SlideShare a Scribd company logo
1 of 6
Motor protection example

Assume you have a motor rated 500 HP, .95 power factor & 90 % efficiency energized from a 4.16 Kv
source, using a microprocessor motor protection relay, provide the typical settings.
The full load current can be taken from the motor nameplate as well as the service factor. The motor
full load current can be calculated from the following: I = 500 (.746)/1.732 (4.16)(.85)(.9) =60 amps

                             Motor and Line Data Functions
Function Description    Adjustment / Display Range Setting                Increments      Setting
Motor Nameplate FLA    1 – 2000A, adjustable between
                       50-100% of Max Amp Rating.
FLA must be programmed Upper limit of range automatically adjusts            1              60
for relay to function  downward as Service factor is increased.

Motor Nameplate              1.00 - 1.30 SF                                   .05            1

Overload Class During Start NEMA / UL Class 5 – 20                               5        Class 20

Overload Class During Run      NEMA / UL Class 5 – 30                            5        Class 10

Overload Reset               0 = Manual,1 = Auto,2 = Disabled Overload            1             1

kV Voltage Input (nominal line, Medium Voltage)        .60 – 15kV                .01        4.16

Line Frequency                  50 or 60 Hz                                                     60

Acceleration Time               0-300 seconds [0=Disabled]                       1              30

Current Imbalance Trip %       0.1 - 30% of FLA [0=Disabled]                 1(%)            15

Current Imbalance Trip Delay           1 - 20 seconds                       1 (Second)          5

Over Current Trip %             0,.50 – 300% of FLA [0=Disabled]             1 (%)           200

Over Current Trip Delay         1 - 20 seconds                               1               8

Under Current %                 0, 10 – 90% of FLA [0=Disabled]              1 (%)          35

Under Current Trip Delay        1 - 60 seconds                               1              15

Stall Detection Trip Level       0.100 – 600% of FLA [0=Disabled]             5 (%)         600

Stall Detection Trip Delay       1 - 10 seconds                              1              4

Peak Current Trip %              0.800 – 1400% [0=Disabled]                  10(%)        1000 (%)

Peak Current Trip Delay           0..01 - .5 seconds                          .01          .05

13/11/10                                          1
Ground Fault Current Trip Value 0.5 – 90% of CT Value [0=Disabled]              1 (%)            50
Ground Fault Current Trip Delay         1 – 60 seconds                            1                     5

                                      Voltage Protection Settings
Voltage Imbalance Trip %                 0.1 – 30% [0=Disabled]                 1 (%)                20

Voltage Imbalance Trip Delay              1 – 20 seconds                            1                 10

Over Voltage Trip %                       0.1 – 10% [0=Disabled]                    1 (%)            5

Over Voltage Trip Delay                    1 – 20 seconds                               1            10

Under Voltage Trip on Start %             0.1 – 20% [0=Disabled]                    1 (%)        20

UV Trip on Start Delay                    1 – 180 seconds                               1        20

Under Voltage Trip on Run %                 0.1 – 20% [0=Disabled]                      1 (%)    20

UV Trip Delay during Run                   1 – 20 seconds                               1        10

                               Phase and Frequency Protection Settings
Phase Rotation Trip              0.1 or 2 0=Disabled, 1=ABC, 2=ACB]                     1       2

Phase Rotation Trip Delay          1 – 20 seconds                                       1        2

Phase Loss Trip and Delay          0.1-20 Seconds [0= Disabled]                         1        5

Over Frequency Trip Limit         0.1 – 10Hz   [0=Disabled]                             1           1

Over Frequency Trip Delay         1 – 20 seconds                                        1        5

Under Frequency Trip Limit        0.1 – 10Hz [0=Disabled]                               1        1

Under Frequency Trip Delay        1 – 20 seconds                                        1            5

Motor KW Trip         0-2.0 = Disabled,1 = Over KW Trip,2 = Under KW Trip           1            0

Motor KW Trip Point         20 – 100% of full load KW (disabled)                    1%          20(%)

Motor KW Trip Delay Time        1 – 999 minutes (disabled)                          1            1

Power Factor Trip Range          0.1 – 3 [0=Disabled, 1=lag, 2=lead, 3= lead/lag]       1        2

Power Factor Trip Point         .01 – 1                                                 .01     .10

Power Factor Trip Delay Time 1 – 20 seconds                                                 1   10

