SlideShare une entreprise Scribd logo
1  sur  263
PROTECTIVE DEVICE
                COORDINATION




Héctor Rivera
POYTECHNIC UNIVERSITY OF PUERTO RICO
 ELECTRICAL ENGINEERING DEPARTMENT
        HATO REY, PUERTO RICO




    PROTECTIVE DEVICE COORDINATION



               GROUP 28

            Rivera, Héctor J.




                                     Page 2 of 263
Table of Contents
Table of Pictures ............................................................................................................................. 5

Chapter 1: General Information ...................................................................................................... 8

   1.1 Abstracto ..................................................................................................................... 10
   1.2 Abstract ....................................................................................................................... 11
   1.3 Introduction ................................................................................................................. 12
   1.4 Objectives ................................................................................................................... 14
   1.5 Constraints .................................................................................................................. 15
Chapter 2: ETAP User Guide ....................................................................................................... 16

   2.1 Basic ETAP User Guide ............................................................................................. 18
       2.1.1 Creating a new ETAP Project. ............................................................................. 22
       2.1.2 Opening an ETAP existing Project. ..................................................................... 23
       2.1.3 Building New one-line Diagrams. ....................................................................... 25
       2.1.4 Connecting Elements. .......................................................................................... 28
       2.1.5 Adding a Protective Device to your One-Line. ................................................... 28
       2.1.6 Verify if the element is connected. ...................................................................... 29
   2.2 Advance ETAP User Guide ........................................................................................ 30
       2.2.1 How to configure the elements in the one-line diagram. ..................................... 34
       A)        Utility ................................................................................................................. 34
       B)        High Voltage Circuit Breakers ........................................................................ 36
       C)        Low Voltage Circuits Breakers ....................................................................... 39
       D)        Protective Relay ................................................................................................ 44
       E)        Fuses Ratings .................................................................................................... 49
       F)        Transformer Properties: .................................................................................. 54
       G)        Load Properties: ............................................................................................... 57
       H)        Bus ...................................................................................................................... 58
       2.2.2 Perform a Fault Analysis; .................................................................................... 59
Chapter 3: Transformer Case Study.............................................................................................. 61

   3.1 Diagrams ..................................................................................................................... 64
   3.2 Equipment Data .......................................................................................................... 66
   3.3 Calculations ................................................................................................................ 68
   3.4 Coordination Using ETAP Program ........................................................................... 73
   3.5 Fault Simulation .......................................................................................................... 77

                                                                                                                        Page 3 of 263
3.6 Settings and Results .................................................................................................... 81
Chapter 4: Bayamón WWTP Coordination Study........................................................................ 84

   4.1 Scope ........................................................................................................................... 88
   4.2 Electrical System Oneline Diagram ............................................................................ 90
   4.3 Imput Data Report ...................................................................................................... 94
   4.4 Calculations ................................................................................................................ 97
   4.5 Short Circuit Study ................................................................................................... 138
   4.6 Power Fuses Selection for Power Transformers T1, T2, T3, T4, T5, T6 and T7 ..... 160
   4.7 Protection Relay Settings for ................................................................................. 173
   Distribution Feeders ..................................................................................................... 173
   4.8 Relay Settings ........................................................................................................... 178
   4.9 Results ....................................................................................................................... 181
Chapter 5: Protective Device Coordination Project Results ....................................................... 186

   5.1 Alternatives Considered ............................................................................................ 188
   5.2 System Specifications ............................................................................................... 191
       Operation .................................................................................................................... 193
       Protective relay ........................................................................................................... 193
       Distance relay ............................................................................................................ 195
   Magazine Article............................................................................................................. 197
   5.4 Budget ....................................................................................................................... 198
   5.5 Bibliography ............................................................................................................. 199
   5.6 Conclusion ................................................................................................................ 201
Chapter 6: Administrative Section .............................................................................................. 202

   6.1 Protective Device Coordination Project Proposal..................................................... 205
       Work Schedule ............................................................................................................ 217
   Progress Report ............................................................................................................... 222
   Work Schedule ................................................................................................................ 241
Appendix ..................................................................................................................................... 246

   Tables and Curves ........................................................................................................... 247
   Protection Relay Settings for Generators ........................................................................ 252
   A.3 General Information ................................................................................................. 255




                                                                                                                      Page 4 of 263
Table of Pictures

Fig. 2.1: Create New Project Panel.................................................................................................... 22
Fig. 2.2: User Information Panel ....................................................................................................... 22
Fig. 2.3: Starting up window ............................................................................................................. 23
Fig. 2.4: Open Panel .......................................................................................................................... 24
Fig. 2.5: Selecting Project.................................................................................................................. 24
Fig. 2.6: Mode Toolbar ...................................................................................................................... 25
Fig.2.7: ETAP Elements .................................................................................................................... 27
Fig. 2.8: Connecting Elements .......................................................................................................... 28
Fig. 2.9: Open Panel .......................................................................................................................... 28
Fig. 2.10: Elements not connected..................................................................................................... 29
Fig. 2.11: Power Grid Editor Window .............................................................................................. 34
Fig. 2.12: High Voltage Circuit Breaker Editor Window .................................................................. 36
Fig. 2.13: Circuit Breaker Library ..................................................................................................... 37
Fig. 2.14: Low Voltage Circuit Breaker Window ............................................................................. 39
Fig. 2.15: Low Voltage Circuit Breaker library ................................................................................ 41
Fig. 2.16: Overcurent Relay Editor Window ..................................................................................... 44
Fig. 2.17: Overcurrent Settings Panel ................................................................................................ 45
Fig. 2.18: Instantaneus Settings Panel ............................................................................................... 46
Fig. 2.19: Fuse Editor Window ......................................................................................................... 49
Fig. 2.20: Fuse Library Window ....................................................................................................... 51
Fig. 2.21: Winding Transformer Editor Window .............................................................................. 54
Fig. 2.22: Transformer Rating Editor Window ................................................................................. 55
Fig. 2.23: Transformer Tap Editor Window ...................................................................................... 56
Fig. 2.24: Lumped Load Editor Window........................................................................................... 57
Fig. 2.25: Bus Editor Window ........................................................................................................... 58
Fig. 2.26: Fault Simulation ................................................................................................................ 59
Fig. 2.27: Select Sequence Viewer to find fault analysis results ....................................................... 60
Fig. 2.28: Results Window ................................................................................................................ 60
Fig. 3.1: Transformer Protection Diagram……………………………………………………....... 65
Fig. 3.2: Selected Fuse…………………………………………………………………………….. 67
Fig. 3.3: Selected Relay…………………………………………………………………………… 67
Fig. 3.4: Table of Current Transformer Specifications…………………………………………… 67
Fig. 3.5: Table of Power Fuse Rating……………………………………………………………... 71
Fig. 3.6: Overcurrent Relay Settings at Transformer……………………………………………... 74
Fig. 3.7: Overcurrent Relay Settings at Load 1,2…………………………………………………. 75
Fig. 3.8: Fuse Settings…………………………………………………………………………….. 76
Fig. 3.9: ETAP Simulation of Fault at Bus 1……………………………………………………… 78
Fig. 3.10: Sequence of Operation Events at Bus 1………………………………………………... 78
Fig. 3.11: ETAP Fault Simulation at Bus 2……………………………………………………….. 79
Fig. 3.12: Sequence of Operation Events at Bus 2………………………………………………... 79
Fig. 3.13: ETAP Fault Simulation at Load 1……………………………………………………… 80
Fig. 3.14: Sequence of Operation Events at Load 1………………………………………………. 80
Fig. 3.15: Relay and Fuse Settings………………………………………………………………... 83
Fig. 3.16: Results of Short Circuit Analysis………………………………………………………. 83
Fig. 4.1: Power Transformer Characteristics Table……………………………………………….. 89
Fig. 4.2: Generator Characteristics Table…………………………………………………………. 89
Fig. 4.3: Original Oneline Diagram of Bayamón WWTP………………………………………… 92
Fig. 4.4: Suggested Oneline Diagram of Bayamón WWTP………………………………………. 93
Fig. 4.5: Lines Cables……………………………………………………………………………... 95

                                                                                                                            Page 5 of 263
Fig. 4.6: Existing Transformer Line Cable. …………………………………………………….... 95
Fig. 4.7: Generator Cables………………………………………………………………………… 95
Fig. 4.8: Positive Sequence impedance Diagram at Bus 1……………………………………....... 99
Fig. 4.9: Three Phase Fault at Bus 1…………………………………………………………… 102
Fig. 4.10: Positive Sequence Impedance Diagram at Bus 2…………………………………… 103
Fig. 4.11: Three Phase Fault at Bus 2 …………………………………………………………… 104
Fig. 4.12: Positive Sequence Impedance Diagram at Load 1……………………………………. 105
Fig. 4.13: Three Phase Fault at Load 1…………………………………………………………... 106
Fig. 4.14: Positive Impedance Diagram at Load 5………………………………………………. 107
Fig. 4.15: Three Phase Fault at Load 6…………………………………………………………... 108
Fig. 4.16: Positive Sequence Impedance Diagram at Bus 1 for a Line to Ground Fault………... 109
Fig. 4.17: Cero Sequence Impedance Diagram at Bus 1……………………………………........ 109
Fig. 4.18: Line to Ground Fault at Bus 1………………………………………………………… 110
Fig. 4.19: Positive Sequence Impedance Diagram at Bus 2 for a Line to Ground Fault………... 111
Fig. 4.20: Cero Sequence Impedance Diagram at Bus 2………………………………………… 111
Fig. 4.21: Line to Ground Fault at Bus 2………………………………………………………… 112
Fig. 4.22: Positive Sequence Impedance Diagram at Load 1 for a Line to Ground Fault………. 113
Fig. 4.23: Cero Sequence Impedance Diagram at Load 1……………………………………….. 113
Fig. 4.24: Line to Ground Fault at Load 1……………………………………………………….. 114
Fig. 4.25: Positive Sequence Impedance Diagram at Load 5 for a Line to Ground Fault………. 115
Fig. 4.26: Cero Sequence Impedance Diagram at Load 5……………………………………….. 115
Fig. 4.27: Line to Ground Fault. At Load 5……………………………………………………... 116
Fig. 4.28: Positive Sequence Impedance Diagram at Generator Bus……………………………. 117
Fig. 4.29: Positive Sequence Impedance Diagram at Bus 2 using Generators………………….. 118
Fig. 4.30: Positive Sequence Impedance Diagram at Load 1 using Generators………………… 119
Fig. 4.31: Positive Sequence Impedance Diagram at Load 5 using Generators………………… 120
Fig. 4.32: Positive Sequence Impedance Diagram at Generators Bus for a Line to Ground Fault. 121
Fig. 4.33: Cero Sequence Impedance Diagram at Generators Bus………………………………. 121
Fig. 4.34: Positive Sequence Impedance Diagram at Bus 2 Using Generators for a Line to Ground
Fault……………………………………………………………………………………………… 122
Fig. 4.35: Cero Sequence Impedance Diagram at Bus 2 Using Generators……………………... 123
Fig. 4.36: Positive Sequence Impedance Diagram at Load 1 Using Generators for a Line to Ground
Fault……………………………………………………………………………………………… 124
Fig. 4.37: Cero Sequence Impedance Diagram at Load 1 Using Generators……………………. 124
Fig. 4.38: Positive Sequence Impedance Diagram at Load 5 Using Generators for a Line to Ground
Fault……………………………………………………………………………………………… 125
Fig. 4.39: Cero Sequence Impedance Diagram at Load 5 Using Generators……………………. 125
Fig. 4.40: Fault Simulation at Primary Side of 38KV/4.16KV Utility Transformer of BWWTP. 140
Fig. 4.41: Sequence of Operations Events at Primary Side of T1……………………………….. 141
Fig. 4.42: Fault Simulation at Bus 1 of BWWTP………………………………………………... 144
Fig. 4.43: Sequence of Operation Events at Bus 1………………………………………………. 145
Fig. 4.44: Fault Simulation at Bus 2 of BWWTP………………………………………………... 148
Fig. 4.45: Sequence of Operation Events at Bus 2………………………………………………. 149
Fig. 4.46: Fault Simulation at Load 1 of BWWTP……………………………………………… 152
Fig. 4.47: Sequence of Operations Events at Load 1……………………………………………. 153
Fig. 4.48: Fault Simulation at Load 6 of BWWTP……………………………………………… 156
Fig. 4.49: Sequence of Operation Events at Load 6……………………………………………... 157
Fig. 4.50: Recommendations to Fuse Protection………………………………………………… 161
Fig. 4.51: Time Fuse 1 and 5 Coordination……………………………………………………… 162
Fig. 4.52: Characteristics Curves for Fuse 1 and 5……………………………………………… 163
Fig. 4.53: Fuse 1 and 5 recommended…………………………………………………………… 164

                                                                                 Page 6 of 263
Fig. 4.54: Time Fuse 2 and 6 Coordination……………………………………………………… 165
Fig. 4.55: Characteristics Curves for fuse 2 and 6………………………………………………. 166
Fig. 4.56: Fuse 2 and 6 Recommended………………………………………………………….. 166
Fig. 4.57: Time Fuse 3, 4, 7 and 8 Coordination………………………………………………… 167
Fig. 4.58: Characteristics Curves for fuses 3, 4, 7 and 8………………………………………… 168
Fig. 4.59: Fuse 3, 4, 7 and 8 Recommended……………………………………………….......... 169
Fig. 4.60: Time Fuse 9 Coordination……………………………………………………………. 170
Fig. 4.61: Characteristics Curves for fuse 9……………………………………………………... 171
Fig. 4.62: Fuse 9 Recommended………………………………………………………………… 172
Fig. 4.63: Relay 351A Settings…………………………………………………………………... 179
Fig. 4.64: Overcurent Relay Settings for Generator……………………………………………... 180
Fig. 4.65: Undervoltage, Overvoltage, Frequency of Power Relay for Generator………………. 180
Fig. 4.66: Three Phase Fault Results…………………………………………………………….. 183
Fig. 4.67: Line to Ground Fault Results…………………………………………………………. 184
Fig. 4.68: Three Phase Fault Results Using Generators…………………………………………. 185
Fig. 4.69: Line to Ground Fault Results Using Generators…………………………………........ 185
Fig. 6.1: Protective Devices……………………………………………………………... 213
Fig. 6.2: Budget to Complete Design……………………………………………………. 218
Fig. 6.3: Salary Cap……………………………………………………………………… 218




                                                                          Page 7 of 263
Chapter 1: General Information




                          Page 8 of 263
Contents


1.1 Abstracto……………………………………………………………………………... 10
1.2 Abstract………………………………………………………………………………. 11
1.3 Introduction…………………………………………………………………………... 12
1.4 Objectives…………………………………………………………………………….. 14
1.5 Constraints…………………………………………………………………………..... 15




                                           Page 9 of 263
1.1 Abstracto

       La protección de los sistemas de potencia es uno de los campos más importantes
dentro del área de potencia en la ingeniería eléctrica. A través del tiempo se han creado
muchísimos programas de computadora con el fin de analizar diseños eléctricos. Nuestro
proyecto consiste en preparar una guía de usuario fácil de entender acerca de un programa
existente, llamado ETAP, diseñado para realizar análisis de protección de sistemas de
potencia. Esta guía de usuario debe incluir como crear un diagrama monolineal, como
configurar los equipos de protección, y también la forma correcta de hacer un análisis de
fallas y de corto circuito. Finalmente, nosotros preparamos una guía de usuario avanzada
con explicaciones detalladas sobre aplicaciones especiales y conceptos técnicos manejados
en el programa ETAP. También, como requisito de nuestro proyecto se analiza un caso
estudio de un sistema de potencia y se realiza la coordinación de protección del mismo.




                                                                            Page 10 of 263
1.2 Abstract

       Power Protection is one of the most important fields in Power Electrical
Engineering. Through time many software’s has been created to analyze electrical designs.
Our project consist of prepare a user guide easy to understand of how to use an existing
power protection analysis program calling ETAP. This user guide must include how to
create a one-line diagram, how to configure power system devises, and an explanation of
the right way to perform a short and fault analysis. Finally, we prepare an advance user
guide with detailed explanations of special features and technical concept of ETAP
program. Also, as a requirement of our project, we analyzed a case study of power system
and perform the protective device coordination of it.




