SlideShare a Scribd company logo
1 of 32
Download to read offline
+
Cost-based Query Optimization
Maryann Xue (Intel)
Julian Hyde (Hortonworks)
Hadoop Summit, San Jose
June 2016
•@maryannxue
•Apache Phoenix PMC member
•Intel
•@julianhyde
•Apache Calcite VP
•Hortonworks
What is Apache Phoenix?
• A relational database layer for Apache HBase
– Query engine
• Transforms SQL queries into native HBase API calls
• Pushes as much work as possible onto the cluster for parallel
execution
– Metadata repository
• Typed access to data stored in HBase tables
– Transaction support
– Table Statistics
– A JDBC driver
Advanced Features
• Secondary indexes
• Strong SQL standard compliance
• Windowed aggregates
• Connectivity (e.g. remote JDBC driver, ODBC driver)
Created architectural pain… We decided to do it right!
Example 1: Optimizing Secondary Indexes
How we match secondary
indexes in Phoenix 4.8:
What about both?
SELECT * FROM Emp ORDER BY name
SELECT * FROM Emp WHERE empId > 100
CREATE TABLE Emps(empId INT PRIMARY KEY, name VARCHAR(100));



CREATE INDEX I_Emps_Name ON Emps(name);
SELECT * FROM Emp

WHERE empId > 100 ORDER BY name
Q1
Q2
Q3
I_Emps_Name
Emps
We need to make a cost-based decision! Statistics can help.
?
Phoenix + Calcite
• Both are Apache projects
• Involves changes to both projects
• Work is being done on a branch of Phoenix, with changes to Calcite
as needed
• Goals:
– Remove code! (Use Calcite’s SQL parser, validator)
– Improve planning (Faster planning, faster queries)
– Improve SQL compliance
– Some “free” SQL features (e.g. WITH, scalar subquery, FILTER)
– Close to full compatibility with current Phoenix SQL and APIs
• Status: beta, expected GA: late 2016
Current Phoenix Architecture
Parser
Algebra
Phoenix Schema
Stage 1: ParseNode tree
Stage 2: Normalization,
secondary index rewrite
Stage 3: Expression tree
HBase Data
Runtime
Query Plan
Calcite Architecture
Parser
Algebra
Schema SPI Operators,

Rules,

Statistics,
Cost model
Data
Engine
Data
Engine
Data
Engine
Phoenix + Calcite Architecture
Parser
Algebra
Phoenix Schema Logical + Phoenix Operators,

Builtin + Phoenix Rules,

Phoenix Statistics,
Phoenix Cost model
Data
JDBC (optional)
HBase Data
Phoenix Runtime
Data
Other (optional)
Query Plan
Cost-based Query Optimizer

with Apache Calcite
• Base all query optimization decisions on cost
– Filter push down; range scan vs. skip scan
– Hash aggregate vs. stream aggregate vs. partial stream aggregate
– Sort optimized out; sort/limit push through; fwd/rev/unordered
scan
– Hash join vs. merge join; join ordering
– Use of data table vs. index table
– All above (any many others) COMBINED
• Query optimizations are modeled as pluggable rules
Calcite Algebra
SELECT products.name, COUNT(*)

FROM sales

JOIN products USING (productId)

WHERE sales.discount IS NOT NULL

GROUP BY products.name

ORDER BY COUNT(*) DESC
scan
[products]
scan
[sales]
join
filter
aggregate
sort
translate SQL to
relational
algebra
Example 2: FilterIntoJoinRule
SELECT products.name, COUNT(*)

FROM sales

JOIN products USING (productId)

WHERE sales.discount IS NOT NULL

GROUP BY products.name

ORDER BY COUNT(*) DESC
scan
[products]
scan
[sales]
join
filter
aggregate
sort
scan
[products]
scan
[sales]
filter’
join’
aggregate
sort
FilterIntoJoinRule
translate SQL to
relational
algebra
Example 3: Phoenix Joins
• Hash join vs. Sort merge join
– Hash join good for: either input is small
– Sort merge join good for: both inputs are big
– Hash join downside: potential OOM
– Sort merge join downside: extra sorting required sometimes
• Better to exploit the sortedness of join input
• Better to exploit the sortedness of join output
Example 3: Calcite Algebra
SELECT empid, e.name, d.name, location

FROM emps AS e

JOIN depts AS d USING (deptno)

