDAA gerincvelő funkcionális anatómiája - OLKDA
A gerincvelő funkcionális anatómiája - OLKDA
 
A központi idegrendszer funkcionális anatómiája I
A központi idegrendszer funkcionális anatómiája IA központi idegrendszer funkcionális anatómiája I
A központi idegrendszer funkcionális anatómiája I
 
1 Diffúziós jelenségeken alapuló képalkotás
1 Diffúziós jelenségeken alapuló képalkotás1 Diffúziós jelenségeken alapuló képalkotás
1 Diffúziós jelenségeken alapuló képalkotás
 
Telemedicina
TelemedicinaTelemedicina
Telemedicina
 

Week 1. Basics of multimodal imaging and image processing. Functional magnetic resonance imaging.

  • 1. 2012.10.30. Multimodal Imaging in Neurosciences Course Diagnostic neuroimaging modalities CT – Computed Tomography Structural MRI Brain anatomy Fine brain anatomy Stereotactic reference frame Vascular structure Multi-modal imaging Intra-operative imaging Diffusion, perfusion MRI field spectrum for modalities, open MRI, low- Fine pathological information 1.Diagnostic imaging Positron Emission MR Spectroscopy Introduction to Multi-modal 2.Research Tomography PET Brain metabolism Brain function Brain metabolism Biochemical mapping neuroimaging 3.Neurosurgery Electro encephalography, Dr. Ervin Berenyi, MD, PhD Functional MR imaging fMRI LORETTA, Brain function Dr. András Jakab, MD, PhD Magnetoencephalography Dr. Peter Katona, MD What is multimodality? PET-CT HYBRID Combining images and information from multiple imaging tools, devices Anatomical alignment of images Fusion display, co-analysis of multiple information sources What is needed for multimodality? CT, PET, MRI, SPECT, EEG, … Hybrid devices – PET-CT, PET-MRI Image processing skills to create image fusions, etc. CT: anatomy + attenuation correction PET: metabolism, function PET-MRI HYBRID SCANNER Measuring tissue properties with MRI T1 relaxation T2 relaxation Structural MRI Proton density Diffusion- Tissue diff i Ti diffusion weighted imaging Diffusion direction Diffusion tensor imaging Acquire PET and MRI Diffusion anisotropy together Diffusion spectral Great technological challenge Diffusion maps imaging, HARDI $$$ Metabolites MR spectroscopy 1
  • 2. 2012.10.30. removed temporal lobe parts OPTIC RADIATION CORTICOSPINAL TRACT VISUALIZATION OF STRUCTURE Recidive tumor, 2 foci, purple and magenta Markers on the skin VISUALIZATION OF FIBERS Part I. Basics of fMRI and functional pp g mapping Multimodal Imaging in Neurosciences Course Functional MR Imaging Dr. Ervin Berenyi, MD, PhD Dr. András Jakab, MD, PhD Dr. Peter Katona, MD Brain functions – how to interpret COGNITIVE PROCESSING IN THE BRAIN The synchronous activity of neuronal groups Primary sensory areas (somato-, auditory, etc.) Cerebral cortex Secondary, tertiary, etc. sensory areas (i.e. visual: 5-9 Examples of brain functions levels) + Parallel processing (not Visual processing Association areas purely hierarchical!) Auditory processing Memory functions, recall „Association areas for higher cognitive functions” Wernicke area Motor response behavior response, Broca area Movement of limbs Somatosensory cortex (SI) Emotional response: e.g. human face Somatosensory cortex (SII) Parietal association area „not processing anything” - default mode networks and „DLPFC – higher cognitive processing” resting state networks Drive, behavioral processing etc. Speech motor center 2