                                                                          Page 11 of 263
1.3 Introduction


       Electricity has been a subject of scientific interest since at least the early 17th
century. Probably the first electrical engineer was William Gilbert who designed the
versorium: a device that detected the presence of statically charged objects. He was also the
first to draw a clear distinction between magnetism and static electricity and is credited
with establishing the term electricity. However it was not until the 19th century that
research into the subject started to intensify. Notable developments in this century include
the work of Georg Ohm, who in 1827 quantified the relationship between the electric
current and potential difference in a conductor, Michael Faraday, the discoverer of
electromagnetic induction in 1831, and James Clerk Maxwell, who in 1873 published a
unified theory of electricity and magnetism in his treatise on Electricity and Magnetism.
They are the fathers of electrical engineering and the electric systems.
       Today, power system protection is that part of electrical power engineering that
deals with protecting the electrical power system from faults by isolating the faulted part
from the rest of the network.
       Any electric power system involves a large amount of auxiliary equipment for the
protection of generators, transformers, and the transmission lines. Circuit breakers are
employed to protect all elements of a power system from short circuits and overloads, and
for normal switching operations.
       The principle of a protection scheme is to keep the power system stable by isolating
only the components that are under fault, even as leaving as much of the network as
possible still in operation. Thus, protection schemes must apply a very pragmatic and
pessimistic approach to clearing system faults. For this reason, the technology and
philosophies utilized in protection schemes are often old and well-established because they
must be very reliable.
       In much the same way as the early computers of the 1950s and 1960s were a
precursor to the computational capabilities of today’s computers. Specialized hardwire
systems were developed for locally monitoring the operation of power plants and for
remotely monitoring and controlling switches in transmission substation. The Remote
Terminal Units of these early monitoring systems were implemented with relay logic, while


                                                                             Page 12 of 263
the master station consisted primarily of large banks of annunciator panels with red and
green light indication the state of the points being monitored with flashing light indication a
change in state or an alarm condition.
           The impact of computers has nowhere been more revolutionary than in electrical
engineering. The design, analysis and operation of electrical and electronic systems has
become completely dominated by computers, a transformation that has been motivated by
the natural ease of interface between computers and electrical systems, and the promise of
spectacular improvements in speed and efficiency.
       Our project consists of develop a protective device coordination using a graphical
software program to add features and flexibility in the area of electrical system protection.
Also, this graphical software program it’s going to be using for all kind of element that
used these. We will select the software program, analyze all types of element protection
that are utilizing in electrical systems, and simulate the program using various management
studies.




                                                                               Page 13 of 263
1.4 Objectives


   •   To make a research about technical references of fuses, relays and breakers.
   •   Understand technical data format of protection devices.
   •   To learn how to use the protective device coordination program.
   •   Create a user guide easy to understand about how to use software program.
   •   Build an advance use guide to explain additional features of software program.
   •   Perform a case study with the software program.
   •   Establish the system coordination of a case study with the program.




                                                                             Page 14 of 263
1.5 Constraints

   •   How to install ETAP program.
   •   Ways to use library of ETAP program. Start by understanding.
   •   Interpret results in the program.
   •   Establish coordination of a protection system.
   •   Run the program with all kind of requisites.
   •   Find right protective devices for design coordination.
   •   Understand how to program protective devices settings of equipments to use.




                                                                          Page 15 of 263
Chapter 2: ETAP User Guide




                       Page 16 of 263
Contents


Basic ETAP User Guide………………………………………………………………………... 18
Creating a new ETAP Project………………………………………………………………….. 22
    Opening an ETAP existing Project..……… ………………………………………… 23
    Building New one-line Diagram. ……………………………………………………... 25
    Connecting Elements……………………………………………………………… 28
    Adding Protective Device to your One-Line………………………………………. 28
    Verify if the element is connected………………………………………………… 29
Advance ETAP User Guide…..…………………………………………………………... 30
    How to configure the elements in the one-line diagram…………………………… 34
         Utility……………………………………………………………………… 34
         High Voltage Circuit Breakers……………………………………………... 36
         Low Voltage Circuit Breaker………………………………………………. 39
         Protective Relay……………………………………………………………. 44
         Fuses Ratings………………………………………………………………. 49
         Transformer Properties………………………………………………..……. 54
         Load Properties…………………………………………………………….. 57
         Bus…………………………………………………………………………. 58
    Perform a Fault Analysis…………………………………………………………... 59




                                                           Page 17 of 263
2.1 Basic ETAP User Guide




                      Page 18 of 263
Page 19 of 263
Contents
Creating a new ETAP Project. ...................................................................................................... 22

Opening an ETAP existing Project. .............................................................................................. 23

Building New one-line Diagrams. ................................................................................................ 25

Connecting Elements. ................................................................................................................... 28

Adding a Protective Device to your One-Line. ............................................................................ 28

Verify if the element is connected. ............................................................................................... 29




                                                                                                             Page 20 of 263
Table of Figure
Fig. 2.1: Create New Project Panel .................................................................................................... 22
Fig. 2.2: User Information Panel ....................................................................................................... 22
Fig. 2.3: Starting up window ............................................................................................................. 23
Fig. 2.4: Open Panel .......................................................................................................................... 24
Fig. 2.5: Selecting Project.................................................................................................................. 24
Fig. 2.6: Mode Toolbar ...................................................................................................................... 25
Fig.2.7: ETAP Elements .................................................................................................................... 27
Fig. 2.8: Connecting Elements .......................................................................................................... 28
Fig. 2.9: Open Panel .......................................................................................................................... 28
Fig. 2.10: Elements not connected..................................................................................................... 29




                                                                                                                          Page 21 of 263
2.1.1 Creating a new ETAP Project.
Open the program and select new project. Write the name of the new project and select ok.




                                 Fig. 2.1: Create New Project Panel



Write the name of the project user and select the access level permissions.




                                 Fig. 2.2: User Information Panel



                                                                              Page 22 of 263
2.1.2 Opening an ETAP existing Project.
Select open on the ETAP screen.




                                Fig. 2.3: Starting up window



 To open an existing project must be selected the icon showed. Click the icon and select
the project that you want to run in program.




                                                                            Page 23 of 263
For example, select document named Protection System Devices and wait until in the next
page appears (Fig. 2.5)




                                      Fig. 2.4: Open Panel

Select icon that has the ETAP symbols. Then click open to see the project at ETAP main
window.




                                    Fig. 2.5: Selecting Project


                                                                        Page 24 of 263
2.1.3 Building New one-line Diagrams.
To build or edit a one-line diagram in ETAP, you must be in Edit Mode. Click the Edit
button on the Mode toolbar.




                                    Fig. 2.6: Mode Toolbar


AC Elements:



       =      Pointer                                        =   Bus

       =      2 winding transformers                         =   3 winding transformers

       =      cable                                          =   Transmission Line

       =      Reactors, Current-Limiting                     =   Impedance

       =      Power grid                                     =   Generator

       =      Wind turbine Generator                         =   Induction Machine

       =      Synchronous Motor                              =   Lumped Load

       =      MOV                                            =   Static Load

       =      Capacitor                                      =   Harmonic Filter

       =      Remote Connector                               =   Static Var Compensator

       =      HV DC Transmission Link                        =   AC Composite Motor

       =      Composite Network                              =   Fuse

       =      Contactor                                      =   High Voltage Circuit
                                                                 Breaker

       =      Low Voltage circuit Breaker                    =   Single Throw Switch

       =      Double Throw Switch                            =   Instrumentation

       =      Ground Grid                                    =   Display options

                                                                             Page 25 of 263
=     Schedule Report Manager       =   Current Transformer (CT)

     =     Potential Transformer (PT)    =   Voltmeter

     =     Ammeter                       =   Multi-meter

     =     Voltage Relay                 =   Reverse Power Relay

     =     Frequency Relay               =   MV solid State Trip
                                             Relay

     =     Motor Relay                   =   Overcurrent Relay

     =     Overload Heater               =   Multi-Function Relay

     =     Tag Link


DC Elements:



     =     Pointer                       =   Bus

     =     DC Cable                      =   DC Impedance

     =     DC-DC Converter               =   Battery

     =     DC Motor                      =   DC static Load

     =     DC Lumped Load                =   Composite CSD

     =     DC Composite Motor            =   Composite Network

     =     DC Circuit Breaker            =   DC Fuse

     =     DC Single Throw Switch        =   DC Double Throw
                                             Switch

     =     Un-Interrupted Power System   =   Variable Frequency Drive

     =     Charger                       =   Inverter




                                                         Page 26 of 263
You can select the element that your project requires for run the short circuit analysis. In
the columns you can see all the elements that ETAP program has. Select the elements and
drop to the board to complete your diagram.




                           Fig.2.7: ETAP Elements




                                                                            Page 27 of 263
2.1.4 Connecting Elements.
To connect the elements in the one-line. Use the mouse pointer over the connection pin of
an element, and it will turn red. Then click and drag to the connection pin of another
element. Follow this procedure to connect all the elements on the one-line. In the case of
buses, the entire element graphic functions as a connection point.




                                  Fig. 2.8: Connecting Elements




2.1.5 Adding a Protective Device to your One-Line.
To connect the element between two elements does not require delete the line connecting
the elements. The element will automatically connect to the line. As shown in the diagram.




                                         Fig. 2.9: Open Panel




                                                                            Page 28 of 263
2.1.6 Verify if the element is connected.

                              To check if an element is energized click on the continuity icon (     )
                              located in the project toolbar. All elements that are not energized will
                              be grayed out. For example, with the continuity check on, open CB4.
                              As shown in the figure to the right, CB4 and elements downstream
                              are grayed out.




Fig. 2.10: Elements not connected




                                                                                      Page 29 of 263
2.2 Advance ETAP User Guide




                       Page 30 of 263
Page 31 of 263
Contents
How to configure the elements in the one-line diagram. .............................................................. 34

   A)        Utility ............................................................................................................................. 34
   B) High Voltage Circuit Breakers ....................................................................................... 36
   C) Low Voltage Circuits Breakers ...................................................................................... 39
   D) Protective Relay ............................................................................................................... 44
   E) Fuses Ratings .................................................................................................................... 49
   F) Transformer Properties: ................................................................................................. 54
   G) Load Properties: .............................................................................................................. 57
   H) Bus ..................................................................................................................................... 58
Perform a Fault Analysis; ............................................................................................................. 59




                                                                                                                     Page 32 of 263
Table of Figures

Fig. 2.11: Power Grid Editor Window .............................................................................................. 34
Fig. 2.12: High Voltage Circuit Breaker Editor Window .................................................................. 36
Fig. 2.13: Circuit Breaker Library ..................................................................................................... 37
Fig. 2.14: Low Voltage Circuit Breaker Window ............................................................................. 39
Fig. 2.15: Low Voltage Circuit Breaker library ................................................................................ 41
Fig. 2.16: Overcurent Relay Editor Window ..................................................................................... 44
Fig. 2.17: Overcurrent Settings Panel ................................................................................................ 45
Fig. 2.18: Instantaneus Settings Panel ............................................................................................... 46
Fig. 2.19: Fuse Editor Window ......................................................................................................... 49
Fig. 2.20: Fuse Library Window ....................................................................................................... 51
Fig. 2.21: Winding Transformer Editor Window .............................................................................. 54
Fig. 2.22: Transformer Rating Editor Window ................................................................................. 55
Fig. 2.23: Transformer Tap Editor Window ...................................................................................... 56
Fig. 2.24: Lumped Load Editor Window........................................................................................... 57
Fig. 2.25: Bus Editor Window ........................................................................................................... 58
Fig. 2.26: Fault Simulation ................................................................................................................ 59
Fig. 2.27: Select Sequence Viewer to find fault analysis results ....................................................... 60
Fig. 2.28: Results Window ................................................................................................................ 60




                                                                                                                       Page 33 of 263
2.2.1 How to configure the elements in the one-line diagram.
    A) Utility

Rated kV
Enter the rated voltage of the power grid in kilovolts (kV).




                                                               Fig. 2.11: Power Grid Editor Window




Generation Categories
This group is used to assign the different power settings to each of the ten generation
categories for this power grid. Each grid can be set to have a different operating power
level for each generation category. Depending on the operation mode, some of the values
become editable as follows:
   •   Swing Mode: %V and angle
   •   Voltage Control Mode: %V and MW
   •   Mvar Control: MW and Mvar
   •   Power Factor Control: MW and PF




                                                                              Page 34 of 263
SC Rating MVAsc
Specify the short-circuit MVA for three-phase and single-phase (line-to-ground) faults. As
you enter or modify MVAsc or X/R, ETAP recalculates the corresponding short-circuit
impedance values.




                                                                           Page 35 of 263
B) High Voltage Circuit Breakers
How to change the Rating
   •   Click on either the ANSI or IEC option button to select that standard.




                 Fig. 2.12: High Voltage Circuit Breaker Editor Window




                                                                                Page 36 of 263
Library Info
To access ANSI standard library data, click on the ANSI selection and then click on the
Library button. Use the same procedure for accessing IEC standard library data. As you
change the standard from ANSI to IEC, the data fields change accordingly.


Rating, ANSI Standard
Click on ANSI to enter high voltage circuit breaker ratings according to the ANSI
standards. Select the manufacturer and breaker model.




                                 Fig. 2.13: Circuit Breaker Library


Max kV
Select the rated maximum kV of the high voltage circuit breaker in rms kV or select the
rating from the list box.


Continuous Amp
Select the continuous current rating of the high voltage circuit breaker in amperes or select
the rating from the list box.


Standard
Select the high voltage circuit breaker type as Symmetrical or Total rated from the list box.




                                                                              Page 37 of 263
Cycle
Select the rated interrupting time for AC high voltage circuit breakers in cycles from the list
box.
CB Cycle        Description
2       2-cycle ac high voltage circuit breakers with 1.5-cycle Minimum Contact Parting Time
3       3-cycle ac high voltage circuit breakers with 2-cycle Minimum Contact Parting Time
5       5-cycle ac high voltage circuit breakers with 3-cycle Minimum Contact Parting Time
8       8-cycle ac high voltage circuit breakers with 4-cycle Minimum Contact Parting Time


Rated Interrupting
Enter the rated short-circuit current (rated interrupting capability) at the rated maximum kV
in rms kA or select the rating from the list box.


Maximum Interrupting
Enter the maximum symmetrical interrupting capability in rms kA or select the rating from
the list box.


C & L RMS
Enter the closing and latching capability of the high voltage circuit breaker in asymmetrical
rms kA. This value is equal to 1.6 times the maximum interrupting capability.


C & L Crest
Enter the closing and latching capability of the high voltage circuit breaker in crest kA.
This value is equal to 2.7 times the maximum interrupting capability.




                                                                                 Page 38 of 263
C) Low Voltage Circuits Breakers

Standard
Click on either the ANSI or IEC option button to select that standard. Note: once the
breaker is selected from the breaker Library Quick Pick the standard is set based on the
library entry and is display only.


Type
Select a type from the drop-down list and display the type of breaker. Low voltage circuit
breakers include Molded Case, Power, and Insulated Case breakers. Once the breaker is
selected from the breaker Library Quick Pick, the LVCB type is set based on the library
entry and is display only.




                        Fig. 2.14: Low Voltage Circuit Breaker Window


                                                                           Page 39 of 263
CB and Trip Device library
The low voltage circuit breaker data for a selected standard and type can be selected by
clicking on the Library button.


Standard
Click on either the ANSI or IEC option to select that standard. Note that the Standard
selection in the breaker library Quick Pick (and hence the breaker models displayed) will be
defaulted to the selection.


AC/DC
Displays that the LV breaker is AC. This option is grayed out and is not available for
editing.


Type
Select from the drop down list and display the breaker type. The LV breaker types include
Molded Case, Power and Insulated Case breakers. Note that the Type selection in the
breaker library Quick Pick (and hence the breaker models displayed) will be defaulted to
the selection made for the breaker type on the Rating page. The breaker type selection can
be changed on the Quick Pick if desired.




                                                                            Page 40 of 263
Manufacturer Name
This displays a list of all AC LV breaker manufacturers included in the library for the
selected breaker standard and type. To choose one, just select the manufacturer name.




                                     Fig. 2.15: Low Voltage Circuit
                                             Breaker library

Reference
This displays the Manufacturer reference, if available. For example, Westinghouse is the
reference for Cutler Hammer.




                                                                           Page 41 of 263
Model Name
The Model section displays list of all models for the selected standard, breaker type and
breaker manufacturer. The models are displayed in the form of Model – Max kV – Pole,
which forms a unique record name in the breaker library. Select the Model – Max kV –
Pole by highlighting it.


ANSI Short-Circuit data
When ANSI standard is selected, the short-circuit data shows the applied voltage in kV,
short-circuit interrupting current for the applied voltage in kA, and test power factor in %,
for all breaker types. The short-circuit parameters are explained in more detail in the
Ratings section. Select a desired applied voltage and short-circuit data by highlighting it.


Size
This displays a list of all sizes available for the selected Model, Max. kV, and Pole record
for the breaker. To select a size from the Library Quick Pick, highlight the size.


Ratings, ANSI Standard
Click on ANSI standard button and choose the breaker type to enter the ratings for LV
circuit breaker in accordance with the ANSI/IEEE standards. When a breaker is selected
from Library Quick Pick, all parameters shown below will be set to their corresponding
values chosen from the Quick Pick. With the exception of Size, changing the values after
selecting a breaker from Library Quick Pick will turn the header blue to indicate that the
substituted library data has been modified.


Size
Select an item from the drop-down list to display the size in amperes for the selected
breaker.




                                                                               Page 42 of 263
Continuous Amp
Select an item from the drop-down list or enter the continuous current rating for the low
voltage circuit breaker in amperes. The Continuous Amp value will be set equal to the
breaker size when a breaker is selected from the breaker Library Quick Pick.


Rated kV
Select an item from the drop-down list or enter the rated kV rating for the low voltage
circuit breaker in kV. When a breaker is selected, the rated kV value will be set equal to
the applied kV selected from Library.


Test PF
This is the power factor of test equipment on which the rating of the circuit breaker has
been established. When a breaker is selected, the Test PF is set to the Test PF value
selected from Library.