ORDER BY d.deptno
scan
[emps]
scan
[depts]
join
sort
project
translate SQL to
relational
algebra
Example 3: Plan Candidates
scan
[emps]
scan
[depts]
hash-join
sort
project
scan
[emps]
scan
[depts]
sort
merge-join
projectCandidate 1:
hash-join
*also what standalone
Phoenix compiler
would generate.
Candidate 2:
merge-join
1. Very little difference in all other operators: project, scan, hash-join or merge-join
2. Candidate 1 would sort “emps join depts”, while candidate 2 would only sort “emps”
Win
SortRemoveRule
sorted on [deptno]
SortRemoveRule
sorted on [e.deptno]
Example 3: Improved Plan
scan ‘depts’
send ‘depts’ over to RS
& build hash-cache
scan ‘emps’ hash-join ‘depts’
sort joined table on ‘e.deptno’
scan ‘emps’
merge-join ‘emps’ and ‘depts’
sort by ‘deptno’
scan ‘depts’
Old vs. New
1. Exploited the sortedness of join input
2. Exploited the sortedness of join output
(and now, a brief look at Calcite)
Apache Calcite
• Apache top-level project since October, 2015
• Query planning framework
– Relational algebra, rewrite

rules
– Cost model & statistics
– Federation via adapters
– Extensible
• Packaging
– Library
– Optional SQL parser, JDBC server
– Community-authored rules, adapters
Embedded Adapters Streaming
Apache Drill
Apache Hive
Apache Kylin
Apache Phoenix*
Cascading
Lingual
Apache Cassandra*
Apache Spark
CSV
In-memory
JDBC
JSON
MongoDB
Splunk
Web tables
Apache Flink*
Apache Samza
Apache Storm
Apache Calcite Avatica
• Database connectivity
stack
• Self-contained sub-
project of Calcite
• Fast, open, stable
• Powers Phoenix Query
Server
Calcite – APIs and SPIs
Cost, statistics
RelOptCost
RelOptCostFactory
RelMetadataProvider
• RelMdColumnUniquensss
• RelMdDistinctRowCount
• RelMdSelectivity
SQL parser
SqlNode

SqlParser

SqlValidator
Transformation rules
RelOptRule
• MergeFilterRule
• PushAggregateThroughUnionRule
• 100+ more
Global transformations
• Unification (materialized view)
• Column trimming
• De-correlation
Relational algebra
RelNode (operator)
• TableScan
• Filter
• Project
• Union
• Aggregate
• …
RelDataType (type)
RexNode (expression)
RelTrait (physical property)
• RelConvention (calling-convention)
• RelCollation (sortedness)
• TBD (bucketedness/distribution)
JDBC driver (Avatica)
Metadata
Schema
Table
Function
• TableFunction
• TableMacro
Lattice
Calcite Planning Process
SQL
parse
tree
Planner
RelNode
Graph
Sql-to-Rel Converter
SqlNode
! RelNode
+ RexNode
Node for each node in Input
Plan
Each node is a Set of
alternate Sub Plans
Set further divided into
Subsets: based on traits like
sortedness
1. Plan Graph
Rule: specifies an Operator
sub-graph to match and logic
to generate equivalent ‘better’
sub-graph
New and original sub-graph
both remain in contention
2. Rules
RelNodes have Cost &
Cumulative Cost
3. Cost Model
Used to plug in Schema,
cost formulas
Filter selectivity
Join selectivity
NDV calculations
4. Metadata Providers
Rule Match Queue
Best RelNode Graph
Translate to
runtime
Logical Plan
Based on “Volcano” & “Cascades” papers [G. Graefe]
Add Rule matches to Queue
Apply Rule match transformations
to plan graph
Iterate for fixed iterations or until
cost doesn’t change
Match importance based on cost of
RelNode and height
Views and materialized views
• A view is a named
relational expression,
stored in the catalog,
that is expanded
while planning a
query.
• A materialized view is an equivalence,
stored in the catalog, between a table
and a relational expression.



The planner substitutes the table into
queries where it will help, even if the
queries do not reference the
materialized view.
Query using a view
Scan [Emps]
Join [$0, $5]
Project [$0, $1, $2, $3]
Filter [age >= 50]
Aggregate [deptno, min(salary)]
Scan [Managers]
Aggregate [manager]
Scan [Emps]
SELECT deptno, min(salary)

FROM Managers

WHERE age >= 50

GROUP BY deptno
CREATE VIEW Managers AS

SELECT *

FROM Emps 

WHERE EXISTS (

SELECT *

FROM Emps AS underling

WHERE underling.manager = emp.id)
view scan to
be expanded
After view expansion
Scan [Emps] Aggregate [manager]
Join [$0, $5]
Project [$0, $1, $2, $3]
Filter [age >= 50]
Aggregate [deptno, min(salary)]
Scan [Emps]
SELECT deptno, min(salary)

FROM Managers

WHERE age >= 50

GROUP BY deptno
CREATE VIEW Managers AS

SELECT *

FROM Emps 

WHERE EXISTS (

SELECT *

FROM Emps AS underling

WHERE underling.manager = emp.id)
can be pushed
down
Materialized view
Scan [Emps]
Aggregate [deptno, gender,

COUNT(*), SUM(sal)]
Scan [EmpSummary]
=
Scan [Emps]
Filter [deptno = 10 AND gender = ‘M’]
Aggregate [COUNT(*)]
CREATE MATERIALIZED VIEW EmpSummary AS