  • 3. 2012.10.30. The brain never rests! Default network Mapping neuronal function Default mode network Default state network Task-negative network Electric activity of neurons Electro encephalography EEG Action potential, propagation of signal Magnetoencephalography MEG „Wandering and Wondering” Electric current – magnetic field variations Posterior cingulate cortex Precuneus Metabolic activity of neurons emission tomography Positron Prefrontal cortex Glucose metabolism (18F-FDG) PET Daydreaming Blood supply of neurons Synchronised areas fMRI Vasodilatation, perfusion change Age dependency Diseases affecting it Rapid changes of cell compartments Not dreaming! Cell swelling? fDTI Fair DA, Cohen AL, Power JD et al. (2009). "Functional brain networks develop from a 'local to distributed' organization". PLoS Comput Biol 5 (5): e1000381 History “[In Mosso’s experiments] the subject to be observed lay on a delicately balanced table which could tip downward either at the head or at the foot if the weight of either end were increased. The moment emotional or intellectual activity began in the subject, down went the balance at the head-end, in consequence of the redistribution of blood in his system.” -- William James, Principles of Psychology (1890) Angelo Mosso (1846-1910) (1846 1910) E = mc2 Zago et al. (2009) The Mosso ??? method for recording brain pulsation: The forerunner of functional neuroimaging. Neuroimage History The first evidence for the coupling between energy metabolism and brain blood perfusion (animals) The blood volumen elevated during brain activity Sir C. S. Sherrington, 1890 Seymour Kety & Carl Schmidt, 1948 Increased oxigen take-up Sir Charles Dilatation of blood vessels Scott Sherrington Near infrared spectroscopy ea a e spec oscopy (1857 1952) (1857-1952) PET fMRI (90’s): Seji Ogawa, Ken Wong Cerebral Cortex. 12:225-233; 2002. 3
  • 4. 2012.10.30. Activity Increases Flow Blood pressure • sensory stimulation leads to increased blood flow • sciatic nerve, electronic stimulation (0,2 V 5-10 Hz), rats, automated video dimension analyzer Arteriole diameter Blood velocity Data Source: Ngai et al., 1988, Am J Physiol Figure Source, Huettel, Song & McCarthy, Functional Magnetic Resonance I i Summary of in vivo imaging methods Structural imaging fMRI CT MRI T1 – 3DT1 – „anatomical” T2 FLAIR, DWI, etc. Functional imaging PET fMRI ….. Structural MRI Functional MRI OK. Now show me the trick. Good spatial resolution = 0.6 – 1 mm Bad spatial resolution = 2 – 4 mm Short scan time (a few minutes) Long scan time (10-30 minutes) One time point is imaged Multiple time points, multiple scans Good tissue contrast Bad tissue contrast No image post-processing is required Post-processing is required The result is robust The result depends on the patient, the protocol and paradigm 4
  • 5. 2012.10.30. The hemoglobine -Four globin chains -Each chain contains a haem molecule -Each haem has an iron atom in the center (Fe) -Each haem can absorb one oxygen molecule (O2) -oxy-Hgb (four O2) has DIAMAGNETIC effect →it does not affect the magnetic field ΔB -deoxy-Hgb is PARAMAGNETIC → if [deoxy-Hgb] ↓ → then local ΔB ↓ 25 Source: http://wsrv.clas.virginia.edu/~rjh9u/hemoglob.html, Jorge Jovici & Huettel, Song, McCarthy, Functional Magnetic Resonance Imaging Measuring deoxy-hemoglobine Diamagnetism and paramagnetism • During fMRI acquisitions, we get information of the brain’s deoxy- hemoglobine content Diamagnetism(oxy- & carbonmonoxyhemoglobine) • The relative oxygenation changes with the deoxygenated hemoglobine No magnetic momentum content Has paired electrons Paramagnetism (deoxyhemoglobine) Magnetic momentum – atoms behave as small magnets Has unpaired electrons Seiji Ogawa How does this work? The BOLD effect! HEMODYNAMIC RESPONSE Blood Oxygen Level Dependent The funcitonal activity is coded in the BOLD effect. OxyHb and DeoxyHb- their MR relaxation properties are different! deoxyHb: paramagnetic!!! Mxy Signal Mo sinθ T2* task T2* control Stask Scontrol ΔS TEoptimum time Source:, Huettel, Song & McCarthy, 2004, Functional Magnetic Resonance Imaging Source: Jorge Jovicich 5