Fused
For all breaker types, select fused or unfused by clicking on the provided selection box.
Note that when a breaker is selected from library, the Fused checkbox is set to the status as
selected from the Quick Pick.   The value of Test PF will change appropriately for fused or
unfused type, in case of Power breakers.


Interrupting kA
Select from drop down list or enter the Interrupting kA rating for the low voltage circuit
breaker in kA. Note that when a breaker is selected, the interrupting kA value will be set
equal to the kA value for selected applied kV from library Quick Pick.




                                                                               Page 43 of 263
D) Protective Relay




                            Fig. 2.16: Overcurent Relay Editor Window
Library
To access the Overcurrent relay library data, click on the Library button. Clicking the
Library button displays the relay library Quick Pick. From the Library, select the relay by
highlighting the Manufacturer name and Model name. Then click on the OK button to
retrieve the selected data from the library and transfer it to the editor.


OC level
Overcurrent relays can have multiple Time overcurrent (TOC) and/or Instantaneous
overcurrent (IOC) elements that can simultaneously and independently set in the relay
library. The OC level displays a drop down list of the maximum number of overcurrent
levels that are available for the selected relay.



                                                                             Page 44 of 263
Overcurrent (51) Settings
The Time overcurrent settings available for Phase, Neutral, Ground, Sensitive Ground and
Negative Sequence are described below.




                                                                              Fig. 2.17: Overcurrent Settings
                                                                                           Panel




Pickup Range
Select from drop down list and display the Time overcurrent Pickup range for the selected
curve. The pickup range can be specified in amperes of the secondary or primary current
rating. It can also be in multiples/percent of the CT secondary.


Pickup Setting
For the selected pickup range, select or enter the Time overcurrent pickup setting. The
pickup setting can be discrete values or continuously adjustable.


Relay Amps
This field displays the relay secondary current in amperes, for the selected pickup setting.


Prim. Amps
This field displays the relay primary current in amperes, for the selected pickup setting.




                                                                               Page 45 of 263
Time Dial
Select and display the Time Dial for the selected curve type. The time dial can be discrete
values or continuously adjustable.


Instantaneous (50) Settings
The Instantaneous settings available for Phase, Neutral, Ground, Sensitive Ground and
Negative Sequence are described below.




                                Fig. 2.18: Instantaneus Settings Panel




                                                                            Page 46 of 263
Curve Type
This field with a drop down list of curves is available only if the selected relay has Short
time feature and if the Short time is selected. Select from the drop down list and display
the Short time curve type for the selected model.


Pickup Range
Select from the drop down list and display the Instantaneous Pickup range (for the selected
curve in case of Short time).      The pickup range can be specified in amperes of the
secondary or primary current rating. It can also be in multiples/percent of the CT secondary
or 51 pickup.


Pickup Setting
For the selected pickup range, select or enter the Instantaneous pickup setting. The pickup
setting can be discrete values or continuously adjustable.


Relay Amps
This field displays the relay secondary current in amperes, for the selected pickup setting.


Prim. Amps
This field displays the relay primary current in amperes, for the selected pickup setting.


Delay Range
This field is available only if the relay has Instantaneous function. Select from the drop
down list and display the Instantaneous Delay range. The delay range could either be in
seconds or cycles.


Delay
Select or enter the intentional delay for the instantaneous. The Delay can be in seconds or
cycles, depending on the selection of relay. The delay can be in the form of discrete values
or continuously adjustable.



                                                                               Page 47 of 263
Time Dial
This field is available only if the selected relay has Short time feature and if the Short time
is selected. Select or enter the Time Dial for the selected curve type. The time dial can be
discrete values or continuously adjustable.




                                                                               Page 48 of 263
E) Fuses Ratings
Standard
Click either the ANSI or IEC button option to select that standard. Once the fuse is
selected from the Library Quick Pick - Fuse, the standard is set based on the library entry
and is display only.


Rating, ANSI Standard
Click on ANSI standard to enter the ratings for Fuse in accordance with the ANSI/IEEE
standards. When a Fuse is selected from library Quick Pick, all parameters shown below
will be set to their corresponding values chosen from the Quick Pick. With the exception of
Size, changing the value(s) after selecting a fuse from library Quick Pick will turn the
header to blue color indicating that the substituted library data has been modified.




                                   Fig. 2.19: Fuse Editor Window



                                                                               Page 49 of 263
kV
Select from drop down list or enter the rated kV rating for the Fuse in kV. When a Fuse is
selected, the Rated kV value will be set equal to the Max. kV selected from library Quick
Pick.


Size
Select from the drop-down list and display the size in amperes for the selected fuse. Note:
the Size field will be empty when no fuse is chosen from Library Quick Pick.


Continuous Amp
Select from drop down list or enter the continuous current rating for the Fuse in amperes.
The Continuous Amp value will be set equal to the fuse size when a fuse is selected from
library Quick Pick.


Interrupting
Select from the drop-down list or enter the Interrupting kA rating for the Fuse in kA. Note:
when a Fuse is selected, the interrupting kA value will be set equal to the kA value for
selected fuse size from Library Quick Pick.


Test PF
Enter the power factor of test equipment on which the rating of the fuse has been
established. When a fuse is selected, the Test PF is set to the Test PF value selected from
library Quick Pick.




                                                                            Page 50 of 263
Library (Quick Pick)
To select a fuse from the library, click the Library button and the Library Quick Pick – Fuse
dialog box will appear. From the dialog box, select a fuse by selecting the Manufacturer
name and the desired fuse Model, Max kV, and Speed. This represents a unique record.
Select the desired size and short circuit interrupting kA. Then click the OK button to
retrieve the selected data from the library and transfer it to the editor.




                                      Fig. 2.20: Fuse Library Window


Standard
Click on either the ANSI or IEC option to select that standard. Note that the Standard
selection in the Fuse library Quick Pick (and hence the fuse models displayed) will be
defaulted to the selection made for the standard on the Rating page. The standard selection
can be changed on the Quick Pick if desired.




                                                                             Page 51 of 263
Manufacturer
Manufacturer Name
Displays a list of all AC Fuse manufacturers included in the library for the selected
standard. Select the manufacturer by highlighting the manufacturer name.


Reference
Displays a manufacturer reference, if available, for selected manufacturer. For example,
Siemens is the reference manufacturer for ITE.


Model Name
The Model section displays list of all fuse models for the selected standard and fuse
manufacturer. The models are displayed in the form of Model – Max kV – Speed, which
forms a unique record name in the fuse library. Select the Model – Max kV – Speed by
highlighting it.


Cont. Amp
This displays the ampere value corresponding to each size for the selected fuse model.


Int. kA (ANSI Standard)
This displays the short-circuit interrupting rating in kA corresponding to each size for the
selected ANSI fuse model.


Model Info
Class
This displays the class (E-rated, for example) for the selected fuse model.




                                                                              Page 52 of 263
Type
This displays the type (Power Fuse, for example) for the selected fuse model.


Brand Name
It shows the brand name, if available, for the selected fuse model.


Reference
It demonstrates the reference, if available, for selected fuse model.


Application
Present the application for the selected fuse model.




                                                                            Page 53 of 263
F) Transformer Properties:
You can open the editor for T2 and go to the Rating page. On the rating page you can enter
the value of the primary kV, secondary kV, primary winding rating in kVA or MVA, and
the maximum transformer rating. Additionally, you can enter the impedance or substitute
typical values for the transformer.




                                      Fig. 2.21: Winding Transformer Editor Window




                                                                              Page 54 of 263
Transformer Ratings




                           Fig. 2.22: Transformer Rating Editor Window


Rating of Transformer:
Enter the rating of KV primary and secondary.
Enter the rating of MVA.
Enter the Typical X/R.
Enter the Z variation and Z Tolerance.
You may select the typical rating.




                                                                         Page 55 of 263
Transformer Tap
The Transformer Tap Optimization calculation optimizes a unit transformer tap, or
equivalently, its turn ratio, to ensure that the generator unit voltage remains within its upper
and lower variation range (typically 95% to 105%), while producing its full MW and Mvar
capability under the system voltage variation.




                     Fig. 2.23: Transformer Tap Editor Window




                                                                                Page 56 of 263
G) Load Properties:
In this part you can go to the Nameplate page. The available fields in the rating section depend
on the Model Type selected. In the Ratings section enter the lumped load rating in MVA or
MW. Furthermore, the % loading for various loading categories can be specified here.




                                       Fig. 2.24: Lumped Load Editor Window




                                                                                Page 57 of 263
H) Bus
Nominal kV
Enter the nominal voltage of the bus in kilovolts (kV).


In/Out of Service
The operating condition of a bus can be selected by choosing either the In Service or Out of
Service option.




                                 Fig. 2.25: Bus Editor Window




                                                                            Page 58 of 263
2.2.2 Perform a Fault Analysis;
Star View:
Click Star Protective Device Coordination.




                                  Fig. 2.26: Fault Simulation




                                                                Page 59 of 263
Select Sequence Viewer to find the result of the Protective Device Cordination.




                  Fig. 2.27: Select Sequence Viewer to
                        find fault analysis results




It will show the results to be show in the report. The sequence of operation is on order to
the parameters of the system.




                                  Fig. 2.28: Results Window



                                                                            Page 60 of 263
Chapter 3: Transformer Case
           Study




                       Page 61 of 263
Contents
Diagrams………………………………………………………………………………… ..64
Equipment Data……………………………………………………………………………66
Calculations………………………………………………………………………………..68
Coordination Using ETAP Program……………………………………………………….73
Fault Simulation……………………………………………………………………………77
Results………………...……………………………………………………………………81




                                              Page 62 of 263
Table of Figures

Fig. 3.1: Transformer Protection Diagram……………………………………………………....... 65
Fig. 3.2: Selected Fuse…………………………………………………………………………….. 67
Fig. 3.3: Selected Relay…………………………………………………………………………… 67
Fig. 3.4: Table of Current Transformer Specifications…………………………………………… 67
Fig. 3.5: Table of Power Fuse Rating……………………………………………………………... 71
Fig. 3.6: Overcurrent Relay Settings at Transformer……………………………………………... 74
Fig. 3.7: Overcurrent Relay Settings at Load 1,2…………………………………………………. 75
Fig. 3.8: Fuse Settings…………………………………………………………………………….. 76
Fig. 3.9: ETAP Simulation of Fault at Bus 1……………………………………………………… 78
Fig. 3.10: Sequence of Operation Events at Bus 1………………………………………………... 78
Fig. 3.11: ETAP Fault Simulation at Bus 2……………………………………………………….. 79
Fig. 3.12: Sequence of Operation Events at Bus 2………………………………………………... 79
Fig. 3.13: ETAP Fault Simulation at Load 1……………………………………………………… 80
Fig. 3.14: Sequence of Operation Events at Load 1………………………………………………. 80
Fig. 3.15: Relay and Fuse Settings………………………………………………………………... 83
Fig. 3.16: Results of Short Circuit Analysis………………………………………………………. 83




                                                              Page 63 of 263
3.1 Diagrams




               Page 64 of 263
3.1.1 Transformer Case Study Diagram:




                              Fig. 3.1: Transformer Protection Diagram



       Our Transformer Case Study has the following components:
             a) One transformer 38/4.16 KV of 7.5/11.3 MVA.
             b) Two feeders.


        Protection has to be able to extinguish faults that affect the system. It scheme consist of
protective relaying and fuses. Coordination criteria have 22 cycles between protection levels.
We considered selectivity, reliability and simplicity to accomplish with a scheme protection
safety.




                                                                             Page 65 of 263
3.2 Equipment Data




                     Page 66 of 263
Equipment Data:


Specification of electric fuse

                                                Fuse
                                           Continuous                             Maximum
           Fuse Name            Size                               Type
                                            Amperes                                 KV
         Cutler Hammer                                           Standard
                                150E           150                                  17
            BA-200                                                Speed
                                       Fig. 3.2: Selected Fuse


Relay settings

                                                 Relay
                                                                     TOU
                                                    IOU
                 Location      Relay Name                            51 &         Curve
                                                  50 & 50N
                                                                     51N
                                 ABB 51D
                                                   0.5-80;         0.5-80;    Extremely
                 Feeder           with 50
                                                  0.1 steps       0.1 steps    Inverse
                                  (60Hz)
                                 ABB 51D
                  Main                             0.5-80;         0.5-80;      Very
                                  with 50
                 Breaker                          0.1 steps       0.1 steps    Inverse
                                  (60Hz)
                                          Fig. 3.3: Selected Relay


Selected current transformer


                                       Current Transformer
                                  Location       CTR             Type
                                   Main
                                               2,500/5     MR C400
                                  Breaker
                                    Load        800/5      MR C400

                          Fig. 3.4: Table of Current Transformer Specifications




                                                                                          Page 67 of 263
3.3 Calculations




                   Page 68 of 263
Power System Coordination calculation:
1) Calculating the short circuit current:

                                375MVA
                      ISC = =              = 5, 697.53 A
                                 3(38 KV )


                                 7.5MVA
                      IBASE =              = 113.95 A
                                 3(38 KV )


                                5, 697.53
                      I pu =              = 50.0 pu
                                 113.95


                                 1
                      Z pu =         = 0.02 pu
                                50.0


           1∠00
ISC =               = 11.11 p
        0.02 + 0.07




                   38 
IBASE = (113.95)         = 11,564.3 A
                   4.16 




                                                           Page 69 of 263
2) Calculating the multiples of the relay in the load, to verify the necessary time dial in the
    curves:

               11, 565.3
        M=               = 13.6
                 850


3) Obtaining the pick-up current for the relay in the transformer:
       Pickup = (1568.28)(1.2) = 1881.93A


4) The multiples of the current transformer (CTM) in the transformer:

              11,565.3
      M=               = 6.14
              1,881.93


5) The calculation for choose the CTR:

    CTR = 2000/5
                11.3MVA
       IFL =                = 1, 568.28 A      ISC = 11,565.04
                3(4.16 KV )
       a) CTR > 1,568.28(1.2) = 1,881.93A
       b) ISC/CTR < 100 A
           11,565.04/400 < 100




                                                                               Page 70 of 263
6) Calculation for choosing fusible:
    Using the standard Speed curve

Step 1: Full load Current
                 11.3MVA                                          7.5MVA
         IFL =              = 171.68 A                   INM =              = 113.95 A
                  3(38 KV )                                       3(38 KV )


Data: 46 Kv Power Fuses (Show & Standard Speed)
             Rating                     Continuous Current               Operating Time
              100E                               165                       See curves…
              125E                               181                       See curves…

                                 Fig. 3.5: Table of Power Fuse Rating


         F1 ≥ 125E


Step 2: Inrush Current
IINRUSH = 113.95(12) = 1,367.48 A @ 6 cycles                       F1 ≥ 100E


Step 3: Short circuit current
        11,564.3
ISC =             = 1, 266.1A     @ 43.2 cycles                   F1 ≥ 175E
          38 
               
          4.16 


Step 4: Turning Ratio
      I NOMINAL 
FR =                    > 1.5 < 3
      I NOMINAL TRANS. 
     213 
   =         = 1.86                 1.5 < 1.86 < 3
     113.95 


The fuse chosen is 175E because it complied with the parameters of the design. Fuse will be
175E and can handle 213 Amps.



                                                                                  Page 71 of 263
Using the Slow Speed curve:
Step 1: Full load Current
                 11.3MVA
         IFL =              = 171.68 A
                  3(38 KV )


Data: 46 Kv Power Fuses (Slow & Standard Speed)
             Rating                     Continuous Current                   Operating Time
              100E                                165                         See curves…
              125E                                181                         See curves…

                                      Fig. 3.5: Table of Power Fuse Rating


         F1 ≥ 125E


Step 2: Inrush Current
IINRUSH = 113.95(12) = 1,367.48 @ 6 ciclos                        F1 ≥ 80E


Step 3: Short circuit current
        11,564.3
ISC =             = 1, 266.1A     @ 43.2 ciclos                  F1 ≥ 125E
          38 
               
          4.16 


Step 4: Turning Ratio
      I NOMINAL 
FR =                    > 1.5 < 3
      I NOMINAL TRANS. 
     181 
   =         = 1.58                  1.5 < 1.58 < 3
     113.95 


The fuse chosen is 125E because it complied with the parameters of the design.




                                                                                     Page 72 of 263
3.4 Coordination Using ETAP
          Program




                       Page 73 of 263
Overcurrent:



        To protect our transformer power system we choose a relay distributed by ABB
with overcurrent and instantaneous settings. This setting for overcurrent was given using a
Definite Time Curve. The pick range is specified by 5 amperes of the secondary or primary
rating. Using this setting the relay will operate when primary current exceed 2,500A. Time
dial of overcurrent relay is given by curve type and changing it by time required. In the
other side, to operate instantaneous relay is necessary select a pick up according to short
circuit current. These input settings are introduced at ETAP window showing below.

Overcurrent Relay settings in the transformer:




                       Fig. 3.6: Overcurrent Relay Settings at Transformer. In this
                                  case the curve selected was Definite Time.




