Cours M3: présentation
Oscillateurs
Plan
1. Introduction
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1 Problème 4
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1 Problème 4
2.2 Système
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1 Problème 4
2.2 Système
2.3 Référentiel et ba...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4

Problème 4
Système
Référentiel ...
Force de rappel du ressort
Force de rappel du ressort
→ →
− −
R F

1

→
−
P
0

x <0

→
−
ex
O
x >0

→
−
F

→
−
R
2
→
−
P

Figure 1
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4

Problème 4
Système
Référentiel ...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5

Problème 4
Système
Référent...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Oscillations sinusoïdales
Oscillations sinusoïdales
x
xm
T0

t

−xm

Figure 2
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Plan
1. Introduction
2. Système solide-ressort horizontal sans frottement
2.1
2.2
2.3
2.4
2.5
2.6

Problème 4
Système
Réfé...
Oscillations verticales d’une masse accrochée à
un ressort
Oscillations verticales d’une masse accrochée à
un ressort

0
q

(t)
−
→
Tq
O
x(t)
x

→
−
T

→
−
P
→
−
P
Oscillations verticales d’une masse accrochée à
un ressort
L’allongement du ressort est
ici calculé par rapport à la
posit...
Oscillations verticales d’une masse accrochée à
un ressort
L’allongement du ressort est
ici calculé par rapport à la
posit...
Oscillations verticales d’une masse accrochée à
un ressort
L’allongement du ressort est
ici calculé par rapport à la
posit...
Oscillations verticales d’une masse accrochée à
un ressort
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:

mx = mg −k ( ...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappel :

x= −...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappels:

x= −...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappels:

x= −...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
Rappels:

x= −...
Oscillations verticales d’une masse accrochée à
un ressort
PFD appliqué à la masse et projeté sur l’axe Ox:
x= −

Rappels:...
Plan

4. Pendule simple
Plan

4. Pendule simple
4.1 Problème 6
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de ...
Présentation de la base polaire
Présentation de la base polaire

Rotation autour d’un axe fixe
Présentation de la base polaire

Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire
Présentation de la base polaire

Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire
Base mobile 2D définie par ...
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base m...
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base m...
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base m...
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base m...
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base m...
Présentation de la base polaire
O
Rotation autour d’un axe fixe
=⇒ utilisation de la base polaire

y
→
−
uy

→
−
ux

Base m...
Présentation de la base polaire
O

y
→
−
uy

→
−
ux
θ
→
−
uθ
M

→
−
ur
x
Figure 4
Présentation de la base polaire
O
Liens entre la base polaire et la
base cartésienne

y
→
−
uy

→
−
ux
θ
→
−
uθ
M

→
−
ur
...
Présentation de la base polaire
O
Liens entre la base polaire et la
base cartésienne
x=

cos θ

y
→
−
uy

→
−
ux
(8)

θ

x...
Présentation de la base polaire
y
→
−
uy

O
Liens entre la base polaire et la
base cartésienne

y

→
−
ux

x=

cos θ

(8)
...
Présentation de la base polaire
O
Liens entre la base polaire et la
base cartésienne

y
→
−
uy

→
−
ux

x=

cos θ

(8)

y=...
Présentation de la base polaire
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartési...
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartési...
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartési...
Présentation de la base polaire

Les vecteurs de la base polaire peuvent
s’exprimer en fonction de ceux de la
base cartési...
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de ...
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de ...
Bilan des forces pour le pendule simple
Bilan des forces pour le pendule simple

O

θ

→
−
T
M

→
−
P
Figure 6

→
−
uθ
→
−
ur
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de ...
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de ...
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de ...
Plan

4. Pendule simple
4.1 Problème 6
4.2 Système
4.3 Référentiel et base
4.3.1 Référentiel
4.3.2 Base : présentation de ...
Plan

5. Système solide-ressort avec frottements fluides
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
Régime pseudopériodique
Régime pseudopériodique
x
X

T

t
: λ = 1/4
: λ = 1/2
: λ=1

-X

Figure 7
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
régime apériodique
régime apériodique

x

: λ=2
: λ=3
: λ=4

xm

t

Figure 8
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
Plan

5. Système solide-ressort avec frottements fluides
5.1 Problème 7
5.2 Equation différentielle
5.3 Différents régimes
5....
Prochain SlideShare
Chargement dans…5
×