  • 6. 2012.10.30. Part II. How to perform an fMRI? p End of Part I. – any questions? The MRI recipe 1. Patient (water + fat = lot of spins) MRI sequences 2. Excite (Shout at the patient with a Image coded as waves, Fourier transformation is used to „decode” the raw Repeat this! This is called SEQUENCE radiofrequency coil) signal and get an image 3. Wait until the excited spins „relax” 4. During relaxation, the spins (water + You can „excite” the spin system in numerous ways to have image signals, fat =patient) shout back at you, they i.e. SPIN ECHO or GRADIENT ECHO sequences. send an ECHO 5. You listen to the echo and record it GRADIENT ECHO SEQUENCES ARE SENSITIVE FOR (this is the k-space acquisition) DEOXYHEMOGLOBINE CHANGES! , Human, made of 6. Decode the i l t image! 6 D d th signal, get i ! excitable spins (H ECHO proton spins) How does echo planar imaging works? Echo-planar imaging (SE-EPI, GRE-EPI) T2 contrast After one excitation, an entire slice is read out. It is a fast MR imaging sequence Has many artifacts, i.e. susceptibility IMAOIS – www.imaios.com 6
  • 7. 2012.10.30. fMRI and all the tools How to perform an fMRI scan? Checklist! Can our MRI device perform fast EPI, what is the field strength? 1.5T vs. 3T? What are we interested in? fMRI experiments are task-specific It is necessary to construct a PARADIGM which „observes” one specific brain function Do D we h have i image processing skills? i kill ? $$$ Patient cooperative? IQ, attention? Do we have enough time? Sedation, drugs, etc. The first step: imaging the anatomy Anatomical acquisition T1 weighted anatomical images as references • High resolution images (1x1x2.5 mm) • 3D acquisition VOXEL • pl. 64 anatomical images ~ 5 perc (Volumetric Pixel) Slice Thickness e.g., 6 mm In-plane resolution e.g., 192 mm / 64 = 3 mm 3 mm 6 SAGITTAL SLICE IN-PLANE IN PLANE SLICE mm 3 mm Number of Slices e.g., 10 Matrix Size e.g., 64 x 64 Field of View (FOV) e.g., 19.2 cm Paradigm and block design Second step: the actual fMRI acquisition Functional images T2*-weighted images fMRI ROI • Image contrast relates to neuronal activity ~2 sec signal Time • Low spatial resolution (3x3x5 mm) Course • One volume of the brain is acquired in 2 seconds! (% change • We acquire many volumes in time (4D), ie. 150 • Repeated scanning Time Tasks Statistical … activation map on T1 image first volume (2 sec to acquire) Time Region of interest ~ 5 minutes kijelölés (ROI) 7
  • 8. 2012.10.30. Interpreting fMRI results: TALAIRACH ATLAS - 1988 LOCALIZATION - 1 SZEMÉLY Variability of sulci - problematic Fathers of Localization (brain atlases) Jean Talairach Gabor Szikla (January 15, 1911, Perpignan – March 15, 2007, Paris) Source: Szikla et al., 1977 in Tamraz & Comair, 2000 Anatomical localization of activity: gyri and sulci How to display fMRI results? gray matter (dendrites & synapses) white matter (axons) ANK BA Brain extraction Inflation FISSURE FUNDUS Source: Ludwig & Klingler, 1956 in Tamraz & Comair, 2000 Creating 3D visualizations of the individual brain: Skull-stripping, inflating the cortex 8
  • 9. 2012.10.30. Standardization of fMRI images to brain Segmentation, filtering, masking atlases Fuzzy thresholding Anisotropic filtering Only brain Displaying fMRI fMRI display Part III. Examples and research applications p pp End of Part II. – any questions? 9
  • 10. 2012.10.30. What functions can we image using The logic of a „simple” fMRI experiment fMRI? Rest = empty screen Paradigm-dependent! Vision („vibrating checkboard”) Audition (variable frequency stimuli) Limb movement – active Passive limb movement - infants Task1 Time Task 2 Memory (hometown walking test) Speech … and many others (but not everything!) The subject views an object, i.e. apple „Scrambled” – image Results: object recognition First images of visual activity Flickering Checkerboard OFF (60 s) - ON (60 s) -OFF (60 s) - ON (60 s) - OFF (60 s) Source: Kwong et al., 1992 Kalanit Grill-Spector et al. Motor paradigm of the left hand CO-ACTIVATION OF V1 -> V2.. AFTER VISUAL STIMULUS 10