                                                                                      Page 74 of 263
Another section of our power system that required protection are load 1 and 2
feeders. To protect these feeders we select an ABB instantaneous and overcurrent relay.
The overcurrent settings were chosen by a Definite Time Curve. The pick range is
specified by 5 amperes of the secondary side of relay. Using this setting the overcurrent
will operate when line current exceed 850A. Time dial is given by relay curve according to
time required for current magnitude. In the other side, to operate instantaneous relay is
necessary select a pick up according to short circuit current. When current reach 11,568;
instantaneous protection must operate. These input settings are introduced at ETAP
window showing below.


Overcurrent relay setting at load 1,2:




                            Fig. 3.7: Overcurrent Relay Settings at Load 1,2




                                                                               Page 75 of 263
Fuse Setting:

In order to perform good protective device coordination is necessary implement use of
almost one fuse. The fuse selected by us is S&C, SMU-20. It is modeling by an standard
speed curve with short circuit current of 10KA. Also it has a maximum rated voltage of
38KV. Finally, the size of fuse is 200E with a 200 continuous amperes.




                                 Fig. 3.8: Fuse Settings




                                                                       Page 76 of 263
3.5 Fault Simulation




                       Page 77 of 263
Short circuit results:




                                                 Fig. 3.10: Sequence of Operation
                                                          Events at Bus 1
 Fig. 3.9: ETAP Simulation of
         Fault at Bus 1



       Protection in the system can not protect for a fault at bus 1. It should be protected
by other protective device out of our system.




                                                                              Page 78 of 263
Figures below show short circuit results at bus 2 when operate the instantaneous
        relay 2. The instantaneous relay work to open the circuit and if it does not operate fuse 1
        operate to disconnect system. Relay 2 operates at 2.75 cycles after a fault occurs. If relay 1
        does not work, fuse 1 is going to operate at 52.56 cycles.




                                                           Fig. 3.12: Sequence of Operation Events at
Fig. 3.11: ETAP Fault Simulation at Bus 2                                    Bus 2




                                                                                        Page 79 of 263
In figures below you can see short circuit results at load 1. Instantaneous relay 3 will open
        first. If it does not operate, time overcurrent relay 2. But, if it also does not work, fuse 1
        must open with a time delay.




                                                            Fig. 3.14: Sequence of Operation Events at
                                                                              Load 1
Fig. 3.13: ETAP Fault Simulation at Load 1


               ETAP program gives results of short circuit. Short circuit current is 21,570 at load 1.
        With this current we choose settings for relay 3. Short circuit at load 1 is the same results
        at load 2.

               Sequence operation work with a sequence coordination of 22 cycles approximated.
        Relay 3 operates at 7.74 cycles covered by relay 2 witch operates at 28.86 cycles like
        primary protection.




                                                                                        Page 80 of 263
3.6 Settings and Results




                       Page 81 of 263
Settings and Results



       We perform protective device coordination for a transformer and two loads. In
order to express our results and recommendations clearly, we organized all data in tables.
These tables include devices and fuse settings. In the figure 3.15 you can find curves type,
pick-up and time dial to obtain better results with the protective device coordination. In the
other side, three phase fault table contents short circuits results in different section of
system.



         The figure 3.16 shows short circuit current magnitude in different parts of system.
First, the table presents a three phase fault at feeder #1. Short circuit current at this point is
11,564A. With this fault feeder relay will operates at 2.76 cycles like primary protection.
If the feeder relay does not operate, main breaker feeder will operate at 25.86 cycles.



       When system has a fault at primary side of transformer #1, the fuse will operate at
52.56 cycles.



        Relays in our system use definite time curve. It is use to chose time dial of relay
operation. In the other way, fuse 1 is modeling with a standard speed curve. Using these
settings the protection is complete according with coordination criteria.




                                                                                 Page 82 of 263
Equipment Settings


                                      Equipment Settings
                                                                      Time
                     Equipment            Curve         Pick-up
                                                                      Dial
                       Feeder            Definite
                                                         2,500        1.895
                        Relay             Time
                        Main
                                         Definite
                       Breaker                            850         1.895
                                          Time
                        Relay
                                        Standard
                        Fuse                               X              X
                                         Speed

                                 Fig. 3.15: Relay and Fuse Settings


Fault Results


                                       Three Phase Fault

                                Short          Operation Protection Devices
                Localization
                               Circuit       Feeder      Main
                   Fault
                               Current       Relay      Breaker        Fuse
                                              (51)     Relay (51)
                Feeder #1 or 11,564
                                               2.76          25.86            52.56
                    #2          A
                             11,566
                   Bus #2                       X              2.76           52.56
                                A
                             10,500
                 T1 Primary                     X               X             52.56
                                A
                T1 Secondary 9,950 A            X               X              X

                           Fig. 3.16: Results of Short Circuit Analysis




                                                                                      Page 83 of 263
Chapter 4: Bayamón WWTP
   Coordination Study




                    Page 84 of 263
Contents
Scope……………………………………………………………………………………….. 88
Electrical System Oneline Diagram……………………………………………………….... 90
Imput Data Report………………………………………………………………………… 94
Calculations………………………………………………………………………………... 97
Short Circuit Study………………………………………………………………………. 138
Power Fuse Selection for Power Transformer T1, T2, T3, T4, T5, T6 and T7………….. 160
Protection Relay Settings for Distrbution Feeders………………………………………. 173
Relay Settings……………………………………………………………………………. 178
Results……………………………………………………………………………………. 181




                                                                    Page 85 of 263
Table of Figure

Fig. 4.1: Power Transformer Characteristics Table………………………………………………... 89
Fig. 4.2: Generator Characteristics Table…………………………………………………………. 89
Fig. 4.3: Original Oneline Diagram of Bayamón WWTP………………………………………… 92
Fig. 4.4: Suggested Oneline Diagram of Bayamón WWTP………………………………………. 93
Fig. 4.5: Lines Cables……………………………………………………………………………... 95
Fig. 4.6: Existing Transformer Line Cable. ……………………………………………………… 95
Fig. 4.7: Generator Cables………………………………………………………………………… 95
Fig. 4.8: Positive Sequence impedance Diagram at Bus 1………………………………………... 99
Fig. 4.9: Three Phase Fault at Bus 1……………………………………………………………... 102
Fig. 4.10: Positive Sequence Impedance Diagram at Bus 2……………………………………... 103
Fig. 4.11: Three Phase Fault at Bus 2 …………………………………………………………… 104
Fig. 4.12: Positive Sequence Impedance Diagram at Load 1……………………………………. 105
Fig. 4.13: Three Phase Fault at Load 1…………………………………………………………... 106
Fig. 4.14: Positive Impedance Diagram at Load 5………………………………………………. 107
Fig. 4.15: Three Phase Fault at Load 6…………………………………………………………... 108
Fig. 4.16: Positive Sequence Impedance Diagram at Bus 1 for a Line to Ground Fault………... 109
Fig. 4.17: Zero Sequence Impedance Diagram at Bus 1……………………………………........ 109
Fig. 4.18: Line to Ground Fault at Bus 1………………………………………………………… 110
Fig. 4.19: Positive Sequence Impedance Diagram at Bus 2 for a Line to Ground Fault………... 111
Fig. 4.20: Zero Sequence Impedance Diagram at Bus 2………………………………………… 111
Fig. 4.21: Line to Ground Fault at Bus 2………………………………………………………… 112
Fig. 4.22: Positive Sequence Impedance Diagram at Load 1 for a Line to Ground Fault………. 113
Fig. 4.23: Zero Sequence Impedance Diagram at Load 1……………………………………….. 113
Fig. 4.24: Line to Ground Fault at Load 1……………………………………………………….. 114
Fig. 4.25: Positive Sequence Impedance Diagram at Load 5 for a Line to Ground Fault………. 115
Fig. 4.26: Zero Sequence Impedance Diagram at Load 5……………………………………….. 115
Fig. 4.27: Line to Ground Fault. At Load 5……………………………………………………... 116
Fig. 4.28: Positive Sequence Impedance Diagram at Generator Bus……………………………. 117
Fig. 4.29: Positive Sequence Impedance Diagram at Bus 2 using Generators………………….. 118
Fig. 4.30: Positive Sequence Impedance Diagram at Load 1 using Generators………………… 119
Fig. 4.31: Positive Sequence Impedance Diagram at Load 5 using Generators………………… 120
Fig. 4.32: Positive Sequence Impedance Diagram at Generators Bus for a Line to Ground Fault 121
Fig. 4.33: Zero Sequence Impedance Diagram at Generators Bus……………………………… 121
Fig. 4.34: Positive Sequence Impedance Diagram at Bus 2 Using Generators for a Line to Ground
Fault……………………………………………………………………………………………… 122
Fig. 4.35: Zero Sequence Impedance Diagram at Bus 2 Using Generators……………………... 123
Fig. 4.36: Positive Sequence Impedance Diagram at Load 1 Using Generators for a Line to Ground
Fault……………………………………………………………………………………………… 124
Fig. 4.37: Zero Sequence Impedance Diagram at Load 1 Using Generators……………………. 124
Fig. 4.38: Positive Sequence Impedance Diagram at Load 5 Using Generators for a Line to Ground
Fault……………………………………………………………………………………………… 125
Fig. 4.39: Zero Sequence Impedance Diagram at Load 5 Using Generators……………………. 125
Fig. 4.40: Fault Simulation at Primary Side of 38KV/4.16KV Utility Transformer of BWWTP. 140
Fig. 4.41: Sequence of Operations Events at Primary Side of T1……………………………….. 141
Fig. 4.42: Fault Simulation at Bus 1 of BWWTP………………………………………………... 144
Fig. 4.43: Sequence of Operation Events at Bus 1………………………………………………. 145
Fig. 4.44: Fault Simulation at Bus 2 of BWWTP……………………………………………….. 148
Fig. 4.45: Sequence of Operation Events at Bus 2………………………………………………. 149
Fig. 4.46: Fault Simulation at Load 1 of BWWTP……………………………………………… 152

                                                                               Page 86 of 263
Fig. 4.47: Sequence of Operations Events at Load 1……………………………………………. 153
Fig. 4.48: Fault Simulation at Load 6 of BWWTP……………………………………………… 156
Fig. 4.49: Sequence of Operation Events at Load 6……………………………………………... 157
Fig. 4.50: Recommendations to Fuse Protection………………………………………………… 161
Fig. 4.51: Time Fuse 1 and 5 Coordination……………………………………………………… 162
Fig. 4.52: Characteristics Curves for Fuse 1 and 5……………………………………………… 163
Fig. 4.53: Fuse 1 and 5 recommended…………………………………………………………… 164
Fig. 4.54: Time Fuse 2 and 6 Coordination……………………………………………………… 165
Fig. 4.55: Characteristics Curves for fuse 2 and 6………………………………………………. 166
Fig. 4.56: Fuse 2 and 6 Recommended………………………………………………………….. 166
Fig. 4.57: Time Fuse 3, 4, 7 and 8 Coordination………………………………………………… 167
Fig. 4.58: Characteristics Curves for fuses 3, 4, 7 and 8………………………………………… 168
Fig. 4.59: Fuse 3, 4, 7 and 8 Recommended……………………………………………….......... 169
Fig. 4.60: Time Fuse 9 Coordination……………………………………………………………. 170
Fig. 4.61: Characteristics Curves for fuse 9……………………………………………………... 171
Fig. 4.62: Fuse 9 Recommended………………………………………………………………… 172
Fig. 4.63: Relay 351A Settings………………………………………………………………….. 179
Fig. 4.64: Overcurent Relay Settings for Generator……………………………………………... 180
Fig. 4.65: Undervoltage, Overvoltage, Frequency of Power Relay for Generator………………. 180
Fig. 4.66: Three Phase Fault Results…………………………………………………………….. 183
Fig. 4.67: Line to Ground Fault Results…………………………………………………………. 184
Fig. 4.68: Three Phase Fault Results Using Generators…………………………………………. 185
Fig. 4.69: Line to Ground Fault Results Using Generators…………………………………........ 185




                                                                         Page 87 of 263
4.1 Scope




            Page 88 of 263
Scope
                 Develop a short circuit study for Power Transformers and relay settings for a waste
                 water treatment plant and the protective devices associated.
                         The Bayamón Waste Water Treatment Plant has seven large power
                         transformers with their respective protective devices (power fuses or
                         protective relaying) in service. The intention of this short circuit study is to
                         verify the appropriated protective device coordination and recommended the
                         appropriated changes if any.

                        For this plant we will cover the relay coordination and settings for the
                        protective device associated.

                        The short circuit current available at Bayamón Waste Water Treatment
                        Plant, with 38 kV connection tap, is submitted by Puerto Rico Electric
                        Authority (PREPA). Three phase short circuit current is 20,000 A and
                        11,547 A for phase to ground.

                        The ETAP Power Simulation computer program, version 5.5 from Operation
                        Technology, Inc was used for all the short circuit studies and simulations.
                        The following tables detail information available for the electrical
    Fig. 4.1: Power     equipment from the electrical drawings for Bayamón Waste Water
     Transformer        Treatment Plant. This information will be the data base for the short circuit
    Characteristics
         Table          study.

     Power Transformer
#                               T1          T2           T3          T4         T5           T6             T7
       Characteristics
1      Voltage in kV          38/4.16    4.16/0.48    4.16/0.48   38/4.16    4.16/0.48    4.16/0.48    4.16/0.48
2     Capacity in MVA            5          1.5          1.5         5          1.5          1.5          0.15
3     Impedance in %           6.21          3            3        6.21          3            3           2.5
4       Connection             D-Y         D-Y          D-Y        D-Y         D-Y          D-Y          D-Y


             #    Generator (1 to 2)                   Value        Units      SEL 300G
                  Characteristics
             1    Terminal Voltage                      4.16         kV
             2    Capacity                              2500         KW
             3    Power Factor                           0.8                                      Fig. 4.2: Generator
                                                                                                    Characteristics
             4    Full Load                            347.37       Amps                                 Table.
             5    Synchronous Reactance                 2.14
             6    Transient Reactance                   0.19
             7    Substransient Reactance               0.14
             8    Negative Sequence Reactance           0.19
             9    Zero Sequence Reactance               0.05




                                                                                         Page 89 of 263
4.2 Electrical System Oneline
           Diagram




                         Page 90 of 263
Diagrams



        We were required to perform an analysis for choose necessary equipment to protect
electric power system o Bayamón Waste Water Treatment Plant. After analizing the
system, we decided to use following coordination equation; t2 = 1.3t1 +15. Using it, we set
next coordination level between 23 to 25 cycles.



      In order to find the best devices to perform a good protective device coordination,
we analized a lot of different devices. The selected devices are commonly used in power
systems. It help very much to find devices information. Selected fuses were exclusive to
accomplish all requirements. Chosen devices and results are showed through next pages.




                                                                            Page 91 of 263
Bayamón WWTP Case Study




                              Fig. 4.3: Original Oneline Diagram of
                                        Bayamón WWTP.


        This is the original oneline diagram given to us with the objective of perform the
protective device coordination. It does not include any protective device.




                                                                           Page 92 of 263
Bayamón WWTP Sugested Oneline Diagram




                          Fig. 4.4: Suggested Oneline Diagram of
                                     Bayamón WWTP.


       Above diagram shows all suggested protective devices for power system of
Bayamón WWTP. Each device was selected to guarantee the best protective device
coordination. Shortly we present complete analysis of this coordination.