SELECT deptno,

gender,

COUNT(*) AS c,

SUM(sal) AS s

FROM Emps

GROUP BY deptno, gender
SELECT COUNT(*)

FROM Emps

WHERE deptno = 10

AND gender = ‘M’
Materialized view, step 2: Rewrite query to
match
Scan [Emps]
Aggregate [deptno, gender,

COUNT(*), SUM(sal)]
Scan [EmpSummary]
=
Scan [Emps]
Filter [deptno = 10 AND gender = ‘M’]
Aggregate [deptno, gender,

COUNT(*) AS c, SUM(sal) AS s]
Project [c]
CREATE MATERIALIZED VIEW EmpSummary AS

SELECT deptno,

gender,

COUNT(*) AS c,

SUM(sal) AS s

FROM Emps

GROUP BY deptno, gender
SELECT COUNT(*)

FROM Emps

WHERE deptno = 10

AND gender = ‘M’
Materialized view, step 3: Substitute table
Scan [Emps]
Aggregate [deptno, gender,

COUNT(*), SUM(sal)]
Scan [EmpSummary]
=
Filter [deptno = 10 AND gender = ‘M’]
Project [c]
Scan [EmpSummary]
CREATE MATERIALIZED VIEW EmpSummary AS

SELECT deptno,

gender,

COUNT(*) AS c,

SUM(sal) AS s

FROM Emps

GROUP BY deptno, gender
SELECT COUNT(*)

FROM Emps

WHERE deptno = 10

AND gender = ‘M’
(and now, back to Phoenix)
Example 1, Revisited: Secondary Index
Optimizer internally creates a mapping (query, table) equivalent to:
Scan [Emps]
Filter [deptno BETWEEN 100 and 150]
Project [deptno, name]
Sort [deptno]
CREATE MATERIALIZED VIEW I_Emp_Deptno AS

SELECT deptno, empno, name

FROM Emps

ORDER BY deptno
Scan [Emps]
Project [deptno, empno, name]
Sort [deptno, empno, name]
Filter [deptno BETWEEN 100 and 150]
Project [deptno, name]
Scan
[I_Emp_Deptno]
1,000
1,000
200
1600 1,000
1,000
200
very simple
cost based
on row-count
Beyond Phoenix 4.8

with Apache Calcite
• Get the missing SQL support
– WITH, UNNEST, Scalar subquery, etc.
• Materialized views
– To allow other forms of indices (maybe defined as external), e.g., a
filter view, a join view, or an aggregate view.
• Interop with other Calcite adapters
– Already used by Drill, Hive, Kylin, Samza, etc.
– Supports any JDBC source
– Initial version of Drill-Phoenix integration already working
Drillix: Interoperability with Apache Drill
SELECT deptno, sum(salary) FROM emps GROUP BY deptno
Stage 1:
Local Partial aggregation
Stage 3:
Final aggregation
Stage 2:
Shuffle partial results
Drill Aggregate [deptno, sum(salary)]
Drill Shuffle [deptno]
Phoenix Aggregate [deptno, sum(salary)]
Phoenix TableScan [emps]
Phoenix Tables on HBase
Thank you! Questions?
@maryannxue
@julianhyde
http://phoenix.apache.org
http://calcite.apache.org

More Related Content

What's hot

Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache CalciteJulian Hyde
 
Data profiling in Apache Calcite
Data profiling in Apache CalciteData profiling in Apache Calcite
Data profiling in Apache CalciteDataWorks Summit
 
Large Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured StreamingLarge Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured StreamingDatabricks
 
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...Christian Tzolov
 
Fast federated SQL with Apache Calcite
Fast federated SQL with Apache CalciteFast federated SQL with Apache Calcite
Fast federated SQL with Apache CalciteChris Baynes
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDatabricks
 
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational CacheUsing Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational CacheDremio Corporation
 
Hudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilitiesHudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilitiesNishith Agarwal
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsDatabricks
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationDatabricks
 
Enabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache SparkEnabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache SparkKazuaki Ishizaki
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark Summit
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Databricks
 
Incremental View Maintenance with Coral, DBT, and Iceberg
Incremental View Maintenance with Coral, DBT, and IcebergIncremental View Maintenance with Coral, DBT, and Iceberg
Incremental View Maintenance with Coral, DBT, and IcebergWalaa Eldin Moustafa
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Flink Forward
 
Understanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineUnderstanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineInfluxData
 
How to Extend Apache Spark with Customized Optimizations
How to Extend Apache Spark with Customized OptimizationsHow to Extend Apache Spark with Customized Optimizations
How to Extend Apache Spark with Customized OptimizationsDatabricks
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Databricks
 

What's hot (20)

Streaming SQL with Apache Calcite
Streaming SQL with Apache CalciteStreaming SQL with Apache Calcite
Streaming SQL with Apache Calcite
 
Data profiling in Apache Calcite
Data profiling in Apache CalciteData profiling in Apache Calcite
Data profiling in Apache Calcite
 
Large Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured StreamingLarge Scale Lakehouse Implementation Using Structured Streaming
Large Scale Lakehouse Implementation Using Structured Streaming
 
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
Using Apache Calcite for Enabling SQL and JDBC Access to Apache Geode and Oth...
 