  • 11. 2012.10.30. Lesion in the left precentral gyrus (malformation) – RED Finger tapping test of the Hand movement activation: Yellow, CS tract: yellow right hand Source: Katona P., DEOEC Jakab, Katona et al. HOMUNCULUS Left hand Source: Berenyi, Emri, Jakab et al Left foot Auditory activation Task: Listening to orders Forrás: Berényi E, Emri M. DEOEC Forrás: Berényi E, Emri M. DEOEC 11
  • 12. 2012.10.30. Late speech development – pathological FREQUENCY PROGRESSION OF localization of speech centers? HUMAN AUDITORY CORTEX J Neurophysiol. 91:1282-1296, 2004. Radiology. 2003;229:651-658. Speech paradigm: say a word beginning Localizing swallowing movement with a,b,c, etc. Jakab A, Katona P et al. AJNR. 20:1520-0526. 1999. 12
  • 14. 2012.10.30. Patient history A case of drug resistant epilepsy 8 yrs old right handed boy Born on term from uneventful pregnancy Szentágothai TK - Semmelweis Egyetem MR Kutatóközpont fMRI in a Case of Childhood Epilepsy First seizures at 3.5 yrs About the time of falling asleep starting with left hand twithcing then generalizing Later atypical absence seizures EEG results Normal EEG on the onset Lajos R Kozak Later slow spike and wave activity developed with clinical abscence MR Research Center, Semmelweis University, Budapest, Hungary Finally, electric status epilepticus during sleep (ESES), irregular high amplitude spike and wave activity, during the whole night Physical examination Paresis on the left limbs Patient history Imaging Smaller right hemisphere On T1 weighted images (A-B) widespread irregularities of the cortical surface suggestive of multiple small folds with abnormally thick cortex, irregular appearance of the gray matter-white matter junction tt hit tt j ti suggestive of polymicrogyria On FLAIR images (C) numerous high intensity foci predominantly in the subcortical white matter Question: is the malformed cortex functional? Kozák et al., Clin Neurosci 2009;62(3–4):130–135. fMRI #1 #1 fMRI #1 no result The reason for unsuccesful fMRI? Imaging at 3T Philips Achieva scanner Bad acquisition ? TR=3000ms, TE=30ms, 500-700μV FA=75°, 3x3x3mm2 voxels (80x80 matrix, 240x240 Bad stimulation ? FOV), axial slices, no gap, Overanesthetized ? SENSE factor of 2 Block design paradigm, WHAT WAS THE 24s movement, 24s rest PROBLEM WITH THE • flexion/extension of fingers ~0.5-1Hz fMRI? Electric status • left and right limb moved in separate blocks epilepticus during sleep (ESES) ? movement rest Clonazepam was the solution Kozák et al., Clin Neurosci 2009;62(3–4):130–135. 14
  • 15. 2012.10.30. fMRI #2 #2 fMRI #2 #2 right hand movement pre- and postoperatively left hand movement pre- and postoperatively Preop. Preop. Postop Postop Functional reorganization to the healthy hemisphere Conclusions Passive range-of-movement paradigms are range-of- considered useful for the mapping of sensory- motor cortex in pediatric epilepsy patients patients. If fMRI fails in this patient population we have to check if there is ongoing epileptic activity during anesthesia These paradigms are able to describe cortical reorganization thus they have clear reorganization, prognostic value in a pre-operative setting pre- setting. Research with fMRI Summary of facts so far fMRI is based on the BOLD = Blood Oxygen Level Dependent contrast Neurovascular coupling "...the single most critical piece of equipment A stringent paradigm is required is still the