                                                                   Page 93 of 263
4.3 Input Data Report




                        Page 94 of 263
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project
Protective Device Coordination Project

Contenu connexe

Tendances

Short Circuit, Protective Device Coordination
Short Circuit, Protective Device CoordinationShort Circuit, Protective Device Coordination
Short Circuit, Protective Device Coordinationmichaeljmack
 
ETAP - Transformer mva sizing
ETAP - Transformer mva sizingETAP - Transformer mva sizing
ETAP - Transformer mva sizingHimmelstern
 
basics of busbar and lbb protection
basics of busbar and lbb protection basics of busbar and lbb protection
basics of busbar and lbb protection Salim Palayi
 
Switchgear presentation
Switchgear presentationSwitchgear presentation
Switchgear presentationNadir Baloch
 
Protection settings calculation
Protection settings calculationProtection settings calculation
Protection settings calculationLANOGWA RODGERS
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1Siswoyo Edo
 
Protection Of Generator
Protection Of GeneratorProtection Of Generator
Protection Of GeneratorRahuldey1991
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersPractical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersSARAVANAN A
 
Motor & generator protection example settings
Motor & generator protection example settingsMotor & generator protection example settings
Motor & generator protection example settingsH. Kheir
 
Transformer & OLTC
Transformer & OLTCTransformer & OLTC
Transformer & OLTCRohit Dave
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)Rohini Haridas
 
RELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfRELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfJayWin2
 
Bus Bar protection
Bus Bar protectionBus Bar protection
Bus Bar protectionsrini09
 

Tendances (20)

BUSBAR PROTECTION
BUSBAR PROTECTIONBUSBAR PROTECTION
BUSBAR PROTECTION
 
Short Circuit, Protective Device Coordination
Short Circuit, Protective Device CoordinationShort Circuit, Protective Device Coordination
Short Circuit, Protective Device Coordination
 
ETAP - Transformer mva sizing
ETAP - Transformer mva sizingETAP - Transformer mva sizing
ETAP - Transformer mva sizing
 
basics of busbar and lbb protection
basics of busbar and lbb protection basics of busbar and lbb protection
basics of busbar and lbb protection
 
Switchgear presentation
Switchgear presentationSwitchgear presentation
Switchgear presentation
 
Power Line Carrier Communication PLCC
Power Line Carrier Communication PLCCPower Line Carrier Communication PLCC
Power Line Carrier Communication PLCC
 
Protection settings calculation
Protection settings calculationProtection settings calculation
Protection settings calculation
 
Overcurrent coordination
Overcurrent coordinationOvercurrent coordination
Overcurrent coordination
 
Power system protection topic 1
Power system protection topic 1Power system protection topic 1
Power system protection topic 1
 
Protection Of Generator
Protection Of GeneratorProtection Of Generator
Protection Of Generator
 
Ehv substation
Ehv substationEhv substation
Ehv substation
 
IEEE substation design
IEEE substation designIEEE substation design
IEEE substation design
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersPractical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers
 
Motor & generator protection example settings
Motor & generator protection example settingsMotor & generator protection example settings
Motor & generator protection example settings
 
Transformer & OLTC
Transformer & OLTCTransformer & OLTC
Transformer & OLTC
 
Protection of transmission lines (distance)
Protection of transmission lines (distance)Protection of transmission lines (distance)
Protection of transmission lines (distance)
 
RELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdfRELAY ETTING CALCULATION REV-A (DG-298).pdf
RELAY ETTING CALCULATION REV-A (DG-298).pdf
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Facts lectures-2014
Facts lectures-2014Facts lectures-2014
Facts lectures-2014
 
Bus Bar protection
Bus Bar protectionBus Bar protection
Bus Bar protection
 

Similaire à Protective Device Coordination Project

BizTalk Practical Course Preview
BizTalk Practical Course PreviewBizTalk Practical Course Preview
BizTalk Practical Course PreviewMoustafaRefaat
 
Gbr Version 060209 Addendum
Gbr Version 060209 AddendumGbr Version 060209 Addendum
Gbr Version 060209 Addendummatthromatka
 
Spring 2.0 技術手冊目錄
Spring 2.0 技術手冊目錄Spring 2.0 技術手冊目錄
Spring 2.0 技術手冊目錄Justin Lin
 
59582162 dpr
59582162 dpr59582162 dpr
59582162 dprablaze7
 
Python_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdf
Python_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdfPython_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdf
Python_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdfjankoabel2022
 
MarvelSoft PayrollAdmin Configuration and User Guide
MarvelSoft PayrollAdmin Configuration and User GuideMarvelSoft PayrollAdmin Configuration and User Guide
MarvelSoft PayrollAdmin Configuration and User GuideRanganath Shivaram
 
Yahoo Web Analytics API Reference Guide
Yahoo Web Analytics API Reference GuideYahoo Web Analytics API Reference Guide
Yahoo Web Analytics API Reference GuideAndrew Talcott
 
Reinventing the City
Reinventing the CityReinventing the City
Reinventing the CityDean Pallen
 
Urban Violence Survey in Nakuru County, Kenya
Urban Violence Survey in Nakuru County, KenyaUrban Violence Survey in Nakuru County, Kenya
Urban Violence Survey in Nakuru County, KenyaFamous Nakuru
 
Urban Violence Survey in Nakuru County
Urban Violence Survey in Nakuru CountyUrban Violence Survey in Nakuru County
Urban Violence Survey in Nakuru CountyFamous Nakuru
 
Manual de programacion PLC Crouzet Millenium
Manual de programacion PLC Crouzet MilleniumManual de programacion PLC Crouzet Millenium
Manual de programacion PLC Crouzet MilleniumJosé Luis Lozoya Delgado
 

Similaire à Protective Device Coordination Project (20)

Derivatives
DerivativesDerivatives
Derivatives
 
Gemini Manual
Gemini ManualGemini Manual
Gemini Manual
 
BizTalk Practical Course Preview
BizTalk Practical Course PreviewBizTalk Practical Course Preview
BizTalk Practical Course Preview
 
Gbr Version 060209 Addendum
Gbr Version 060209 AddendumGbr Version 060209 Addendum
Gbr Version 060209 Addendum
 
Spring 2.0 技術手冊目錄
Spring 2.0 技術手冊目錄Spring 2.0 技術手冊目錄
Spring 2.0 技術手冊目錄
 
Drools expert-docs
Drools expert-docsDrools expert-docs
Drools expert-docs
 
Fr a200
Fr a200Fr a200
Fr a200
 
It project development fundamentals
It project development fundamentalsIt project development fundamentals
It project development fundamentals
 
59582162 dpr
59582162 dpr59582162 dpr
59582162 dpr
 
Python_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdf
Python_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdfPython_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdf
Python_Programming_and_Numerical_Methods_A_Guide_for_Engineers_and.pdf
 
Hibernate Reference
Hibernate ReferenceHibernate Reference
Hibernate Reference
 
Red book Blueworks Live
Red book Blueworks LiveRed book Blueworks Live
Red book Blueworks Live
 
Bwl red book
Bwl red bookBwl red book
Bwl red book
 
MarvelSoft PayrollAdmin Configuration and User Guide
MarvelSoft PayrollAdmin Configuration and User GuideMarvelSoft PayrollAdmin Configuration and User Guide
MarvelSoft PayrollAdmin Configuration and User Guide
 
Yahoo Web Analytics API Reference Guide
Yahoo Web Analytics API Reference GuideYahoo Web Analytics API Reference Guide
Yahoo Web Analytics API Reference Guide
 
Reinventing the City
Reinventing the CityReinventing the City
Reinventing the City
 
Urban Violence Survey in Nakuru County, Kenya
Urban Violence Survey in Nakuru County, KenyaUrban Violence Survey in Nakuru County, Kenya
Urban Violence Survey in Nakuru County, Kenya
 
Urban Violence Survey in Nakuru County, Kenya
Urban Violence Survey in Nakuru County, KenyaUrban Violence Survey in Nakuru County, Kenya
Urban Violence Survey in Nakuru County, Kenya
 
Urban Violence Survey in Nakuru County
Urban Violence Survey in Nakuru CountyUrban Violence Survey in Nakuru County
Urban Violence Survey in Nakuru County
 
Manual de programacion PLC Crouzet Millenium
Manual de programacion PLC Crouzet MilleniumManual de programacion PLC Crouzet Millenium
Manual de programacion PLC Crouzet Millenium
 