13/11/10                                            2
Power Factor Current Direction                 0 - 1, [0=Normal, 1= Reversed]                                  1            1


                                  Lockout / Inhibit Settings
Coast Down (Back Spin) Lockout Timer 0 = Disabled, or 1 - 60 minutes                                 1 minute          1

Maximum Starts per Hour                        0 = Disabled, or 1 – 10 starts                        1                  5

Minimum Time Between Starts Inhibit 0 = Disabled, or 1 - 60 minutes                                  1 minute          12

Note: NEMA Class trip curves are based on a common tripping point of 600% of motor Full Load
Amps (FLA). Curves vary by the amount of time before the unit trips. As an example, a Class 20 curve
will trip in 20 seconds at 600% of FLA. Another example, Class 10 will trip in 10 seconds at 600% of
FLA.

PT Value:1-200 (: 1) 1:1 = direct voltage input, 2-200: 1 = kV Voltage Input 1                              40 (4160/104) V

CT Value: 5-2000 (:5)                                               5                                              60

Number of Turns through CT:                                       1 – 5 (in 1 increments)                          1


                                               Generator protection example

Ratings of generators:
Rated output (eg. 1,120 MVA), Maximum output (1230 MVA), Rated rotation speed (300 rpm), Power
factor (0.9), Number of poles (2), Terminal voltage (27), Rated Armature current (23949), Maximum
Armature current (26302), Short-circuit ratio (> or = 0.5), Hydrogen gas pressure (0.52 Mpa G),
Insulation type (F), Temperature rise class (B), Cooling method (Stator: direct water), Efficiency
(99 %), Hydrogen consumption (12 m3/day).

Functional Specifications of generator protective relay
NOMINAL SYSTEM FREQUENCY SETTING RANGE.............................................50 or 60 Hz
RATED PRIMARY INPUT CURRENT OF PHASE AND NEUTRAL CTS .........1 - 9999A in 1A steps
RATED PRIMARY SYSTEM PHASE-TO-PHASE VOLTAGE OF PTS......2 – 655 kV in .0.1 kV steps
RATED PT SECONDARY LINE-TO-LINE VOLTAGE ...............................50 – 125 V in 1 V steps
LOW SET OVERCURRENT ELEMENT
Characteristic: .......................................................................................Definite time or inverse
Pickup: ...........................................................................................1.0 – 2.5 pu of rated generator current
Time delay: ...........................................................................................0.05 – 30.0 seconds (at 5pu Igen)
HIGH SET OVERCURRENT ELEMENT
Characteristic: .......................................................................................Definite time
Pickup: ............................................................................................1.0 – 9.9pu of rated generator current
Time delay: ...........................................................................................0.05 – 3.0 seconds (at 5pu Igen)
CURRENT UNBALANCE ELEMENT
Maximum negative sequence current rating;.................................0.05 – 0.5pu of rated generator current

13/11/10                                                           3
Time multiplier of I2 t curve ...................................................................5 – 80 seconds
Cooling time to rated.............................................................................10 – 1800 seconds
Alarm level pickup.................................................................................0.03 – 0.5pu generator current
Alarm level time delay...........................................................................1 – 100 seconds
REVERSE POWER ELEMENT PICKUP ......................................0.02 to 0.2pu rated generator current
Time delay ...........................................................................................1 – 100 seconds
LOSS OF FIELD ELEMENT
Mho circle size ..........................................................................50 – 300% of rated generator impedance
Mho offset .................................................................................5 – 50% of rated generator impedance
Time delay ............................................................................................0.2 – 60 seconds
Integration time .....................................................................................0 – 10 seconds
VOLTAGE ELEMENTS
Characteristic ........................................................................................Over, Under or Over+Under
Pick-up level.......................................................................................1 – 50% change from rated voltage
Time delay ............................................................................................0.1 – 60.0 seconds
FREQUENCY ELEMENTS
Characteristic ........................................................................................Over, Under or Over+Under
Pick-up level..........................................................................................0.05 – 9.99Hz from nominal
Time delay ............................................................................................0.1 – 60.0 seconds
THERMAL IMAGE ELEMENT
Trip level ...............................................................................................Fixed at 110% rated
Thermal time constant of alternator ......................................................1 – 400 minutes
Pre-alarm level......................................................................................50 – 110% of rated
UNDERPOWER ELEMENT PICKUP LEVEL ..........................................................0.05 – 1.00 of
rated power output
Time delay ............................................................................................0.1 – 60.0 seconds
UNDERIMPEDANCE ELEMENTS
Pickup level...........................................................................................01 – 1.0 pu rated impedance
Time delay ............................................................................................0.02 – 9.99 seconds
FIRST LEVEL OVEREXCITATION ELEMENT
Characteristic ........................................................................................Inverse
Pickup level...........................................................................................1.0 - 2.0 pu
Time multiplier.......................................................................................0.5 – 5.0
SECOND LEVEL OVEREXCITATION ELEMENT
Characteristic ........................................................................................Definite time
Pickup level...........................................................................................1.0 - 2.0 pu
Time multiplier.......................................................................................0.1 – 60.0 seconds
95% STATOR GROUND FAULT ELEMENTS
Pickup level.....................................................................................5 – 99% Rated zero sequence voltage
Time delay ............................................................................................0.05 – 99.0 seconds
100% STATOR GROUND FAULT ELEMENT
3rd Harmonic Pickup level ..............................................................1 – 30% Rated zero sequence voltage
Time delay ............................................................................................0.05 – 99.0 seconds