researcher's own brain. All the equipment in the world will not help us if we (protocol) ( l) do not know how to use it properly, which requires more than just knowing how to Mapping brain activity can be operate it. Aristotle would not necessarily have been more profound had he owned a achieved in living humans laptop and known how to program. What is badly needed now, with all these scanners Many factors can influence the whirring away, is an understanding of exactly what we are observing, and seeing, and results measuring, and wondering about." fMRI = localization -- Endel Tulving, interview in Cognitive Neuroscience (2002, Gazzaniga , Ivry & Mangun, Eds., NY: Norton, p. 323) 15
  • 16. 2012.10.30. A new localizationism? Example for a BAD fMRI experiment The accepted application ~2 sec Surgical planning For cognitive neuroscience, localization itself has INFERIOR significance Popularity, factoid literature Task 2: Subject observes a 3: 1: noise + a screen car on(control) CAR Elmo Muppet Time The brain before the fMRI era BAD INTERPRETATION OF FMRI RESULTS CAN STILL MAKE A JOURNAL PUBLICATION? - = CAR against noise Elmo + CAR Elmo (negative elmo) Visual areas for „car Visual areas for „car + elmo Elmo Brain Area ??? Polyak, in Savoy, 2001, Acta Psychologica observation” observation” THE BRAIN AFTER FMRI (INCOMPLETE) Basic types of fMRI research reaching and pointing Testing models, theories Localize the activations after stimuli motor control touch retinotopic visual maps eye Activating networks after stimuli movements executive grasping Spatial encoding of the brain: control motion near head Retinotopy, somatotopy, frequency memory orientation selectivity coding motion perception Behavior and cognition Diseases, i.e. psychiatry scenes moving bodies static social cognition bodies faces objects Inter-species comparisons 16
  • 17. 2012.10.30. ULTRA-LOW-FIELD IMAGING The future of functional brain imaging Earth magnetic field SQUID MAGNETOMETRY 3T, 4T, 7T, … ? Los Alamos, USA Ultra-low-field imaging Arterial spin labeling Functional diffusion tensor imaging (Le Bihan) The small electric currents of neuronal activity induce changes in the magnetic field, which interferes with the Earth’s and imaging can be performed Arterial Spin Labeling - ASL Arterial Spin Labeling - ASL z (=B0) inversion slab excitation blood y x inversion imaging i i plane • Perfusion: delivery of metabolites (via local blood flow) (BOLD - hemoglobin) • Represents an interesting physiological parameter • Arterial Spin Labeling (ASL): invert of in-flowing • Quantitative: fit kinetic curve for perfusion in blood ml/100g/min • IMAGEperfusion = IMAGEuninverted - IMAGEinverted 99 • Lower SNR than BOLD 100 • Limited coverage (~5 slices) Arterial Spin Labeling - ASL Arterial Spin Labeling - ASL Magn Reson Med, 48:242-254 (2002) Magn Reson Med, 48:242-254 (2002) 17
  • 18. 2012.10.30. Stroke. 2000;31:680-687. Part IV. The functional brain connectome End of Part III. – any questions? Resting state fMRI Spontaneous synchronity in the brain = low frequency oscillations <0.1 Hz neuronal activity is present during „rest” Background for continuous sensory processing? Don’t do anything. What regions are „synced” ? 18
  • 19. 2012.10.30. THE SHORT HISTORY OF Correlated time courses = networks CONNECTOMICS 1. Regional slow neuronal activity Theodor Meynert Jules Dejerine Tracing studies „In vivo methods”: 3. Their correlation (temporal) Diffusion tensor imaging Functional MR imaging Functional Connectivity 2. Regional slow neuronal activity Hypothesis: if two neuronal time courses are This is called FUNCTIONAL CONNECTIVITY correlated, the regions are interconnected. 19