M13 oscillateurs presentation

39 227 vues

Publié le

Les oscillateurs en mécanique

Publié dans : Formation
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

M13 oscillateurs presentation

  1. 1. Cours M3: présentation Oscillateurs
  2. 2. Plan 1. Introduction
  3. 3. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement
  4. 4. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 Problème 4
  5. 5. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 Problème 4 2.2 Système
  6. 6. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 Problème 4 2.2 Système 2.3 Référentiel et base de projection
  7. 7. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 Problème 4 Système Référentiel et base de projection Bilan des forces
  8. 8. Force de rappel du ressort
  9. 9. Force de rappel du ressort → → − − R F 1 → − P 0 x <0 → − ex O x >0 → − F → − R 2 → − P Figure 1
  10. 10. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 Problème 4 Système Référentiel et base de projection Bilan des forces
  11. 11. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 Problème 4 Système Référentiel et base de projection Bilan des forces PFD
  12. 12. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution
  13. 13. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation
  14. 14. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution
  15. 15. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution
  16. 16. Oscillations sinusoïdales
  17. 17. Oscillations sinusoïdales x xm T0 t −xm Figure 2
  18. 18. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution
  19. 19. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution 3. Système solide-ressort vertical sans frottement
  20. 20. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution 3. Système solide-ressort vertical sans frottement 3.1 Problème 5
  21. 21. Plan 1. Introduction 2. Système solide-ressort horizontal sans frottement 2.1 2.2 2.3 2.4 2.5 2.6 Problème 4 Système Référentiel et base de projection Bilan des forces PFD Solution 2.6.1 Notion de pulsation 2.6.2 Expression de la solution 2.6.3 Allure de la solution 3. Système solide-ressort vertical sans frottement 3.1 Problème 5 3.2 Résolution
  22. 22. Oscillations verticales d’une masse accrochée à un ressort
  23. 23. Oscillations verticales d’une masse accrochée à un ressort 0 q (t) − → Tq O x(t) x → − T → − P → − P
  24. 24. Oscillations verticales d’une masse accrochée à un ressort L’allongement du ressort est ici calculé par rapport à la position d’équilibre : x= − eq ´ (1) 0 q (t) − → Tq O x(t) x → − T → − P → − P
  25. 25. Oscillations verticales d’une masse accrochée à un ressort L’allongement du ressort est ici calculé par rapport à la position d’équilibre : x= − eq ´ (1) 0 q (t) La force de tension n’étant pas nulle à l’équilibre, elle s’écrit: − → Tq O x(t) x → − T → − P → − P
  26. 26. Oscillations verticales d’une masse accrochée à un ressort L’allongement du ressort est ici calculé par rapport à la position d’équilibre : x= − eq ´ (1) 0 q (t) La force de tension n’étant pas nulle à l’équilibre, elle s’écrit: → − T = −k ( − → − 0 ) ex (2) − → Tq O x(t) x → − T → − P → − P
  27. 27. Oscillations verticales d’une masse accrochée à un ressort
  28. 28. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox:
  29. 29. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: mx = mg −k ( − ¨ 0) (3)
  30. 30. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) (3)
  31. 31. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ (3) − 0) (4)
  32. 32. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x − k ( ¨ (3) − eq ´ 0) − 0) (4) (5)
  33. 33. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappel : x= − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x − k ( ¨ Or à l’équilibre : (3) − eq ´ 0) − 0) (4) (5)
  34. 34. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappels: x= − eq ´ → − T = −k ( − mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x − k ( ¨ Or à l’équilibre : → − 0 ) ex (3) − eq ´ 0) − 0) (4) (5)
  35. 35. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappels: x= − → − T = −k ( − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x−k ( ¨ eq ´ → − 0 ) ex (3) − − 0) 0) (4) (5) Or à l’équilibre : mg −k ( eq ´ − 0) =0 (6)
  36. 36. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: Rappels: x= − → − T = −k ( − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x−k ( ¨ eq ´ → − 0 ) ex (3) − − 0) 0) (4) (5) Or à l’équilibre : mg −k ( Donc (5) devient : eq ´ − 0) =0 (6)
  37. 37. Oscillations verticales d’une masse accrochée à un ressort PFD appliqué à la masse et projeté sur l’axe Ox: x= − Rappels: → − T = −k ( − eq ´ mx = mg −k ( − ¨ 0) ⇐⇒ m x = m g − k (x + ¨ eq ´ ⇐⇒ m x = m g − k x−k ( ¨ eq ´ → − 0 ) ex (3) − − 0) 0) (4) (5) Or à l’équilibre : mg −k ( eq ´ − 0) =0 (6) k x =0 m (7) Donc (5) devient : m x = −k x ⇐⇒ x + ¨ ¨
  38. 38. Plan 4. Pendule simple
  39. 39. Plan 4. Pendule simple 4.1 Problème 6
  40. 40. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système