                                                  Typical Settings
 IEEE No. Function                                      Typical Settings and Remarks
24        Overexcitation                 PU: 1.1*VNOM/60; TD: 0.3; reset TD: 5 alarm P.U.: 1.18*VNOM/60

13/11/10                                                        4
alarm delay: 2.5s

25      Synchronism Check Max Slip: 6RPM; Max phase angle error: 10° Max VMAG error:
                          2.5% VNOM

32      Reverse Power (one stage) PU: turbine 1% of rated; 15 s . PU: Reciprocating engine:
                                  10% of rated; 5 s

32-1       Reverse Power (non-electrical, trip supervision)         PU: same as 32; 3 s

40         Loss-of-field (VAR Flow approach)        Level 1 PU: 60% VA rating; Delay: 0.2s; Level 2
                                                    PU: 100% VA rating: 0.1s

46         Negative Sequence overcurrent            I2 PU: 10% Irated; K=10

49         Stator Temperature (RTD)                 Lower: 95°C; upper: 105°C

50/87      Differential via flux summation Cts          PU:10% INOM or less if 1A relay may be used

50/27 IE       Inadvertent Energization Overcurrent with 27, 81        50: 0.5A (10% INOM) 27: 85%
               Supervision                                             VNOM (81: Similar)

51N     Stator Ground Over- current (Low, Med Z Gnd, PU: 10% INOM; curve: EI; TD: 4. Inst:
        Phase CT Residual)                           none. Higher PU required to coordinate
                                                     with load. No higher than 25% INOM.

50/51N Stator Ground Over- current (Low, Med Z Gnd, P.U.: 10% INOM; Curve EI**, TD4; Inst
       Neutral CT or Flux Summation CT)             100% INOM. Higher PU if required to
                                                    coordinate with load. No higher than
                                                    25% INOM.

51GN, 51N       Stator Ground Over- current (High Z Gnd) PU: 10% IFAULT at HV Term.; Curve:
                                                         VI***; TD:4.

51VC           Voltage Controlled overcurrent                   PU: 50% INOM; Curve: VI***; TD: 4.
                                                                Control voltage: 80%VNOM.

51VR           Voltage Restrained overcurrent             PU: 175% INOM; Curve: VI***; TD: 4. Zero
                                                          Restraint Voltage: 100% VNOM L-L

59N, 27-3N, 59P       Ground Overvoltage         59N: 5% VNEU during HV terminal fault; 27-3N:
                                                 25% V3rd during normal operation; TD: 10s 59P:
                                                 80% VNOM

67IE       Directional O/C for Inadvertent Energization PU: 75-100% INOM GEN; Definite Time (0.1-
                                                        0.25 sec.) ; Inst: 200% INOM GEN


13/11/10                                            5
81         Over/under frequency           For Generator protection: 57, 62Hz, 0.5s; For
                                          Island detection condition: 59, 61Hz, 0.1s
87G        Generator Phase Differential   Fixed: 0.4A; or Variable: Min P.U.: 0.1 * Tap;
                                          Tap: INOM; Slope: 15%

87N        Generator Ground               Variable: Min P.U.: 0.1 times tap; Slope 15%;
                                          Differential Time delay: 0.1s; choose low tap
                                          67N: current polarization; time: 0.25A; Curve:
                                          VI***; TD: 2; Instantaneous: disconnect