Fast federated SQL with Apache Calcite
Fast federated SQL with Apache CalciteFast federated SQL with Apache Calcite
Fast federated SQL with Apache Calcite
 
Deep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache SparkDeep Dive: Memory Management in Apache Spark
Deep Dive: Memory Management in Apache Spark
 
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational CacheUsing Apache Arrow, Calcite, and Parquet to Build a Relational Cache
Using Apache Arrow, Calcite, and Parquet to Build a Relational Cache
 
Hudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilitiesHudi architecture, fundamentals and capabilities
Hudi architecture, fundamentals and capabilities
 
Optimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL JoinsOptimizing Apache Spark SQL Joins
Optimizing Apache Spark SQL Joins
 
Apache Spark Core – Practical Optimization
Apache Spark Core – Practical OptimizationApache Spark Core – Practical Optimization
Apache Spark Core – Practical Optimization
 
Enabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache SparkEnabling Vectorized Engine in Apache Spark
Enabling Vectorized Engine in Apache Spark
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
 
Incremental View Maintenance with Coral, DBT, and Iceberg
Incremental View Maintenance with Coral, DBT, and IcebergIncremental View Maintenance with Coral, DBT, and Iceberg
Incremental View Maintenance with Coral, DBT, and Iceberg
 
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
Introducing BinarySortedMultiMap - A new Flink state primitive to boost your ...
 
Understanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage EngineUnderstanding InfluxDB’s New Storage Engine
Understanding InfluxDB’s New Storage Engine
 
How to Extend Apache Spark with Customized Optimizations
How to Extend Apache Spark with Customized OptimizationsHow to Extend Apache Spark with Customized Optimizations
How to Extend Apache Spark with Customized Optimizations
 
Apache Spark Overview
Apache Spark OverviewApache Spark Overview
Apache Spark Overview
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
 

Similar to Cost-based Query Optimization with Apache Calcite

phoenix-on-calcite-nyc-meetup
phoenix-on-calcite-nyc-meetupphoenix-on-calcite-nyc-meetup
phoenix-on-calcite-nyc-meetupMaryann Xue
 
Tactical data engineering
Tactical data engineeringTactical data engineering
Tactical data engineeringJulian Hyde
 
Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14Julian Hyde
 
Hyperspace: An Indexing Subsystem for Apache Spark
Hyperspace: An Indexing Subsystem for Apache SparkHyperspace: An Indexing Subsystem for Apache Spark
Hyperspace: An Indexing Subsystem for Apache SparkDatabricks
 
MongoDB Aggregation MongoSF May 2011
MongoDB Aggregation MongoSF May 2011MongoDB Aggregation MongoSF May 2011
MongoDB Aggregation MongoSF May 2011Chris Westin
 
SQL Server 2008 Development for Programmers
SQL Server 2008 Development for ProgrammersSQL Server 2008 Development for Programmers
SQL Server 2008 Development for ProgrammersAdam Hutson
 
The Evolution of a Relational Database Layer over HBase
The Evolution of a Relational Database Layer over HBaseThe Evolution of a Relational Database Layer over HBase
The Evolution of a Relational Database Layer over HBaseDataWorks Summit
 
Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018DataLab Community
 
Hands on Mahout!
Hands on Mahout!Hands on Mahout!
Hands on Mahout!OSCON Byrum
 
Overview of query evaluation
Overview of query evaluationOverview of query evaluation
Overview of query evaluationavniS
 
Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...
Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...
Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...Julian Hyde
 
SSRS - PPS - MOSS Profile
SSRS - PPS - MOSS ProfileSSRS - PPS - MOSS Profile
SSRS - PPS - MOSS Profiletthompson0421
 
AI與大數據數據處理 Spark實戰(20171216)
AI與大數據數據處理 Spark實戰(20171216)AI與大數據數據處理 Spark實戰(20171216)
AI與大數據數據處理 Spark實戰(20171216)Paul Chao
 
Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Jim Dowling
 
At the core you will have KUSTO
At the core you will have KUSTOAt the core you will have KUSTO
At the core you will have KUSTORiccardo Zamana
 

Similar to Cost-based Query Optimization with Apache Calcite (20)

phoenix-on-calcite-nyc-meetup
phoenix-on-calcite-nyc-meetupphoenix-on-calcite-nyc-meetup
phoenix-on-calcite-nyc-meetup
 
Tactical data engineering
Tactical data engineeringTactical data engineering
Tactical data engineering
 
Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14Cost-based query optimization in Apache Hive 0.14
Cost-based query optimization in Apache Hive 0.14
 
Hyperspace: An Indexing Subsystem for Apache Spark
Hyperspace: An Indexing Subsystem for Apache SparkHyperspace: An Indexing Subsystem for Apache Spark
Hyperspace: An Indexing Subsystem for Apache Spark
 
Chapter15
Chapter15Chapter15
Chapter15
 
MongoDB Aggregation MongoSF May 2011
MongoDB Aggregation MongoSF May 2011MongoDB Aggregation MongoSF May 2011
MongoDB Aggregation MongoSF May 2011
 
SQL Server 2008 Development for Programmers
SQL Server 2008 Development for ProgrammersSQL Server 2008 Development for Programmers
SQL Server 2008 Development for Programmers
 
Data Science
Data ScienceData Science
Data Science
 
Pig Experience
Pig ExperiencePig Experience
Pig Experience
 
The Evolution of a Relational Database Layer over HBase
The Evolution of a Relational Database Layer over HBaseThe Evolution of a Relational Database Layer over HBase
The Evolution of a Relational Database Layer over HBase
 
Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018Meetup Junio Data Analysis with python 2018
Meetup Junio Data Analysis with python 2018
 
Hands on Mahout!
Hands on Mahout!Hands on Mahout!
Hands on Mahout!
 
Overview of query evaluation
Overview of query evaluationOverview of query evaluation
Overview of query evaluation
 
Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...
Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...
Planning with Polyalgebra: Bringing Together Relational, Complex and Machine ...
 
Polyalgebra
PolyalgebraPolyalgebra
Polyalgebra
 
SSRS - PPS - MOSS Profile
SSRS - PPS - MOSS ProfileSSRS - PPS - MOSS Profile
SSRS - PPS - MOSS Profile
 
AI與大數據數據處理 Spark實戰(20171216)
AI與大數據數據處理 Spark實戰(20171216)AI與大數據數據處理 Spark實戰(20171216)
AI與大數據數據處理 Spark實戰(20171216)
 
Lecture 2 part 3
Lecture 2 part 3Lecture 2 part 3
Lecture 2 part 3
 
Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks Metadata and Provenance for ML Pipelines with Hopsworks
Metadata and Provenance for ML Pipelines with Hopsworks
 
At the core you will have KUSTO
At the core you will have KUSTOAt the core you will have KUSTO
At the core you will have KUSTO
 

More from Julian Hyde

Building a semantic/metrics layer using Calcite
Building a semantic/metrics layer using CalciteBuilding a semantic/metrics layer using Calcite
Building a semantic/metrics layer using CalciteJulian Hyde
 
Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!Julian Hyde
 
Adding measures to Calcite SQL
Adding measures to Calcite SQLAdding measures to Calcite SQL
Adding measures to Calcite SQLJulian Hyde
 
Morel, a data-parallel programming language
Morel, a data-parallel programming languageMorel, a data-parallel programming language
Morel, a data-parallel programming languageJulian Hyde
 
Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...Julian Hyde
 
Morel, a Functional Query Language
Morel, a Functional Query LanguageMorel, a Functional Query Language
Morel, a Functional Query LanguageJulian Hyde
 
The evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its CommunityThe evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its CommunityJulian Hyde
 
What to expect when you're Incubating
What to expect when you're IncubatingWhat to expect when you're Incubating
What to expect when you're IncubatingJulian Hyde
 
Open Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache CalciteOpen Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache CalciteJulian Hyde
 
Efficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databasesEfficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databasesJulian Hyde
 
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...Julian Hyde
 
Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!Julian Hyde
 
Spatial query on vanilla databases
Spatial query on vanilla databasesSpatial query on vanilla databases
Spatial query on vanilla databasesJulian Hyde
 
Lazy beats Smart and Fast
Lazy beats Smart and FastLazy beats Smart and Fast
Lazy beats Smart and FastJulian Hyde
 
Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Julian Hyde
 
Data profiling with Apache Calcite
Data profiling with Apache CalciteData profiling with Apache Calcite
Data profiling with Apache CalciteJulian Hyde
 
A smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache CalciteA smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache CalciteJulian Hyde
 
Data Profiling in Apache Calcite
Data Profiling in Apache CalciteData Profiling in Apache Calcite
Data Profiling in Apache CalciteJulian Hyde
 
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)Julian Hyde
 

More from Julian Hyde (20)

Building a semantic/metrics layer using Calcite
Building a semantic/metrics layer using CalciteBuilding a semantic/metrics layer using Calcite
Building a semantic/metrics layer using Calcite
 
Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!Cubing and Metrics in SQL, oh my!
Cubing and Metrics in SQL, oh my!
 