Protective Device Coordination Project

  • 1. PROTECTIVE DEVICE COORDINATION Héctor Rivera
  • 2. POYTECHNIC UNIVERSITY OF PUERTO RICO ELECTRICAL ENGINEERING DEPARTMENT HATO REY, PUERTO RICO PROTECTIVE DEVICE COORDINATION GROUP 28 Rivera, Héctor J. Page 2 of 263
  • 3. Table of Contents Table of Pictures ............................................................................................................................. 5 Chapter 1: General Information ...................................................................................................... 8 1.1 Abstracto ..................................................................................................................... 10 1.2 Abstract ....................................................................................................................... 11 1.3 Introduction ................................................................................................................. 12 1.4 Objectives ................................................................................................................... 14 1.5 Constraints .................................................................................................................. 15 Chapter 2: ETAP User Guide ....................................................................................................... 16 2.1 Basic ETAP User Guide ............................................................................................. 18 2.1.1 Creating a new ETAP Project. ............................................................................. 22 2.1.2 Opening an ETAP existing Project. ..................................................................... 23 2.1.3 Building New one-line Diagrams. ....................................................................... 25 2.1.4 Connecting Elements. .......................................................................................... 28 2.1.5 Adding a Protective Device to your One-Line. ................................................... 28 2.1.6 Verify if the element is connected. ...................................................................... 29 2.2 Advance ETAP User Guide ........................................................................................ 30 2.2.1 How to configure the elements in the one-line diagram. ..................................... 34 A) Utility ................................................................................................................. 34 B) High Voltage Circuit Breakers ........................................................................ 36 C) Low Voltage Circuits Breakers ....................................................................... 39 D) Protective Relay ................................................................................................ 44 E) Fuses Ratings .................................................................................................... 49 F) Transformer Properties: .................................................................................. 54 G) Load Properties: ............................................................................................... 57 H) Bus ...................................................................................................................... 58 2.2.2 Perform a Fault Analysis; .................................................................................... 59 Chapter 3: Transformer Case Study.............................................................................................. 61 3.1 Diagrams ..................................................................................................................... 64 3.2 Equipment Data .......................................................................................................... 66 3.3 Calculations ................................................................................................................ 68 3.4 Coordination Using ETAP Program ........................................................................... 73 3.5 Fault Simulation .......................................................................................................... 77 Page 3 of 263
  • 4. 3.6 Settings and Results .................................................................................................... 81 Chapter 4: Bayamón WWTP Coordination Study........................................................................ 84 4.1 Scope ........................................................................................................................... 88 4.2 Electrical System Oneline Diagram ............................................................................ 90 4.3 Imput Data Report ...................................................................................................... 94 4.4 Calculations ................................................................................................................ 97 4.5 Short Circuit Study ................................................................................................... 138 4.6 Power Fuses Selection for Power Transformers T1, T2, T3, T4, T5, T6 and T7 ..... 160 4.7 Protection Relay Settings for ................................................................................. 173 Distribution Feeders ..................................................................................................... 173 4.8 Relay Settings ........................................................................................................... 178 4.9 Results ....................................................................................................................... 181 Chapter 5: Protective Device Coordination Project Results ....................................................... 186 5.1 Alternatives Considered ............................................................................................ 188 5.2 System Specifications ............................................................................................... 191 Operation .................................................................................................................... 193 Protective relay ........................................................................................................... 193 Distance relay ............................................................................................................ 195 Magazine Article............................................................................................................. 197 5.4 Budget ....................................................................................................................... 198 5.5 Bibliography ............................................................................................................. 199 5.6 Conclusion ................................................................................................................ 201 Chapter 6: Administrative Section .............................................................................................. 202 6.1 Protective Device Coordination Project Proposal..................................................... 205 Work Schedule ............................................................................................................ 217 Progress Report ............................................................................................................... 222 Work Schedule ................................................................................................................ 241 Appendix ..................................................................................................................................... 246 Tables and Curves ........................................................................................................... 247 Protection Relay Settings for Generators ........................................................................ 252 A.3 General Information ................................................................................................. 255 Page 4 of 263
  • 5. Table of Pictures Fig. 2.1: Create New Project Panel.................................................................................................... 22 Fig. 2.2: User Information Panel ....................................................................................................... 22 Fig. 2.3: Starting up window ............................................................................................................. 23 Fig. 2.4: Open Panel .......................................................................................................................... 24 Fig. 2.5: Selecting Project.................................................................................................................. 24 Fig. 2.6: Mode Toolbar ...................................................................................................................... 25 Fig.2.7: ETAP Elements .................................................................................................................... 27 Fig. 2.8: Connecting Elements .......................................................................................................... 28 Fig. 2.9: Open Panel .......................................................................................................................... 28 Fig. 2.10: Elements not connected..................................................................................................... 29 Fig. 2.11: Power Grid Editor Window .............................................................................................. 34 Fig. 2.12: High Voltage Circuit Breaker Editor Window .................................................................. 36 Fig. 2.13: Circuit Breaker Library ..................................................................................................... 37 Fig. 2.14: Low Voltage Circuit Breaker Window ............................................................................. 39 Fig. 2.15: Low Voltage Circuit Breaker library ................................................................................ 41 Fig. 2.16: Overcurent Relay Editor Window ..................................................................................... 44 Fig. 2.17: Overcurrent Settings Panel ................................................................................................ 45 Fig. 2.18: Instantaneus Settings Panel ............................................................................................... 46 Fig. 2.19: Fuse Editor Window ......................................................................................................... 49 Fig. 2.20: Fuse Library Window ....................................................................................................... 51 Fig. 2.21: Winding Transformer Editor Window .............................................................................. 54 Fig. 2.22: Transformer Rating Editor Window ................................................................................. 55 Fig. 2.23: Transformer Tap Editor Window ...................................................................................... 56 Fig. 2.24: Lumped Load Editor Window........................................................................................... 57 Fig. 2.25: Bus Editor Window ........................................................................................................... 58 Fig. 2.26: Fault Simulation ................................................................................................................ 59 Fig. 2.27: Select Sequence Viewer to find fault analysis results ....................................................... 60 Fig. 2.28: Results Window ................................................................................................................ 60 Fig. 3.1: Transformer Protection Diagram……………………………………………………....... 65 Fig. 3.2: Selected Fuse…………………………………………………………………………….. 67 Fig. 3.3: Selected Relay…………………………………………………………………………… 67 Fig. 3.4: Table of Current Transformer Specifications…………………………………………… 67 Fig. 3.5: Table of Power Fuse Rating……………………………………………………………... 71 Fig. 3.6: Overcurrent Relay Settings at Transformer……………………………………………... 74 Fig. 3.7: Overcurrent Relay Settings at Load 1,2…………………………………………………. 75 Fig. 3.8: Fuse Settings…………………………………………………………………………….. 76 Fig. 3.9: ETAP Simulation of Fault at Bus 1……………………………………………………… 78 Fig. 3.10: Sequence of Operation Events at Bus 1………………………………………………... 78 Fig. 3.11: ETAP Fault Simulation at Bus 2……………………………………………………….. 79 Fig. 3.12: Sequence of Operation Events at Bus 2………………………………………………... 79 Fig. 3.13: ETAP Fault Simulation at Load 1……………………………………………………… 80 Fig. 3.14: Sequence of Operation Events at Load 1………………………………………………. 80 Fig. 3.15: Relay and Fuse Settings………………………………………………………………... 83 Fig. 3.16: Results of Short Circuit Analysis………………………………………………………. 83 Fig. 4.1: Power Transformer Characteristics Table……………………………………………….. 89 Fig. 4.2: Generator Characteristics Table…………………………………………………………. 89 Fig. 4.3: Original Oneline Diagram of Bayamón WWTP………………………………………… 92 Fig. 4.4: Suggested Oneline Diagram of Bayamón WWTP………………………………………. 93 Fig. 4.5: Lines Cables……………………………………………………………………………... 95 Page 5 of 263
  • 6. Fig. 4.6: Existing Transformer Line Cable. …………………………………………………….... 95 Fig. 4.7: Generator Cables………………………………………………………………………… 95 Fig. 4.8: Positive Sequence impedance Diagram at Bus 1……………………………………....... 99 Fig. 4.9: Three Phase Fault at Bus 1…………………………………………………………… 102 Fig. 4.10: Positive Sequence Impedance Diagram at Bus 2…………………………………… 103 Fig. 4.11: Three Phase Fault at Bus 2 …………………………………………………………… 104 Fig. 4.12: Positive Sequence Impedance Diagram at Load 1……………………………………. 105 Fig. 4.13: Three Phase Fault at Load 1…………………………………………………………... 106 Fig. 4.14: Positive Impedance Diagram at Load 5………………………………………………. 107 Fig. 4.15: Three Phase Fault at Load 6…………………………………………………………... 108 Fig. 4.16: Positive Sequence Impedance Diagram at Bus 1 for a Line to Ground Fault………... 109 Fig. 4.17: Cero Sequence Impedance Diagram at Bus 1……………………………………........ 109 Fig. 4.18: Line to Ground Fault at Bus 1………………………………………………………… 110 Fig. 4.19: Positive Sequence Impedance Diagram at Bus 2 for a Line to Ground Fault………... 111 Fig. 4.20: Cero Sequence Impedance Diagram at Bus 2………………………………………… 111 Fig. 4.21: Line to Ground Fault at Bus 2………………………………………………………… 112 Fig. 4.22: Positive Sequence Impedance Diagram at Load 1 for a Line to Ground Fault………. 113 Fig. 4.23: Cero Sequence Impedance Diagram at Load 1……………………………………….. 113 Fig. 4.24: Line to Ground Fault at Load 1……………………………………………………….. 114 Fig. 4.25: Positive Sequence Impedance Diagram at Load 5 for a Line to Ground Fault………. 115 Fig. 4.26: Cero Sequence Impedance Diagram at Load 5……………………………………….. 115 Fig. 4.27: Line to Ground Fault. At Load 5……………………………………………………... 116 Fig. 4.28: Positive Sequence Impedance Diagram at Generator Bus……………………………. 117 Fig. 4.29: Positive Sequence Impedance Diagram at Bus 2 using Generators………………….. 118 Fig. 4.30: Positive Sequence Impedance Diagram at Load 1 using Generators………………… 119 Fig. 4.31: Positive Sequence Impedance Diagram at Load 5 using Generators………………… 120 Fig. 4.32: Positive Sequence Impedance Diagram at Generators Bus for a Line to Ground Fault. 121 Fig. 4.33: Cero Sequence Impedance Diagram at Generators Bus………………………………. 121 Fig. 4.34: Positive Sequence Impedance Diagram at Bus 2 Using Generators for a Line to Ground Fault……………………………………………………………………………………………… 122 Fig. 4.35: Cero Sequence Impedance Diagram at Bus 2 Using Generators……………………... 123 Fig. 4.36: Positive Sequence Impedance Diagram at Load 1 Using Generators for a Line to Ground Fault……………………………………………………………………………………………… 124 Fig. 4.37: Cero Sequence Impedance Diagram at Load 1 Using Generators……………………. 124 Fig. 4.38: Positive Sequence Impedance Diagram at Load 5 Using Generators for a Line to Ground Fault……………………………………………………………………………………………… 125 Fig. 4.39: Cero Sequence Impedance Diagram at Load 5 Using Generators……………………. 125 Fig. 4.40: Fault Simulation at Primary Side of 38KV/4.16KV Utility Transformer of BWWTP. 140 Fig. 4.41: Sequence of Operations Events at Primary Side of T1……………………………….. 141 Fig. 4.42: Fault Simulation at Bus 1 of BWWTP………………………………………………... 144 Fig. 4.43: Sequence of Operation Events at Bus 1………………………………………………. 145 Fig. 4.44: Fault Simulation at Bus 2 of BWWTP………………………………………………... 148 Fig. 4.45: Sequence of Operation Events at Bus 2………………………………………………. 149 Fig. 4.46: Fault Simulation at Load 1 of BWWTP……………………………………………… 152 Fig. 4.47: Sequence of Operations Events at Load 1……………………………………………. 153 Fig. 4.48: Fault Simulation at Load 6 of BWWTP……………………………………………… 156 Fig. 4.49: Sequence of Operation Events at Load 6……………………………………………... 157 Fig. 4.50: Recommendations to Fuse Protection………………………………………………… 161 Fig. 4.51: Time Fuse 1 and 5 Coordination……………………………………………………… 162 Fig. 4.52: Characteristics Curves for Fuse 1 and 5……………………………………………… 163 Fig. 4.53: Fuse 1 and 5 recommended…………………………………………………………… 164 Page 6 of 263
  • 7. Fig. 4.54: Time Fuse 2 and 6 Coordination……………………………………………………… 165 Fig. 4.55: Characteristics Curves for fuse 2 and 6………………………………………………. 166 Fig. 4.56: Fuse 2 and 6 Recommended………………………………………………………….. 166 Fig. 4.57: Time Fuse 3, 4, 7 and 8 Coordination………………………………………………… 167 Fig. 4.58: Characteristics Curves for fuses 3, 4, 7 and 8………………………………………… 168 Fig. 4.59: Fuse 3, 4, 7 and 8 Recommended……………………………………………….......... 169 Fig. 4.60: Time Fuse 9 Coordination……………………………………………………………. 170 Fig. 4.61: Characteristics Curves for fuse 9……………………………………………………... 171 Fig. 4.62: Fuse 9 Recommended………………………………………………………………… 172 Fig. 4.63: Relay 351A Settings…………………………………………………………………... 179 Fig. 4.64: Overcurent Relay Settings for Generator……………………………………………... 180 Fig. 4.65: Undervoltage, Overvoltage, Frequency of Power Relay for Generator………………. 180 Fig. 4.66: Three Phase Fault Results…………………………………………………………….. 183 Fig. 4.67: Line to Ground Fault Results…………………………………………………………. 184 Fig. 4.68: Three Phase Fault Results Using Generators…………………………………………. 185 Fig. 4.69: Line to Ground Fault Results Using Generators…………………………………........ 185 Fig. 6.1: Protective Devices……………………………………………………………... 213 Fig. 6.2: Budget to Complete Design……………………………………………………. 218 Fig. 6.3: Salary Cap……………………………………………………………………… 218 Page 7 of 263
  • 8. Chapter 1: General Information Page 8 of 263
  • 9. Contents 1.1 Abstracto……………………………………………………………………………... 10 1.2 Abstract………………………………………………………………………………. 11 1.3 Introduction…………………………………………………………………………... 12 1.4 Objectives…………………………………………………………………………….. 14 1.5 Constraints…………………………………………………………………………..... 15 Page 9 of 263
  • 10. 1.1 Abstracto La protección de los sistemas de potencia es uno de los campos más importantes dentro del área de potencia en la ingeniería eléctrica. A través del tiempo se han creado muchísimos programas de computadora con el fin de analizar diseños eléctricos. Nuestro proyecto consiste en preparar una guía de usuario fácil de entender acerca de un programa existente, llamado ETAP, diseñado para realizar análisis de protección de sistemas de potencia. Esta guía de usuario debe incluir como crear un diagrama monolineal, como configurar los equipos de protección, y también la forma correcta de hacer un análisis de fallas y de corto circuito. Finalmente, nosotros preparamos una guía de usuario avanzada con explicaciones detalladas sobre aplicaciones especiales y conceptos técnicos manejados en el programa ETAP. También, como requisito de nuestro proyecto se analiza un caso estudio de un sistema de potencia y se realiza la coordinación de protección del mismo. Page 10 of 263
  • 11. 1.2 Abstract Power Protection is one of the most important fields in Power Electrical Engineering. Through time many software’s has been created to analyze electrical designs. Our project consist of prepare a user guide easy to understand of how to use an existing power protection analysis program calling ETAP. This user guide must include how to create a one-line diagram, how to configure power system devises, and an explanation of the right way to perform a short and fault analysis. Finally, we prepare an advance user guide with detailed explanations of special features and technical concept of ETAP program. Also, as a requirement of our project, we analyzed a case study of power system and perform the protective device coordination of it. Page 11 of 263
  • 12. 1.3 Introduction Electricity has been a subject of scientific interest since at least the early 17th century. Probably the first electrical engineer was William Gilbert who designed the versorium: a device that detected the presence of statically charged objects. He was also the first to draw a clear distinction between magnetism and static electricity and is credited with establishing the term electricity. However it was not until the 19th century that research into the subject started to intensify. Notable developments in this century include the work of Georg Ohm, who in 1827 quantified the relationship between the electric current and potential difference in a conductor, Michael Faraday, the discoverer of electromagnetic induction in 1831, and James Clerk Maxwell, who in 1873 published a unified theory of electricity and magnetism in his treatise on Electricity and Magnetism. They are the fathers of electrical engineering and the electric systems. Today, power system protection is that part of electrical power engineering that deals with protecting the electrical power system from faults by isolating the faulted part from the rest of the network. Any electric power system involves a large amount of auxiliary equipment for the protection of generators, transformers, and the transmission lines. Circuit breakers are employed to protect all elements of a power system from short circuits and overloads, and for normal switching operations. The principle of a protection scheme is to keep the power system stable by isolating only the components that are under fault, even as leaving as much of the network as possible still in operation. Thus, protection schemes must apply a very pragmatic and pessimistic approach to clearing system faults. For this reason, the technology and philosophies utilized in protection schemes are often old and well-established because they must be very reliable. In much the same way as the early computers of the 1950s and 1960s were a precursor to the computational capabilities of today’s computers. Specialized hardwire systems were developed for locally monitoring the operation of power plants and for remotely monitoring and controlling switches in transmission substation. The Remote Terminal Units of these early monitoring systems were implemented with relay logic, while Page 12 of 263
  • 13. the master station consisted primarily of large banks of annunciator panels with red and green light indication the state of the points being monitored with flashing light indication a change in state or an alarm condition. The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis and operation of electrical and electronic systems has become completely dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Our project consists of develop a protective device coordination using a graphical software program to add features and flexibility in the area of electrical system protection. Also, this graphical software program it’s going to be using for all kind of element that used these. We will select the software program, analyze all types of element protection that are utilizing in electrical systems, and simulate the program using various management studies. Page 13 of 263