87UD 13     Unit Differential             Min PU: 0.35*Tap; Tap: INOM; Slope 30%

**: EI: extremely inverse.
***: VI: very inverse.




13/11/10                                  6

More Related Content

What's hot

Bus Bar protection
Bus Bar protectionBus Bar protection
Bus Bar protectionsrini09
 
Relay Setting Calculation For REF615/ REJ601
Relay Setting Calculation For REF615/ REJ601Relay Setting Calculation For REF615/ REJ601
Relay Setting Calculation For REF615/ REJ601SARAVANAN A
 
protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]moiz89
 
Tutorial on Distance and Over Current Protection
Tutorial on Distance and Over  Current ProtectionTutorial on Distance and Over  Current Protection
Tutorial on Distance and Over Current ProtectionSARAVANAN A
 
Protection & switchgear
Protection & switchgear  Protection & switchgear
Protection & switchgear johny renoald
 
Transformer overcurrent
Transformer overcurrentTransformer overcurrent
Transformer overcurrentmichaeljmack
 
Short Circuit, Protective Device Coordination
Short Circuit, Protective Device CoordinationShort Circuit, Protective Device Coordination
Short Circuit, Protective Device Coordinationmichaeljmack
 
FAULT Analysis presentation Armstrong
FAULT Analysis presentation ArmstrongFAULT Analysis presentation Armstrong
FAULT Analysis presentation ArmstrongArmstrong Okai Ababio
 
Ipsa mv relay co-ordiantion shaik adam
Ipsa  mv relay  co-ordiantion shaik adamIpsa  mv relay  co-ordiantion shaik adam
Ipsa mv relay co-ordiantion shaik adamShaik Abdullah Adam
 
Generator Transformer Protections.
Generator Transformer  Protections.Generator Transformer  Protections.
Generator Transformer Protections.Nischal Popat
 
POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION moiz89
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsPower System Operation
 
Generator protection calculations settings
Generator protection calculations settingsGenerator protection calculations settings
Generator protection calculations settingsmichaeljmack
 
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?Power System Operation
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersPractical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersSARAVANAN A
 
Power Transformer Protection
Power Transformer ProtectionPower Transformer Protection
Power Transformer ProtectionAng Sovann
 

What's hot (20)

Bus Bar protection
Bus Bar protectionBus Bar protection
Bus Bar protection
 
Relay Setting Calculation For REF615/ REJ601
Relay Setting Calculation For REF615/ REJ601Relay Setting Calculation For REF615/ REJ601
Relay Setting Calculation For REF615/ REJ601
 
protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]protection of transmission lines[distance relay protection scheme]
protection of transmission lines[distance relay protection scheme]
 
Power Transformer Protection
Power Transformer ProtectionPower Transformer Protection
Power Transformer Protection
 
Tutorial on Distance and Over Current Protection
Tutorial on Distance and Over  Current ProtectionTutorial on Distance and Over  Current Protection
Tutorial on Distance and Over Current Protection
 
Protection & switchgear
Protection & switchgear  Protection & switchgear
Protection & switchgear
 
Transformer overcurrent
Transformer overcurrentTransformer overcurrent
Transformer overcurrent
 
Short Circuit, Protective Device Coordination
Short Circuit, Protective Device CoordinationShort Circuit, Protective Device Coordination
Short Circuit, Protective Device Coordination
 
FAULT Analysis presentation Armstrong
FAULT Analysis presentation ArmstrongFAULT Analysis presentation Armstrong
FAULT Analysis presentation Armstrong
 
Ipsa mv relay co-ordiantion shaik adam
Ipsa  mv relay  co-ordiantion shaik adamIpsa  mv relay  co-ordiantion shaik adam
Ipsa mv relay co-ordiantion shaik adam
 
testing formats
testing formatstesting formats
testing formats
 
Generator Transformer Protections.
Generator Transformer  Protections.Generator Transformer  Protections.
Generator Transformer Protections.
 
POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION POWER SYSTEM PROTECTION
POWER SYSTEM PROTECTION
 
Generator Protection Relay Setting Calculations
Generator Protection Relay Setting CalculationsGenerator Protection Relay Setting Calculations
Generator Protection Relay Setting Calculations
 
Generator protection calculations settings
Generator protection calculations settingsGenerator protection calculations settings
Generator protection calculations settings
 
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
Short Circuit Calculation Symmetrical & Asymmetrical Fault Currents ?
 