  41. 41. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base
  42. 42. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel
  43. 43. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire
  44. 44. Présentation de la base polaire
  45. 45. Présentation de la base polaire Rotation autour d’un axe fixe
  46. 46. Présentation de la base polaire Rotation autour d’un axe fixe =⇒ utilisation de la base polaire
  47. 47. Présentation de la base polaire Rotation autour d’un axe fixe =⇒ utilisation de la base polaire Base mobile 2D définie par deux vecteurs:
  48. 48. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: M x Figure 3
  49. 49. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u r M → − ur x Figure 3
  50. 50. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u → − uθ r − • Vecteur orthoradial →. uθ M → − ur x Figure 3
  51. 51. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u → − uθ r − • Vecteur orthoradial →. uθ M Le point M est alors repéré par: → − ur x Figure 3
  52. 52. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u → − uθ r − • Vecteur orthoradial →. uθ M Le point M est alors repéré par: → − ur • une distance, ici ; x Figure 3
  53. 53. Présentation de la base polaire O Rotation autour d’un axe fixe =⇒ utilisation de la base polaire y → − uy → − ux Base mobile 2D définie par deux vecteurs: − • vecteur radial →; u θ → − uθ r − • Vecteur orthoradial →. uθ M Le point M est alors repéré par: → − ur • une distance, ici ; • un angle, θ. x Figure 3
  54. 54. Présentation de la base polaire O y → − uy → − ux θ → − uθ M → − ur x Figure 4
  55. 55. Présentation de la base polaire O Liens entre la base polaire et la base cartésienne y → − uy → − ux θ → − uθ M → − ur x Figure 4
  56. 56. Présentation de la base polaire O Liens entre la base polaire et la base cartésienne x= cos θ y → − uy → − ux (8) θ x → − uθ M → − ur x Figure 4
  57. 57. Présentation de la base polaire y → − uy O Liens entre la base polaire et la base cartésienne y → − ux x= cos θ (8) y= sin θ (9) θ θ → − uθ M → − ur x Figure 4
  58. 58. Présentation de la base polaire O Liens entre la base polaire et la base cartésienne y → − uy → − ux x= cos θ (8) y= sin θ (9) θ → − uθ Donc: = M x2 + y2 tan θ = y x → − ur (10) x Figure 4
  59. 59. Présentation de la base polaire
  60. 60. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne:
  61. 61. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne: → − uθ θ M → − uy θ → − ux Figure 5 → − ur
  62. 62. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne: → = cos θ → + sin θ → − − − ur ux uy → − uθ θ M → − uy (11) θ → − ux Figure 5 → − ur
  63. 63. Présentation de la base polaire Les vecteurs de la base polaire peuvent s’exprimer en fonction de ceux de la base cartésienne: → − uθ θ M → = cos θ → + sin θ → − − − ur ux uy → = − sin θ → + cos θ → − − − uθ ux uy (12) → − uy (11) θ → − ux Figure 5 → − ur
  64. 64. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire
  65. 65. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces
  66. 66. Bilan des forces pour le pendule simple
  67. 67. Bilan des forces pour le pendule simple O θ → − T M → − P Figure 6 → − uθ → − ur
  68. 68. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces
  69. 69. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces 4.5 Deuxième loi de Newton
  70. 70. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 Bilan des forces 4.5 Deuxième loi de Newton 4.6 Equation différentielle du mouvement
  71. 71. Plan 4. Pendule simple 4.1 Problème 6 4.2 Système 4.3 Référentiel et base 4.3.1 Référentiel 4.3.2 Base : présentation de la base polaire 4.4 4.5 4.6 4.7 Bilan des forces Deuxième loi de Newton Equation différentielle du mouvement Solution
  72. 72. Plan 5. Système solide-ressort avec frottements fluides
  73. 73. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7
  74. 74. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle
  75. 75. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes
  76. 76. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique
  77. 77. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution
  78. 78. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes
  79. 79. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique
  80. 80. Régime pseudopériodique
  81. 81. Régime pseudopériodique x X T t : λ = 1/4 : λ = 1/2 : λ=1 -X Figure 7
  82. 82. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique
  83. 83. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique • Régime apériodique
  84. 84. régime apériodique
  85. 85. régime apériodique x : λ=2 : λ=3 : λ=4 xm t Figure 8
  86. 86. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique • Régime apériodique
  87. 87. Plan 5. Système solide-ressort avec frottements fluides 5.1 Problème 7 5.2 Equation différentielle 5.3 Différents régimes 5.3.1 Equation caractéristique 5.3.2 Solution 5.3.3 Différents régimes • Régime pseudo-périodique • Régime apériodique • Régime critique

×