  • 20. 2012.10.30. Modeling the brain’s connections Modeling the brain’s connections Brain regions: network nodes Brain regions: network nodes Structural OR functional brain connection strength: network edges Structural OR functional brain connection strength: network edges Graph-theoretical analysis, a purely mathematical approach Graph-theoretical analysis, a purely mathematical approach Node (region) Edge (connection) Short path-length, Low degree Long path-length, Low degree How can information be exchanged among brain regions? How can information be exchanged among brain regions? Modeling the brain’s connections Modeling the brain’s connections Brain regions: network nodes Brain regions: network nodes Structural OR functional brain connection strength: network edges Structural OR functional brain connection strength: network edges Graph-theoretical analysis, a purely mathematical approach Graph-theoretical analysis, a purely mathematical approach Hub Short path-length, High degree Example of a highly (low efficiency) efficient network How can information be exchanged among brain regions? How can information be exchanged among brain regions? 20
  • 21. 2012.10.30. Modeling the brain’s connections What is the cortico-cortical brain network like? cortico- like? Brain regions: network nodes CORTEX The internet Facebook Structural OR functional brain connection strength: network edges Graph-theoretical analysis, a purely mathematical approach Source: Paul Weinstein’s blog Example of an inefficient network (almost random) Modha & Singh. Network architecture of the long-distance pathways in the macaque How can information be exchanged among brain regions? brain. PNAS, 2010 Small World Networks Network properties of the brain: brain: Network properties of the brain: brain: normal development normal and pathological Network cost Network efficiency cost=sum(wij) Gong et al. Age- and Gender-Related Differences in the Cortical Anatomical Network. The Journal of Gong et al. Age- and Gender-Related Differences in the Cortical Anatomical Network. The Journal of Neuroscience 2009; 29: 15684-15693. Neuroscience 2009; 29: 15684-15693. Network properties of the brain: brain: Network properties of the brain: brain: gender differences correlation with intelligence Network cost Network efficiency Path length negatively correlates with IQ, especially in the left frontal medial cortex cost=sum(wij) Gong et al. Age- and Gender-Related Differences in the Cortical Anatomical Network. The Journal of Van Heuvel et al. Efficiency of Functional Brain Networks and Intellectual Performance Neuroscience 2009; 29: 15684-15693. The Journal of Neuroscience, 2009, 29(23): 7619-7624. 21
  • 22. 2012.10.30. Network properties of the brain: brain: Detecting areas with similar connectivity profiles schizophrenia -Exekutív skill +Exekutív LOSS OF HIERARCHICAL skill ORGANIZATION IN FRONTAL REGIONS Jakab A et al. Mapping changes of in vivo connectivity patterns in the human mediodorsal Bassett, D. S. et al. 2008 thalamus: correlations with higher cognitive and executive functions. Brain Imaging and Van Heuvel. et al. 2010 Behavior 2012; DOI: 10.1007/s11682-012-9172-5 Network properties of the brain: brain: high functioning autistic adults Thank you for your attention! n=9 (HLFA) Presentation credits: vs. n=40 (controls) Suggests the impairment of long-range Dr. András Jakab, M.D. Ph.D. association fibers, Dr. Ervin Berényi, M.D. Ph.D. especially in the left fronto-temporo- Dr. Péter Katona, M.D. ocipital connectivities Dr. Miklós Emri, Ph.D. Tamás Spisák, M.sc. Jakab A, Spisak T, Szeman-Nagy A, Beres M, Molnar P, Emri M, Berenyi E. Pathological patterns of functional connectivity and white matter anisotropy in high functioning autistic adults. Under review @ PLoS One 22