Adding measures to Calcite SQL
Adding measures to Calcite SQLAdding measures to Calcite SQL
Adding measures to Calcite SQL
 
Morel, a data-parallel programming language
Morel, a data-parallel programming languageMorel, a data-parallel programming language
Morel, a data-parallel programming language
 
Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...Is there a perfect data-parallel programming language? (Experiments with More...
Is there a perfect data-parallel programming language? (Experiments with More...
 
Morel, a Functional Query Language
Morel, a Functional Query LanguageMorel, a Functional Query Language
Morel, a Functional Query Language
 
The evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its CommunityThe evolution of Apache Calcite and its Community
The evolution of Apache Calcite and its Community
 
What to expect when you're Incubating
What to expect when you're IncubatingWhat to expect when you're Incubating
What to expect when you're Incubating
 
Open Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache CalciteOpen Source SQL - beyond parsers: ZetaSQL and Apache Calcite
Open Source SQL - beyond parsers: ZetaSQL and Apache Calcite
 
Efficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databasesEfficient spatial queries on vanilla databases
Efficient spatial queries on vanilla databases
 
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
Smarter Together - Bringing Relational Algebra, Powered by Apache Calcite, in...
 
Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!
 
Spatial query on vanilla databases
Spatial query on vanilla databasesSpatial query on vanilla databases
Spatial query on vanilla databases
 
Lazy beats Smart and Fast
Lazy beats Smart and FastLazy beats Smart and Fast
Lazy beats Smart and Fast
 
Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!
 
Data profiling with Apache Calcite
Data profiling with Apache CalciteData profiling with Apache Calcite
Data profiling with Apache Calcite
 
A smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache CalciteA smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
A smarter Pig: Building a SQL interface to Apache Pig using Apache Calcite
 
Data Profiling in Apache Calcite
Data Profiling in Apache CalciteData Profiling in Apache Calcite
Data Profiling in Apache Calcite
 
Streaming SQL
Streaming SQLStreaming SQL
Streaming SQL
 
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
Streaming SQL (at FlinkForward, Berlin, 2016/09/12)
 

Recently uploaded

Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUK Journal
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 

Recently uploaded (20)

Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 

Cost-based Query Optimization with Apache Calcite

  • 1. + Cost-based Query Optimization Maryann Xue (Intel) Julian Hyde (Hortonworks) Hadoop Summit, San Jose June 2016
  • 2. •@maryannxue •Apache Phoenix PMC member •Intel •@julianhyde •Apache Calcite VP •Hortonworks
  • 3. What is Apache Phoenix? • A relational database layer for Apache HBase – Query engine • Transforms SQL queries into native HBase API calls • Pushes as much work as possible onto the cluster for parallel execution – Metadata repository • Typed access to data stored in HBase tables – Transaction support – Table Statistics – A JDBC driver
  • 4. Advanced Features • Secondary indexes • Strong SQL standard compliance • Windowed aggregates • Connectivity (e.g. remote JDBC driver, ODBC driver) Created architectural pain… We decided to do it right!
  • 5. Example 1: Optimizing Secondary Indexes How we match secondary indexes in Phoenix 4.8: What about both? SELECT * FROM Emp ORDER BY name SELECT * FROM Emp WHERE empId > 100 CREATE TABLE Emps(empId INT PRIMARY KEY, name VARCHAR(100));
 