  • 14. 1.4 Objectives • To make a research about technical references of fuses, relays and breakers. • Understand technical data format of protection devices. • To learn how to use the protective device coordination program. • Create a user guide easy to understand about how to use software program. • Build an advance use guide to explain additional features of software program. • Perform a case study with the software program. • Establish the system coordination of a case study with the program. Page 14 of 263
  • 15. 1.5 Constraints • How to install ETAP program. • Ways to use library of ETAP program. Start by understanding. • Interpret results in the program. • Establish coordination of a protection system. • Run the program with all kind of requisites. • Find right protective devices for design coordination. • Understand how to program protective devices settings of equipments to use. Page 15 of 263
  • 16. Chapter 2: ETAP User Guide Page 16 of 263
  • 17. Contents Basic ETAP User Guide………………………………………………………………………... 18 Creating a new ETAP Project………………………………………………………………….. 22 Opening an ETAP existing Project..……… ………………………………………… 23 Building New one-line Diagram. ……………………………………………………... 25 Connecting Elements……………………………………………………………… 28 Adding Protective Device to your One-Line………………………………………. 28 Verify if the element is connected………………………………………………… 29 Advance ETAP User Guide…..…………………………………………………………... 30 How to configure the elements in the one-line diagram…………………………… 34 Utility……………………………………………………………………… 34 High Voltage Circuit Breakers……………………………………………... 36 Low Voltage Circuit Breaker………………………………………………. 39 Protective Relay……………………………………………………………. 44 Fuses Ratings………………………………………………………………. 49 Transformer Properties………………………………………………..……. 54 Load Properties…………………………………………………………….. 57 Bus…………………………………………………………………………. 58 Perform a Fault Analysis…………………………………………………………... 59 Page 17 of 263
  • 18. 2.1 Basic ETAP User Guide Page 18 of 263
  • 19. Page 19 of 263
  • 20. Contents Creating a new ETAP Project. ...................................................................................................... 22 Opening an ETAP existing Project. .............................................................................................. 23 Building New one-line Diagrams. ................................................................................................ 25 Connecting Elements. ................................................................................................................... 28 Adding a Protective Device to your One-Line. ............................................................................ 28 Verify if the element is connected. ............................................................................................... 29 Page 20 of 263
  • 21. Table of Figure Fig. 2.1: Create New Project Panel .................................................................................................... 22 Fig. 2.2: User Information Panel ....................................................................................................... 22 Fig. 2.3: Starting up window ............................................................................................................. 23 Fig. 2.4: Open Panel .......................................................................................................................... 24 Fig. 2.5: Selecting Project.................................................................................................................. 24 Fig. 2.6: Mode Toolbar ...................................................................................................................... 25 Fig.2.7: ETAP Elements .................................................................................................................... 27 Fig. 2.8: Connecting Elements .......................................................................................................... 28 Fig. 2.9: Open Panel .......................................................................................................................... 28 Fig. 2.10: Elements not connected..................................................................................................... 29 Page 21 of 263
  • 22. 2.1.1 Creating a new ETAP Project. Open the program and select new project. Write the name of the new project and select ok. Fig. 2.1: Create New Project Panel Write the name of the project user and select the access level permissions. Fig. 2.2: User Information Panel Page 22 of 263
  • 23. 2.1.2 Opening an ETAP existing Project. Select open on the ETAP screen. Fig. 2.3: Starting up window To open an existing project must be selected the icon showed. Click the icon and select the project that you want to run in program. Page 23 of 263
  • 24. For example, select document named Protection System Devices and wait until in the next page appears (Fig. 2.5) Fig. 2.4: Open Panel Select icon that has the ETAP symbols. Then click open to see the project at ETAP main window. Fig. 2.5: Selecting Project Page 24 of 263
  • 25. 2.1.3 Building New one-line Diagrams. To build or edit a one-line diagram in ETAP, you must be in Edit Mode. Click the Edit button on the Mode toolbar. Fig. 2.6: Mode Toolbar AC Elements: = Pointer = Bus = 2 winding transformers = 3 winding transformers = cable = Transmission Line = Reactors, Current-Limiting = Impedance = Power grid = Generator = Wind turbine Generator = Induction Machine = Synchronous Motor = Lumped Load = MOV = Static Load = Capacitor = Harmonic Filter = Remote Connector = Static Var Compensator = HV DC Transmission Link = AC Composite Motor = Composite Network = Fuse = Contactor = High Voltage Circuit Breaker = Low Voltage circuit Breaker = Single Throw Switch = Double Throw Switch = Instrumentation = Ground Grid = Display options Page 25 of 263
  • 26. = Schedule Report Manager = Current Transformer (CT) = Potential Transformer (PT) = Voltmeter = Ammeter = Multi-meter = Voltage Relay = Reverse Power Relay = Frequency Relay = MV solid State Trip Relay = Motor Relay = Overcurrent Relay = Overload Heater = Multi-Function Relay = Tag Link DC Elements: = Pointer = Bus = DC Cable = DC Impedance = DC-DC Converter = Battery = DC Motor = DC static Load = DC Lumped Load = Composite CSD = DC Composite Motor = Composite Network = DC Circuit Breaker = DC Fuse = DC Single Throw Switch = DC Double Throw Switch = Un-Interrupted Power System = Variable Frequency Drive = Charger = Inverter Page 26 of 263
  • 27. You can select the element that your project requires for run the short circuit analysis. In the columns you can see all the elements that ETAP program has. Select the elements and drop to the board to complete your diagram. Fig.2.7: ETAP Elements Page 27 of 263
  • 28. 2.1.4 Connecting Elements. To connect the elements in the one-line. Use the mouse pointer over the connection pin of an element, and it will turn red. Then click and drag to the connection pin of another element. Follow this procedure to connect all the elements on the one-line. In the case of buses, the entire element graphic functions as a connection point. Fig. 2.8: Connecting Elements 2.1.5 Adding a Protective Device to your One-Line. To connect the element between two elements does not require delete the line connecting the elements. The element will automatically connect to the line. As shown in the diagram. Fig. 2.9: Open Panel Page 28 of 263
  • 29. 2.1.6 Verify if the element is connected. To check if an element is energized click on the continuity icon ( ) located in the project toolbar. All elements that are not energized will be grayed out. For example, with the continuity check on, open CB4. As shown in the figure to the right, CB4 and elements downstream are grayed out. Fig. 2.10: Elements not connected Page 29 of 263
  • 30. 2.2 Advance ETAP User Guide Page 30 of 263
  • 31. Page 31 of 263
  • 32. Contents How to configure the elements in the one-line diagram. .............................................................. 34 A) Utility ............................................................................................................................. 34 B) High Voltage Circuit Breakers ....................................................................................... 36 C) Low Voltage Circuits Breakers ...................................................................................... 39 D) Protective Relay ............................................................................................................... 44 E) Fuses Ratings .................................................................................................................... 49 F) Transformer Properties: ................................................................................................. 54 G) Load Properties: .............................................................................................................. 57 H) Bus ..................................................................................................................................... 58 Perform a Fault Analysis; ............................................................................................................. 59 Page 32 of 263
  • 33. Table of Figures Fig. 2.11: Power Grid Editor Window .............................................................................................. 34 Fig. 2.12: High Voltage Circuit Breaker Editor Window .................................................................. 36 Fig. 2.13: Circuit Breaker Library ..................................................................................................... 37 Fig. 2.14: Low Voltage Circuit Breaker Window ............................................................................. 39 Fig. 2.15: Low Voltage Circuit Breaker library ................................................................................ 41 Fig. 2.16: Overcurent Relay Editor Window ..................................................................................... 44 Fig. 2.17: Overcurrent Settings Panel ................................................................................................ 45 Fig. 2.18: Instantaneus Settings Panel ............................................................................................... 46 Fig. 2.19: Fuse Editor Window ......................................................................................................... 49 Fig. 2.20: Fuse Library Window ....................................................................................................... 51 Fig. 2.21: Winding Transformer Editor Window .............................................................................. 54 Fig. 2.22: Transformer Rating Editor Window ................................................................................. 55 Fig. 2.23: Transformer Tap Editor Window ...................................................................................... 56 Fig. 2.24: Lumped Load Editor Window........................................................................................... 57 Fig. 2.25: Bus Editor Window ........................................................................................................... 58 Fig. 2.26: Fault Simulation ................................................................................................................ 59 Fig. 2.27: Select Sequence Viewer to find fault analysis results ....................................................... 60 Fig. 2.28: Results Window ................................................................................................................ 60 Page 33 of 263
  • 34. 2.2.1 How to configure the elements in the one-line diagram. A) Utility Rated kV Enter the rated voltage of the power grid in kilovolts (kV). Fig. 2.11: Power Grid Editor Window Generation Categories This group is used to assign the different power settings to each of the ten generation categories for this power grid. Each grid can be set to have a different operating power level for each generation category. Depending on the operation mode, some of the values become editable as follows: • Swing Mode: %V and angle • Voltage Control Mode: %V and MW • Mvar Control: MW and Mvar • Power Factor Control: MW and PF Page 34 of 263
  • 35. SC Rating MVAsc Specify the short-circuit MVA for three-phase and single-phase (line-to-ground) faults. As you enter or modify MVAsc or X/R, ETAP recalculates the corresponding short-circuit impedance values. Page 35 of 263
  • 36. B) High Voltage Circuit Breakers How to change the Rating • Click on either the ANSI or IEC option button to select that standard. Fig. 2.12: High Voltage Circuit Breaker Editor Window Page 36 of 263
  • 37. Library Info To access ANSI standard library data, click on the ANSI selection and then click on the Library button. Use the same procedure for accessing IEC standard library data. As you change the standard from ANSI to IEC, the data fields change accordingly. Rating, ANSI Standard Click on ANSI to enter high voltage circuit breaker ratings according to the ANSI standards. Select the manufacturer and breaker model. Fig. 2.13: Circuit Breaker Library Max kV Select the rated maximum kV of the high voltage circuit breaker in rms kV or select the rating from the list box. Continuous Amp Select the continuous current rating of the high voltage circuit breaker in amperes or select the rating from the list box. Standard Select the high voltage circuit breaker type as Symmetrical or Total rated from the list box. Page 37 of 263
  • 38. Cycle Select the rated interrupting time for AC high voltage circuit breakers in cycles from the list box. CB Cycle Description 2 2-cycle ac high voltage circuit breakers with 1.5-cycle Minimum Contact Parting Time 3 3-cycle ac high voltage circuit breakers with 2-cycle Minimum Contact Parting Time 5 5-cycle ac high voltage circuit breakers with 3-cycle Minimum Contact Parting Time 8 8-cycle ac high voltage circuit breakers with 4-cycle Minimum Contact Parting Time Rated Interrupting Enter the rated short-circuit current (rated interrupting capability) at the rated maximum kV in rms kA or select the rating from the list box. Maximum Interrupting Enter the maximum symmetrical interrupting capability in rms kA or select the rating from the list box. C & L RMS Enter the closing and latching capability of the high voltage circuit breaker in asymmetrical rms kA. This value is equal to 1.6 times the maximum interrupting capability. C & L Crest Enter the closing and latching capability of the high voltage circuit breaker in crest kA. This value is equal to 2.7 times the maximum interrupting capability. Page 38 of 263
  • 39. C) Low Voltage Circuits Breakers Standard Click on either the ANSI or IEC option button to select that standard. Note: once the breaker is selected from the breaker Library Quick Pick the standard is set based on the library entry and is display only. Type Select a type from the drop-down list and display the type of breaker. Low voltage circuit breakers include Molded Case, Power, and Insulated Case breakers. Once the breaker is selected from the breaker Library Quick Pick, the LVCB type is set based on the library entry and is display only. Fig. 2.14: Low Voltage Circuit Breaker Window Page 39 of 263
  • 40. CB and Trip Device library The low voltage circuit breaker data for a selected standard and type can be selected by clicking on the Library button. Standard Click on either the ANSI or IEC option to select that standard. Note that the Standard selection in the breaker library Quick Pick (and hence the breaker models displayed) will be defaulted to the selection. AC/DC Displays that the LV breaker is AC. This option is grayed out and is not available for editing. Type Select from the drop down list and display the breaker type. The LV breaker types include Molded Case, Power and Insulated Case breakers. Note that the Type selection in the breaker library Quick Pick (and hence the breaker models displayed) will be defaulted to the selection made for the breaker type on the Rating page. The breaker type selection can be changed on the Quick Pick if desired. Page 40 of 263
  • 41. Manufacturer Name This displays a list of all AC LV breaker manufacturers included in the library for the selected breaker standard and type. To choose one, just select the manufacturer name. Fig. 2.15: Low Voltage Circuit Breaker library Reference This displays the Manufacturer reference, if available. For example, Westinghouse is the reference for Cutler Hammer. Page 41 of 263
  • 42. Model Name The Model section displays list of all models for the selected standard, breaker type and breaker manufacturer. The models are displayed in the form of Model – Max kV – Pole, which forms a unique record name in the breaker library. Select the Model – Max kV – Pole by highlighting it. ANSI Short-Circuit data When ANSI standard is selected, the short-circuit data shows the applied voltage in kV, short-circuit interrupting current for the applied voltage in kA, and test power factor in %, for all breaker types. The short-circuit parameters are explained in more detail in the Ratings section. Select a desired applied voltage and short-circuit data by highlighting it. Size This displays a list of all sizes available for the selected Model, Max. kV, and Pole record for the breaker. To select a size from the Library Quick Pick, highlight the size. Ratings, ANSI Standard Click on ANSI standard button and choose the breaker type to enter the ratings for LV circuit breaker in accordance with the ANSI/IEEE standards. When a breaker is selected from Library Quick Pick, all parameters shown below will be set to their corresponding values chosen from the Quick Pick. With the exception of Size, changing the values after selecting a breaker from Library Quick Pick will turn the header blue to indicate that the substituted library data has been modified. Size Select an item from the drop-down list to display the size in amperes for the selected breaker. Page 42 of 263
  • 43. Continuous Amp Select an item from the drop-down list or enter the continuous current rating for the low voltage circuit breaker in amperes. The Continuous Amp value will be set equal to the breaker size when a breaker is selected from the breaker Library Quick Pick. Rated kV Select an item from the drop-down list or enter the rated kV rating for the low voltage circuit breaker in kV. When a breaker is selected, the rated kV value will be set equal to the applied kV selected from Library. Test PF This is the power factor of test equipment on which the rating of the circuit breaker has been established. When a breaker is selected, the Test PF is set to the Test PF value selected from Library. Fused For all breaker types, select fused or unfused by clicking on the provided selection box. Note that when a breaker is selected from library, the Fused checkbox is set to the status as selected from the Quick Pick. The value of Test PF will change appropriately for fused or unfused type, in case of Power breakers. Interrupting kA Select from drop down list or enter the Interrupting kA rating for the low voltage circuit breaker in kA. Note that when a breaker is selected, the interrupting kA value will be set equal to the kA value for selected applied kV from library Quick Pick. Page 43 of 263
  • 44. D) Protective Relay Fig. 2.16: Overcurent Relay Editor Window Library To access the Overcurrent relay library data, click on the Library button. Clicking the Library button displays the relay library Quick Pick. From the Library, select the relay by highlighting the Manufacturer name and Model name. Then click on the OK button to retrieve the selected data from the library and transfer it to the editor. OC level Overcurrent relays can have multiple Time overcurrent (TOC) and/or Instantaneous overcurrent (IOC) elements that can simultaneously and independently set in the relay library. The OC level displays a drop down list of the maximum number of overcurrent levels that are available for the selected relay. Page 44 of 263
  • 45. Overcurrent (51) Settings The Time overcurrent settings available for Phase, Neutral, Ground, Sensitive Ground and Negative Sequence are described below. Fig. 2.17: Overcurrent Settings Panel Pickup Range Select from drop down list and display the Time overcurrent Pickup range for the selected curve. The pickup range can be specified in amperes of the secondary or primary current rating. It can also be in multiples/percent of the CT secondary. Pickup Setting For the selected pickup range, select or enter the Time overcurrent pickup setting. The pickup setting can be discrete values or continuously adjustable. Relay Amps This field displays the relay secondary current in amperes, for the selected pickup setting. Prim. Amps This field displays the relay primary current in amperes, for the selected pickup setting. Page 45 of 263
  • 46. Time Dial Select and display the Time Dial for the selected curve type. The time dial can be discrete values or continuously adjustable. Instantaneous (50) Settings The Instantaneous settings available for Phase, Neutral, Ground, Sensitive Ground and Negative Sequence are described below. Fig. 2.18: Instantaneus Settings Panel Page 46 of 263
  • 47. Curve Type This field with a drop down list of curves is available only if the selected relay has Short time feature and if the Short time is selected. Select from the drop down list and display the Short time curve type for the selected model. Pickup Range Select from the drop down list and display the Instantaneous Pickup range (for the selected curve in case of Short time). The pickup range can be specified in amperes of the secondary or primary current rating. It can also be in multiples/percent of the CT secondary or 51 pickup. Pickup Setting For the selected pickup range, select or enter the Instantaneous pickup setting. The pickup setting can be discrete values or continuously adjustable. Relay Amps This field displays the relay secondary current in amperes, for the selected pickup setting. Prim. Amps This field displays the relay primary current in amperes, for the selected pickup setting. Delay Range This field is available only if the relay has Instantaneous function. Select from the drop down list and display the Instantaneous Delay range. The delay range could either be in seconds or cycles. Delay Select or enter the intentional delay for the instantaneous. The Delay can be in seconds or cycles, depending on the selection of relay. The delay can be in the form of discrete values or continuously adjustable. Page 47 of 263
  • 48. Time Dial This field is available only if the selected relay has Short time feature and if the Short time is selected. Select or enter the Time Dial for the selected curve type. The time dial can be discrete values or continuously adjustable. Page 48 of 263
  • 49. E) Fuses Ratings Standard Click either the ANSI or IEC button option to select that standard. Once the fuse is selected from the Library Quick Pick - Fuse, the standard is set based on the library entry and is display only. Rating, ANSI Standard Click on ANSI standard to enter the ratings for Fuse in accordance with the ANSI/IEEE standards. When a Fuse is selected from library Quick Pick, all parameters shown below will be set to their corresponding values chosen from the Quick Pick. With the exception of Size, changing the value(s) after selecting a fuse from library Quick Pick will turn the header to blue color indicating that the substituted library data has been modified. Fig. 2.19: Fuse Editor Window Page 49 of 263
  • 50. kV Select from drop down list or enter the rated kV rating for the Fuse in kV. When a Fuse is selected, the Rated kV value will be set equal to the Max. kV selected from library Quick Pick. Size Select from the drop-down list and display the size in amperes for the selected fuse. Note: the Size field will be empty when no fuse is chosen from Library Quick Pick. Continuous Amp Select from drop down list or enter the continuous current rating for the Fuse in amperes. The Continuous Amp value will be set equal to the fuse size when a fuse is selected from library Quick Pick. Interrupting Select from the drop-down list or enter the Interrupting kA rating for the Fuse in kA. Note: when a Fuse is selected, the interrupting kA value will be set equal to the kA value for selected fuse size from Library Quick Pick. Test PF Enter the power factor of test equipment on which the rating of the fuse has been established. When a fuse is selected, the Test PF is set to the Test PF value selected from library Quick Pick. Page 50 of 263
