SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez nos Conditions d’utilisation et notre Politique de confidentialité.
SlideShare utilise les cookies pour améliorer les fonctionnalités et les performances, et également pour vous montrer des publicités pertinentes. Si vous continuez à naviguer sur ce site, vous acceptez l’utilisation de cookies. Consultez notre Politique de confidentialité et nos Conditions d’utilisation pour en savoir plus.
Publié le
A talk given by Julian Hyde at DataCouncil SF on April 18, 2019
How do you organize your data so that your users get the right answers at the right time? That question is a pretty good definition of data engineering — but it is also describes the purpose of every DBMS (database management system). And it’s not a coincidence that these are so similar.
This talk looks at the patterns that reoccur throughout data management — such as caching, partitioning, sorting, and derived data sets. As the speaker is the author of Apache Calcite, we first look at these patterns through the lens of Relational Algebra and DBMS architecture. But then we apply these patterns to the modern data pipeline, ETL and analytics. As a case study, we look at how Looker’s “derived tables” blur the line between ETL and caching, and leverage the power of cloud databases.
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Identifiez-vous pour voir les commentaires