 CREATE INDEX I_Emps_Name ON Emps(name); SELECT * FROM Emp
 WHERE empId > 100 ORDER BY name Q1 Q2 Q3 I_Emps_Name Emps We need to make a cost-based decision! Statistics can help. ?
  • 6. Phoenix + Calcite • Both are Apache projects • Involves changes to both projects • Work is being done on a branch of Phoenix, with changes to Calcite as needed • Goals: – Remove code! (Use Calcite’s SQL parser, validator) – Improve planning (Faster planning, faster queries) – Improve SQL compliance – Some “free” SQL features (e.g. WITH, scalar subquery, FILTER) – Close to full compatibility with current Phoenix SQL and APIs • Status: beta, expected GA: late 2016
  • 7. Current Phoenix Architecture Parser Algebra Phoenix Schema Stage 1: ParseNode tree Stage 2: Normalization, secondary index rewrite Stage 3: Expression tree HBase Data Runtime Query Plan
  • 8. Calcite Architecture Parser Algebra Schema SPI Operators,
 Rules,
 Statistics, Cost model Data Engine Data Engine Data Engine
  • 9. Phoenix + Calcite Architecture Parser Algebra Phoenix Schema Logical + Phoenix Operators,
 Builtin + Phoenix Rules,
 Phoenix Statistics, Phoenix Cost model Data JDBC (optional) HBase Data Phoenix Runtime Data Other (optional) Query Plan
  • 10. Cost-based Query Optimizer
 with Apache Calcite • Base all query optimization decisions on cost – Filter push down; range scan vs. skip scan – Hash aggregate vs. stream aggregate vs. partial stream aggregate – Sort optimized out; sort/limit push through; fwd/rev/unordered scan – Hash join vs. merge join; join ordering – Use of data table vs. index table – All above (any many others) COMBINED • Query optimizations are modeled as pluggable rules
  • 11. Calcite Algebra SELECT products.name, COUNT(*)
 FROM sales
 JOIN products USING (productId)
 WHERE sales.discount IS NOT NULL
 GROUP BY products.name
 ORDER BY COUNT(*) DESC scan [products] scan [sales] join filter aggregate sort translate SQL to relational algebra
  • 12. Example 2: FilterIntoJoinRule SELECT products.name, COUNT(*)
 FROM sales
 JOIN products USING (productId)
 WHERE sales.discount IS NOT NULL
 GROUP BY products.name
 ORDER BY COUNT(*) DESC scan [products] scan [sales] join filter aggregate sort scan [products] scan [sales] filter’ join’ aggregate sort FilterIntoJoinRule translate SQL to relational algebra
  • 13. Example 3: Phoenix Joins • Hash join vs. Sort merge join – Hash join good for: either input is small – Sort merge join good for: both inputs are big – Hash join downside: potential OOM – Sort merge join downside: extra sorting required sometimes • Better to exploit the sortedness of join input • Better to exploit the sortedness of join output
  • 14. Example 3: Calcite Algebra SELECT empid, e.name, d.name, location
 FROM emps AS e
 JOIN depts AS d USING (deptno)
 ORDER BY d.deptno scan [emps] scan [depts] join sort project translate SQL to relational algebra
  • 15. Example 3: Plan Candidates scan [emps] scan [depts] hash-join sort project scan [emps] scan [depts] sort merge-join projectCandidate 1: hash-join *also what standalone Phoenix compiler would generate. Candidate 2: merge-join 1. Very little difference in all other operators: project, scan, hash-join or merge-join 2. Candidate 1 would sort “emps join depts”, while candidate 2 would only sort “emps” Win SortRemoveRule sorted on [deptno] SortRemoveRule sorted on [e.deptno]
  • 16. Example 3: Improved Plan scan ‘depts’ send ‘depts’ over to RS & build hash-cache scan ‘emps’ hash-join ‘depts’ sort joined table on ‘e.deptno’ scan ‘emps’ merge-join ‘emps’ and ‘depts’ sort by ‘deptno’ scan ‘depts’ Old vs. New 1. Exploited the sortedness of join input 2. Exploited the sortedness of join output
  • 17. (and now, a brief look at Calcite)
  • 18. Apache Calcite • Apache top-level project since October, 2015 • Query planning framework – Relational algebra, rewrite
 rules – Cost model & statistics – Federation via adapters – Extensible • Packaging – Library – Optional SQL parser, JDBC server – Community-authored rules, adapters Embedded Adapters Streaming Apache Drill Apache Hive Apache Kylin Apache Phoenix* Cascading Lingual Apache Cassandra* Apache Spark CSV In-memory JDBC JSON MongoDB Splunk Web tables Apache Flink* Apache Samza Apache Storm
  • 19. Apache Calcite Avatica • Database connectivity stack • Self-contained sub- project of Calcite • Fast, open, stable • Powers Phoenix Query Server
  • 20. Calcite – APIs and SPIs Cost, statistics RelOptCost RelOptCostFactory RelMetadataProvider • RelMdColumnUniquensss • RelMdDistinctRowCount • RelMdSelectivity SQL parser SqlNode
 SqlParser
 SqlValidator Transformation rules RelOptRule • MergeFilterRule • PushAggregateThroughUnionRule • 100+ more Global transformations • Unification (materialized view) • Column trimming • De-correlation Relational algebra RelNode (operator) • TableScan • Filter • Project • Union • Aggregate • … RelDataType (type) RexNode (expression) RelTrait (physical property) • RelConvention (calling-convention) • RelCollation (sortedness) • TBD (bucketedness/distribution) JDBC driver (Avatica) Metadata Schema Table Function • TableFunction • TableMacro Lattice
  • 21. Calcite Planning Process SQL parse tree Planner RelNode Graph Sql-to-Rel Converter SqlNode ! RelNode + RexNode Node for each node in Input Plan Each node is a Set of alternate Sub Plans Set further divided into Subsets: based on traits like sortedness 1. Plan Graph Rule: specifies an Operator sub-graph to match and logic to generate equivalent ‘better’ sub-graph New and original sub-graph both remain in contention 2. Rules RelNodes have Cost & Cumulative Cost 3. Cost Model Used to plug in Schema, cost formulas Filter selectivity Join selectivity NDV calculations 4. Metadata Providers Rule Match Queue Best RelNode Graph Translate to runtime Logical Plan Based on “Volcano” & “Cascades” papers [G. Graefe] Add Rule matches to Queue Apply Rule match transformations to plan graph Iterate for fixed iterations or until cost doesn’t change Match importance based on cost of RelNode and height
  • 22. Views and materialized views • A view is a named relational expression, stored in the catalog, that is expanded while planning a query. • A materialized view is an equivalence, stored in the catalog, between a table and a relational expression.
 