  • 51. Library (Quick Pick) To select a fuse from the library, click the Library button and the Library Quick Pick – Fuse dialog box will appear. From the dialog box, select a fuse by selecting the Manufacturer name and the desired fuse Model, Max kV, and Speed. This represents a unique record. Select the desired size and short circuit interrupting kA. Then click the OK button to retrieve the selected data from the library and transfer it to the editor. Fig. 2.20: Fuse Library Window Standard Click on either the ANSI or IEC option to select that standard. Note that the Standard selection in the Fuse library Quick Pick (and hence the fuse models displayed) will be defaulted to the selection made for the standard on the Rating page. The standard selection can be changed on the Quick Pick if desired. Page 51 of 263
  • 52. Manufacturer Manufacturer Name Displays a list of all AC Fuse manufacturers included in the library for the selected standard. Select the manufacturer by highlighting the manufacturer name. Reference Displays a manufacturer reference, if available, for selected manufacturer. For example, Siemens is the reference manufacturer for ITE. Model Name The Model section displays list of all fuse models for the selected standard and fuse manufacturer. The models are displayed in the form of Model – Max kV – Speed, which forms a unique record name in the fuse library. Select the Model – Max kV – Speed by highlighting it. Cont. Amp This displays the ampere value corresponding to each size for the selected fuse model. Int. kA (ANSI Standard) This displays the short-circuit interrupting rating in kA corresponding to each size for the selected ANSI fuse model. Model Info Class This displays the class (E-rated, for example) for the selected fuse model. Page 52 of 263
  • 53. Type This displays the type (Power Fuse, for example) for the selected fuse model. Brand Name It shows the brand name, if available, for the selected fuse model. Reference It demonstrates the reference, if available, for selected fuse model. Application Present the application for the selected fuse model. Page 53 of 263
  • 54. F) Transformer Properties: You can open the editor for T2 and go to the Rating page. On the rating page you can enter the value of the primary kV, secondary kV, primary winding rating in kVA or MVA, and the maximum transformer rating. Additionally, you can enter the impedance or substitute typical values for the transformer. Fig. 2.21: Winding Transformer Editor Window Page 54 of 263
  • 55. Transformer Ratings Fig. 2.22: Transformer Rating Editor Window Rating of Transformer: Enter the rating of KV primary and secondary. Enter the rating of MVA. Enter the Typical X/R. Enter the Z variation and Z Tolerance. You may select the typical rating. Page 55 of 263
  • 56. Transformer Tap The Transformer Tap Optimization calculation optimizes a unit transformer tap, or equivalently, its turn ratio, to ensure that the generator unit voltage remains within its upper and lower variation range (typically 95% to 105%), while producing its full MW and Mvar capability under the system voltage variation. Fig. 2.23: Transformer Tap Editor Window Page 56 of 263
  • 57. G) Load Properties: In this part you can go to the Nameplate page. The available fields in the rating section depend on the Model Type selected. In the Ratings section enter the lumped load rating in MVA or MW. Furthermore, the % loading for various loading categories can be specified here. Fig. 2.24: Lumped Load Editor Window Page 57 of 263
  • 58. H) Bus Nominal kV Enter the nominal voltage of the bus in kilovolts (kV). In/Out of Service The operating condition of a bus can be selected by choosing either the In Service or Out of Service option. Fig. 2.25: Bus Editor Window Page 58 of 263
  • 59. 2.2.2 Perform a Fault Analysis; Star View: Click Star Protective Device Coordination. Fig. 2.26: Fault Simulation Page 59 of 263
  • 60. Select Sequence Viewer to find the result of the Protective Device Cordination. Fig. 2.27: Select Sequence Viewer to find fault analysis results It will show the results to be show in the report. The sequence of operation is on order to the parameters of the system. Fig. 2.28: Results Window Page 60 of 263
  • 61. Chapter 3: Transformer Case Study Page 61 of 263
  • 62. Contents Diagrams………………………………………………………………………………… ..64 Equipment Data……………………………………………………………………………66 Calculations………………………………………………………………………………..68 Coordination Using ETAP Program……………………………………………………….73 Fault Simulation……………………………………………………………………………77 Results………………...……………………………………………………………………81 Page 62 of 263
  • 63. Table of Figures Fig. 3.1: Transformer Protection Diagram……………………………………………………....... 65 Fig. 3.2: Selected Fuse…………………………………………………………………………….. 67 Fig. 3.3: Selected Relay…………………………………………………………………………… 67 Fig. 3.4: Table of Current Transformer Specifications…………………………………………… 67 Fig. 3.5: Table of Power Fuse Rating……………………………………………………………... 71 Fig. 3.6: Overcurrent Relay Settings at Transformer……………………………………………... 74 Fig. 3.7: Overcurrent Relay Settings at Load 1,2…………………………………………………. 75 Fig. 3.8: Fuse Settings…………………………………………………………………………….. 76 Fig. 3.9: ETAP Simulation of Fault at Bus 1……………………………………………………… 78 Fig. 3.10: Sequence of Operation Events at Bus 1………………………………………………... 78 Fig. 3.11: ETAP Fault Simulation at Bus 2……………………………………………………….. 79 Fig. 3.12: Sequence of Operation Events at Bus 2………………………………………………... 79 Fig. 3.13: ETAP Fault Simulation at Load 1……………………………………………………… 80 Fig. 3.14: Sequence of Operation Events at Load 1………………………………………………. 80 Fig. 3.15: Relay and Fuse Settings………………………………………………………………... 83 Fig. 3.16: Results of Short Circuit Analysis………………………………………………………. 83 Page 63 of 263
  • 64. 3.1 Diagrams Page 64 of 263
  • 65. 3.1.1 Transformer Case Study Diagram: Fig. 3.1: Transformer Protection Diagram Our Transformer Case Study has the following components: a) One transformer 38/4.16 KV of 7.5/11.3 MVA. b) Two feeders. Protection has to be able to extinguish faults that affect the system. It scheme consist of protective relaying and fuses. Coordination criteria have 22 cycles between protection levels. We considered selectivity, reliability and simplicity to accomplish with a scheme protection safety. Page 65 of 263
  • 66. 3.2 Equipment Data Page 66 of 263
  • 67. Equipment Data: Specification of electric fuse Fuse Continuous Maximum Fuse Name Size Type Amperes KV Cutler Hammer Standard 150E 150 17 BA-200 Speed Fig. 3.2: Selected Fuse Relay settings Relay TOU IOU Location Relay Name 51 & Curve 50 & 50N 51N ABB 51D 0.5-80; 0.5-80; Extremely Feeder with 50 0.1 steps 0.1 steps Inverse (60Hz) ABB 51D Main 0.5-80; 0.5-80; Very with 50 Breaker 0.1 steps 0.1 steps Inverse (60Hz) Fig. 3.3: Selected Relay Selected current transformer Current Transformer Location CTR Type Main 2,500/5 MR C400 Breaker Load 800/5 MR C400 Fig. 3.4: Table of Current Transformer Specifications Page 67 of 263
  • 68. 3.3 Calculations Page 68 of 263
  • 69. Power System Coordination calculation: 1) Calculating the short circuit current: 375MVA ISC = = = 5, 697.53 A 3(38 KV ) 7.5MVA IBASE = = 113.95 A 3(38 KV ) 5, 697.53 I pu = = 50.0 pu 113.95 1 Z pu = = 0.02 pu 50.0 1∠00 ISC = = 11.11 p 0.02 + 0.07  38  IBASE = (113.95)   = 11,564.3 A  4.16  Page 69 of 263
  • 70. 2) Calculating the multiples of the relay in the load, to verify the necessary time dial in the curves: 11, 565.3 M= = 13.6 850 3) Obtaining the pick-up current for the relay in the transformer: Pickup = (1568.28)(1.2) = 1881.93A 4) The multiples of the current transformer (CTM) in the transformer: 11,565.3 M= = 6.14 1,881.93 5) The calculation for choose the CTR: CTR = 2000/5 11.3MVA IFL = = 1, 568.28 A ISC = 11,565.04 3(4.16 KV ) a) CTR > 1,568.28(1.2) = 1,881.93A b) ISC/CTR < 100 A 11,565.04/400 < 100 Page 70 of 263
  • 71. 6) Calculation for choosing fusible: Using the standard Speed curve Step 1: Full load Current 11.3MVA 7.5MVA IFL = = 171.68 A INM = = 113.95 A 3(38 KV ) 3(38 KV ) Data: 46 Kv Power Fuses (Show & Standard Speed) Rating Continuous Current Operating Time 100E 165 See curves… 125E 181 See curves… Fig. 3.5: Table of Power Fuse Rating F1 ≥ 125E Step 2: Inrush Current IINRUSH = 113.95(12) = 1,367.48 A @ 6 cycles F1 ≥ 100E Step 3: Short circuit current 11,564.3 ISC = = 1, 266.1A @ 43.2 cycles F1 ≥ 175E  38     4.16  Step 4: Turning Ratio  I NOMINAL  FR =   > 1.5 < 3  I NOMINAL TRANS.   213  =  = 1.86 1.5 < 1.86 < 3  113.95  The fuse chosen is 175E because it complied with the parameters of the design. Fuse will be 175E and can handle 213 Amps. Page 71 of 263
  • 72. Using the Slow Speed curve: Step 1: Full load Current 11.3MVA IFL = = 171.68 A 3(38 KV ) Data: 46 Kv Power Fuses (Slow & Standard Speed) Rating Continuous Current Operating Time 100E 165 See curves… 125E 181 See curves… Fig. 3.5: Table of Power Fuse Rating F1 ≥ 125E Step 2: Inrush Current IINRUSH = 113.95(12) = 1,367.48 @ 6 ciclos F1 ≥ 80E Step 3: Short circuit current 11,564.3 ISC = = 1, 266.1A @ 43.2 ciclos F1 ≥ 125E  38     4.16  Step 4: Turning Ratio  I NOMINAL  FR =   > 1.5 < 3  I NOMINAL TRANS.   181  =  = 1.58 1.5 < 1.58 < 3  113.95  The fuse chosen is 125E because it complied with the parameters of the design. Page 72 of 263
  • 73. 3.4 Coordination Using ETAP Program Page 73 of 263
  • 74. Overcurrent: To protect our transformer power system we choose a relay distributed by ABB with overcurrent and instantaneous settings. This setting for overcurrent was given using a Definite Time Curve. The pick range is specified by 5 amperes of the secondary or primary rating. Using this setting the relay will operate when primary current exceed 2,500A. Time dial of overcurrent relay is given by curve type and changing it by time required. In the other side, to operate instantaneous relay is necessary select a pick up according to short circuit current. These input settings are introduced at ETAP window showing below. Overcurrent Relay settings in the transformer: Fig. 3.6: Overcurrent Relay Settings at Transformer. In this case the curve selected was Definite Time. Page 74 of 263
  • 75. Another section of our power system that required protection are load 1 and 2 feeders. To protect these feeders we select an ABB instantaneous and overcurrent relay. The overcurrent settings were chosen by a Definite Time Curve. The pick range is specified by 5 amperes of the secondary side of relay. Using this setting the overcurrent will operate when line current exceed 850A. Time dial is given by relay curve according to time required for current magnitude. In the other side, to operate instantaneous relay is necessary select a pick up according to short circuit current. When current reach 11,568; instantaneous protection must operate. These input settings are introduced at ETAP window showing below. Overcurrent relay setting at load 1,2: Fig. 3.7: Overcurrent Relay Settings at Load 1,2 Page 75 of 263
  • 76. Fuse Setting: In order to perform good protective device coordination is necessary implement use of almost one fuse. The fuse selected by us is S&C, SMU-20. It is modeling by an standard speed curve with short circuit current of 10KA. Also it has a maximum rated voltage of 38KV. Finally, the size of fuse is 200E with a 200 continuous amperes. Fig. 3.8: Fuse Settings Page 76 of 263
  • 77. 3.5 Fault Simulation Page 77 of 263
  • 78. Short circuit results: Fig. 3.10: Sequence of Operation Events at Bus 1 Fig. 3.9: ETAP Simulation of Fault at Bus 1 Protection in the system can not protect for a fault at bus 1. It should be protected by other protective device out of our system. Page 78 of 263
  • 79. Figures below show short circuit results at bus 2 when operate the instantaneous relay 2. The instantaneous relay work to open the circuit and if it does not operate fuse 1 operate to disconnect system. Relay 2 operates at 2.75 cycles after a fault occurs. If relay 1 does not work, fuse 1 is going to operate at 52.56 cycles. Fig. 3.12: Sequence of Operation Events at Fig. 3.11: ETAP Fault Simulation at Bus 2 Bus 2 Page 79 of 263
  • 80. In figures below you can see short circuit results at load 1. Instantaneous relay 3 will open first. If it does not operate, time overcurrent relay 2. But, if it also does not work, fuse 1 must open with a time delay. Fig. 3.14: Sequence of Operation Events at Load 1 Fig. 3.13: ETAP Fault Simulation at Load 1 ETAP program gives results of short circuit. Short circuit current is 21,570 at load 1. With this current we choose settings for relay 3. Short circuit at load 1 is the same results at load 2. Sequence operation work with a sequence coordination of 22 cycles approximated. Relay 3 operates at 7.74 cycles covered by relay 2 witch operates at 28.86 cycles like primary protection. Page 80 of 263
  • 81. 3.6 Settings and Results Page 81 of 263
  • 82. Settings and Results We perform protective device coordination for a transformer and two loads. In order to express our results and recommendations clearly, we organized all data in tables. These tables include devices and fuse settings. In the figure 3.15 you can find curves type, pick-up and time dial to obtain better results with the protective device coordination. In the other side, three phase fault table contents short circuits results in different section of system. The figure 3.16 shows short circuit current magnitude in different parts of system. First, the table presents a three phase fault at feeder #1. Short circuit current at this point is 11,564A. With this fault feeder relay will operates at 2.76 cycles like primary protection. If the feeder relay does not operate, main breaker feeder will operate at 25.86 cycles. When system has a fault at primary side of transformer #1, the fuse will operate at 52.56 cycles. Relays in our system use definite time curve. It is use to chose time dial of relay operation. In the other way, fuse 1 is modeling with a standard speed curve. Using these settings the protection is complete according with coordination criteria. Page 82 of 263
  • 83. Equipment Settings Equipment Settings Time Equipment Curve Pick-up Dial Feeder Definite 2,500 1.895 Relay Time Main Definite Breaker 850 1.895 Time Relay Standard Fuse X X Speed Fig. 3.15: Relay and Fuse Settings Fault Results Three Phase Fault Short Operation Protection Devices Localization Circuit Feeder Main Fault Current Relay Breaker Fuse (51) Relay (51) Feeder #1 or 11,564 2.76 25.86 52.56 #2 A 11,566 Bus #2 X 2.76 52.56 A 10,500 T1 Primary X X 52.56 A T1 Secondary 9,950 A X X X Fig. 3.16: Results of Short Circuit Analysis Page 83 of 263
  • 84. Chapter 4: Bayamón WWTP Coordination Study Page 84 of 263
  • 85. Contents Scope……………………………………………………………………………………….. 88 Electrical System Oneline Diagram……………………………………………………….... 90 Imput Data Report………………………………………………………………………… 94 Calculations………………………………………………………………………………... 97 Short Circuit Study………………………………………………………………………. 138 Power Fuse Selection for Power Transformer T1, T2, T3, T4, T5, T6 and T7………….. 160 Protection Relay Settings for Distrbution Feeders………………………………………. 173 Relay Settings……………………………………………………………………………. 178 Results……………………………………………………………………………………. 181 Page 85 of 263
  • 86. Table of Figure Fig. 4.1: Power Transformer Characteristics Table………………………………………………... 89 Fig. 4.2: Generator Characteristics Table…………………………………………………………. 89 Fig. 4.3: Original Oneline Diagram of Bayamón WWTP………………………………………… 92 Fig. 4.4: Suggested Oneline Diagram of Bayamón WWTP………………………………………. 93 Fig. 4.5: Lines Cables……………………………………………………………………………... 95 Fig. 4.6: Existing Transformer Line Cable. ……………………………………………………… 95 Fig. 4.7: Generator Cables………………………………………………………………………… 95 Fig. 4.8: Positive Sequence impedance Diagram at Bus 1………………………………………... 99 Fig. 4.9: Three Phase Fault at Bus 1……………………………………………………………... 102 Fig. 4.10: Positive Sequence Impedance Diagram at Bus 2……………………………………... 103 Fig. 4.11: Three Phase Fault at Bus 2 …………………………………………………………… 104 Fig. 4.12: Positive Sequence Impedance Diagram at Load 1……………………………………. 105 Fig. 4.13: Three Phase Fault at Load 1…………………………………………………………... 106 Fig. 4.14: Positive Impedance Diagram at Load 5………………………………………………. 107 Fig. 4.15: Three Phase Fault at Load 6…………………………………………………………... 108 Fig. 4.16: Positive Sequence Impedance Diagram at Bus 1 for a Line to Ground Fault………... 109 Fig. 4.17: Zero Sequence Impedance Diagram at Bus 1……………………………………........ 109 Fig. 4.18: Line to Ground Fault at Bus 1………………………………………………………… 110 Fig. 4.19: Positive Sequence Impedance Diagram at Bus 2 for a Line to Ground Fault………... 111 Fig. 4.20: Zero Sequence Impedance Diagram at Bus 2………………………………………… 111 Fig. 4.21: Line to Ground Fault at Bus 2………………………………………………………… 112 Fig. 4.22: Positive Sequence Impedance Diagram at Load 1 for a Line to Ground Fault………. 113 Fig. 4.23: Zero Sequence Impedance Diagram at Load 1……………………………………….. 113 Fig. 4.24: Line to Ground Fault at Load 1……………………………………………………….. 114 Fig. 4.25: Positive Sequence Impedance Diagram at Load 5 for a Line to Ground Fault………. 115 Fig. 4.26: Zero Sequence Impedance Diagram at Load 5……………………………………….. 115 Fig. 4.27: Line to Ground Fault. At Load 5……………………………………………………... 116 Fig. 4.28: Positive Sequence Impedance Diagram at Generator Bus……………………………. 117 Fig. 4.29: Positive Sequence Impedance Diagram at Bus 2 using Generators………………….. 118 Fig. 4.30: Positive Sequence Impedance Diagram at Load 1 using Generators………………… 119 Fig. 4.31: Positive Sequence Impedance Diagram at Load 5 using Generators………………… 120 Fig. 4.32: Positive Sequence Impedance Diagram at Generators Bus for a Line to Ground Fault 121 Fig. 4.33: Zero Sequence Impedance Diagram at Generators Bus……………………………… 121 Fig. 4.34: Positive Sequence Impedance Diagram at Bus 2 Using Generators for a Line to Ground Fault……………………………………………………………………………………………… 122 Fig. 4.35: Zero Sequence Impedance Diagram at Bus 2 Using Generators……………………... 123 Fig. 4.36: Positive Sequence Impedance Diagram at Load 1 Using Generators for a Line to Ground Fault……………………………………………………………………………………………… 124 Fig. 4.37: Zero Sequence Impedance Diagram at Load 1 Using Generators……………………. 124 Fig. 4.38: Positive Sequence Impedance Diagram at Load 5 Using Generators for a Line to Ground Fault……………………………………………………………………………………………… 125 Fig. 4.39: Zero Sequence Impedance Diagram at Load 5 Using Generators……………………. 125 Fig. 4.40: Fault Simulation at Primary Side of 38KV/4.16KV Utility Transformer of BWWTP. 140 Fig. 4.41: Sequence of Operations Events at Primary Side of T1……………………………….. 141 Fig. 4.42: Fault Simulation at Bus 1 of BWWTP………………………………………………... 144 Fig. 4.43: Sequence of Operation Events at Bus 1………………………………………………. 145 Fig. 4.44: Fault Simulation at Bus 2 of BWWTP……………………………………………….. 148 Fig. 4.45: Sequence of Operation Events at Bus 2………………………………………………. 149 Fig. 4.46: Fault Simulation at Load 1 of BWWTP……………………………………………… 152 Page 86 of 263
  • 87. Fig. 4.47: Sequence of Operations Events at Load 1……………………………………………. 153 Fig. 4.48: Fault Simulation at Load 6 of BWWTP……………………………………………… 156 Fig. 4.49: Sequence of Operation Events at Load 6……………………………………………... 157 Fig. 4.50: Recommendations to Fuse Protection………………………………………………… 161 Fig. 4.51: Time Fuse 1 and 5 Coordination……………………………………………………… 162 Fig. 4.52: Characteristics Curves for Fuse 1 and 5……………………………………………… 163 Fig. 4.53: Fuse 1 and 5 recommended…………………………………………………………… 164 Fig. 4.54: Time Fuse 2 and 6 Coordination……………………………………………………… 165 Fig. 4.55: Characteristics Curves for fuse 2 and 6………………………………………………. 166 Fig. 4.56: Fuse 2 and 6 Recommended………………………………………………………….. 166 Fig. 4.57: Time Fuse 3, 4, 7 and 8 Coordination………………………………………………… 167 Fig. 4.58: Characteristics Curves for fuses 3, 4, 7 and 8………………………………………… 168 Fig. 4.59: Fuse 3, 4, 7 and 8 Recommended……………………………………………….......... 169 Fig. 4.60: Time Fuse 9 Coordination……………………………………………………………. 170 Fig. 4.61: Characteristics Curves for fuse 9……………………………………………………... 171 Fig. 4.62: Fuse 9 Recommended………………………………………………………………… 172 Fig. 4.63: Relay 351A Settings………………………………………………………………….. 179 Fig. 4.64: Overcurent Relay Settings for Generator……………………………………………... 180 Fig. 4.65: Undervoltage, Overvoltage, Frequency of Power Relay for Generator………………. 180 Fig. 4.66: Three Phase Fault Results…………………………………………………………….. 183 Fig. 4.67: Line to Ground Fault Results…………………………………………………………. 184 Fig. 4.68: Three Phase Fault Results Using Generators…………………………………………. 185 Fig. 4.69: Line to Ground Fault Results Using Generators…………………………………........ 185 Page 87 of 263
  • 88. 4.1 Scope Page 88 of 263
  • 89. Scope Develop a short circuit study for Power Transformers and relay settings for a waste water treatment plant and the protective devices associated. The Bayamón Waste Water Treatment Plant has seven large power transformers with their respective protective devices (power fuses or protective relaying) in service. The intention of this short circuit study is to verify the appropriated protective device coordination and recommended the appropriated changes if any. For this plant we will cover the relay coordination and settings for the protective device associated. The short circuit current available at Bayamón Waste Water Treatment Plant, with 38 kV connection tap, is submitted by Puerto Rico Electric Authority (PREPA). Three phase short circuit current is 20,000 A and 11,547 A for phase to ground. The ETAP Power Simulation computer program, version 5.5 from Operation Technology, Inc was used for all the short circuit studies and simulations. The following tables detail information available for the electrical Fig. 4.1: Power equipment from the electrical drawings for Bayamón Waste Water Transformer Treatment Plant. This information will be the data base for the short circuit Characteristics Table study. Power Transformer # T1 T2 T3 T4 T5 T6 T7 Characteristics 1 Voltage in kV 38/4.16 4.16/0.48 4.16/0.48 38/4.16 4.16/0.48 4.16/0.48 4.16/0.48 2 Capacity in MVA 5 1.5 1.5 5 1.5 1.5 0.15 3 Impedance in % 6.21 3 3 6.21 3 3 2.5 4 Connection D-Y D-Y D-Y D-Y D-Y D-Y D-Y # Generator (1 to 2) Value Units SEL 300G Characteristics 1 Terminal Voltage 4.16 kV 2 Capacity 2500 KW 3 Power Factor 0.8 Fig. 4.2: Generator Characteristics 4 Full Load 347.37 Amps Table. 5 Synchronous Reactance 2.14 6 Transient Reactance 0.19 7 Substransient Reactance 0.14 8 Negative Sequence Reactance 0.19 9 Zero Sequence Reactance 0.05 Page 89 of 263
  • 90. 4.2 Electrical System Oneline Diagram Page 90 of 263
  • 91. Diagrams We were required to perform an analysis for choose necessary equipment to protect electric power system o Bayamón Waste Water Treatment Plant. After analizing the system, we decided to use following coordination equation; t2 = 1.3t1 +15. Using it, we set next coordination level between 23 to 25 cycles. In order to find the best devices to perform a good protective device coordination, we analized a lot of different devices. The selected devices are commonly used in power systems. It help very much to find devices information. Selected fuses were exclusive to accomplish all requirements. Chosen devices and results are showed through next pages. Page 91 of 263
  • 92. Bayamón WWTP Case Study Fig. 4.3: Original Oneline Diagram of Bayamón WWTP. This is the original oneline diagram given to us with the objective of perform the protective device coordination. It does not include any protective device. Page 92 of 263
  • 93. Bayamón WWTP Sugested Oneline Diagram Fig. 4.4: Suggested Oneline Diagram of Bayamón WWTP. Above diagram shows all suggested protective devices for power system of Bayamón WWTP. Each device was selected to guarantee the best protective device coordination. Shortly we present complete analysis of this coordination. Page 93 of 263
  • 94. 4.3 Input Data Report Page 94 of 263