 The planner substitutes the table into queries where it will help, even if the queries do not reference the materialized view.
  • 23. Query using a view Scan [Emps] Join [$0, $5] Project [$0, $1, $2, $3] Filter [age >= 50] Aggregate [deptno, min(salary)] Scan [Managers] Aggregate [manager] Scan [Emps] SELECT deptno, min(salary)
 FROM Managers
 WHERE age >= 50
 GROUP BY deptno CREATE VIEW Managers AS
 SELECT *
 FROM Emps 
 WHERE EXISTS (
 SELECT *
 FROM Emps AS underling
 WHERE underling.manager = emp.id) view scan to be expanded
  • 24. After view expansion Scan [Emps] Aggregate [manager] Join [$0, $5] Project [$0, $1, $2, $3] Filter [age >= 50] Aggregate [deptno, min(salary)] Scan [Emps] SELECT deptno, min(salary)
 FROM Managers
 WHERE age >= 50
 GROUP BY deptno CREATE VIEW Managers AS
 SELECT *
 FROM Emps 
 WHERE EXISTS (
 SELECT *
 FROM Emps AS underling
 WHERE underling.manager = emp.id) can be pushed down
  • 25. Materialized view Scan [Emps] Aggregate [deptno, gender,
 COUNT(*), SUM(sal)] Scan [EmpSummary] = Scan [Emps] Filter [deptno = 10 AND gender = ‘M’] Aggregate [COUNT(*)] CREATE MATERIALIZED VIEW EmpSummary AS
 SELECT deptno,
 gender,
 COUNT(*) AS c,
 SUM(sal) AS s
 FROM Emps
 GROUP BY deptno, gender SELECT COUNT(*)
 FROM Emps
 WHERE deptno = 10
 AND gender = ‘M’
  • 26. Materialized view, step 2: Rewrite query to match Scan [Emps] Aggregate [deptno, gender,
 COUNT(*), SUM(sal)] Scan [EmpSummary] = Scan [Emps] Filter [deptno = 10 AND gender = ‘M’] Aggregate [deptno, gender,
 COUNT(*) AS c, SUM(sal) AS s] Project [c] CREATE MATERIALIZED VIEW EmpSummary AS
 SELECT deptno,
 gender,
 COUNT(*) AS c,
 SUM(sal) AS s
 FROM Emps
 GROUP BY deptno, gender SELECT COUNT(*)
 FROM Emps
 WHERE deptno = 10
 AND gender = ‘M’
  • 27. Materialized view, step 3: Substitute table Scan [Emps] Aggregate [deptno, gender,
 COUNT(*), SUM(sal)] Scan [EmpSummary] = Filter [deptno = 10 AND gender = ‘M’] Project [c] Scan [EmpSummary] CREATE MATERIALIZED VIEW EmpSummary AS
 SELECT deptno,
 gender,
 COUNT(*) AS c,
 SUM(sal) AS s
 FROM Emps
 GROUP BY deptno, gender SELECT COUNT(*)
 FROM Emps
 WHERE deptno = 10
 AND gender = ‘M’
  • 28. (and now, back to Phoenix)
  • 29. Example 1, Revisited: Secondary Index Optimizer internally creates a mapping (query, table) equivalent to: Scan [Emps] Filter [deptno BETWEEN 100 and 150] Project [deptno, name] Sort [deptno] CREATE MATERIALIZED VIEW I_Emp_Deptno AS
 SELECT deptno, empno, name
 FROM Emps
 ORDER BY deptno Scan [Emps] Project [deptno, empno, name] Sort [deptno, empno, name] Filter [deptno BETWEEN 100 and 150] Project [deptno, name] Scan [I_Emp_Deptno] 1,000 1,000 200 1600 1,000 1,000 200 very simple cost based on row-count
  • 30. Beyond Phoenix 4.8
 with Apache Calcite • Get the missing SQL support – WITH, UNNEST, Scalar subquery, etc. • Materialized views – To allow other forms of indices (maybe defined as external), e.g., a filter view, a join view, or an aggregate view. • Interop with other Calcite adapters – Already used by Drill, Hive, Kylin, Samza, etc. – Supports any JDBC source – Initial version of Drill-Phoenix integration already working
  • 31. Drillix: Interoperability with Apache Drill SELECT deptno, sum(salary) FROM emps GROUP BY deptno Stage 1: Local Partial aggregation Stage 3: Final aggregation Stage 2: Shuffle partial results Drill Aggregate [deptno, sum(salary)] Drill Shuffle [deptno] Phoenix Aggregate [deptno, sum(salary)] Phoenix TableScan [emps] Phoenix Tables on HBase