Practical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineersPractical handbook-for-relay-protection-engineers
Practical handbook-for-relay-protection-engineers
 
Transformers Protection
Transformers ProtectionTransformers Protection
Transformers Protection
 
Overcurrent coordination
Overcurrent coordinationOvercurrent coordination
Overcurrent coordination
 
Power Transformer Protection
Power Transformer ProtectionPower Transformer Protection
Power Transformer Protection
 

Viewers also liked

Transformer oil dehydration importance & process
Transformer oil dehydration importance & processTransformer oil dehydration importance & process
Transformer oil dehydration importance & processTransfo Tech. Engineering
 
Transformer oil analysis
Transformer oil analysisTransformer oil analysis
Transformer oil analysiscomayl
 
Feasibility study bfp
Feasibility study   bfpFeasibility study   bfp
Feasibility study bfpMolla Morshad
 
تعليم الاسيانيه بدون معلم المستوي المتوسط
تعليم الاسيانيه بدون معلم المستوي المتوسطتعليم الاسيانيه بدون معلم المستوي المتوسط
تعليم الاسيانيه بدون معلم المستوي المتوسطH. Kheir
 
Esp rectifier transformer
Esp rectifier transformerEsp rectifier transformer
Esp rectifier transformerMolla Morshad
 
Motor Testing Results
Motor Testing ResultsMotor Testing Results
Motor Testing Resultsguestb344d18
 
Motor testing platform 1
Motor testing platform 1Motor testing platform 1
Motor testing platform 1Matt Kelly
 
Comprehensive Motor Testing Technique
Comprehensive Motor Testing TechniqueComprehensive Motor Testing Technique
Comprehensive Motor Testing TechniqueAvinash Sista
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGATRANSEQUIPOS S.A.
 
Indoor & outdoor substations, an overview
Indoor & outdoor substations, an overviewIndoor & outdoor substations, an overview
Indoor & outdoor substations, an overviewH. Kheir
 
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...Living Online
 
A step-by-step approach to prepare fault studies of electrical power systems
A step-by-step approach to prepare fault studies of electrical power systemsA step-by-step approach to prepare fault studies of electrical power systems
A step-by-step approach to prepare fault studies of electrical power systemsH. Kheir
 
Why dehydration of transformer oil is important?
Why dehydration of transformer oil is important?Why dehydration of transformer oil is important?
Why dehydration of transformer oil is important?Transfo Tech. Engineering
 
Dissolve gas anylysis measurement and interpretation technique
Dissolve gas anylysis measurement and interpretation techniqueDissolve gas anylysis measurement and interpretation technique
Dissolve gas anylysis measurement and interpretation techniqueArun Ramaiah
 

Viewers also liked (20)

Resource
ResourceResource
Resource
 
Transformer oil dehydration importance & process
Transformer oil dehydration importance & processTransformer oil dehydration importance & process
Transformer oil dehydration importance & process
 
Transformer oil analysis
Transformer oil analysisTransformer oil analysis
Transformer oil analysis
 
Feasibility study bfp
Feasibility study   bfpFeasibility study   bfp
Feasibility study bfp
 
تعليم الاسيانيه بدون معلم المستوي المتوسط
تعليم الاسيانيه بدون معلم المستوي المتوسطتعليم الاسيانيه بدون معلم المستوي المتوسط
تعليم الاسيانيه بدون معلم المستوي المتوسط
 
Esp rectifier transformer
Esp rectifier transformerEsp rectifier transformer
Esp rectifier transformer
 
Motor Testing Results
Motor Testing ResultsMotor Testing Results
Motor Testing Results
 
Motor testing platform 1
Motor testing platform 1Motor testing platform 1
Motor testing platform 1
 
Comprehensive Motor Testing Technique
Comprehensive Motor Testing TechniqueComprehensive Motor Testing Technique
Comprehensive Motor Testing Technique
 
Practicing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGAPracticing DGA - Diagnóstico DGA
Practicing DGA - Diagnóstico DGA
 
Reactors
ReactorsReactors
Reactors
 
Indoor & outdoor substations, an overview
Indoor & outdoor substations, an overviewIndoor & outdoor substations, an overview
Indoor & outdoor substations, an overview
 
Motor selection
Motor selectionMotor selection
Motor selection
 
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
Practical Medium and High voltage Testing of Electrical Equipment for Enginee...
 
Condition monitoring part 2
Condition monitoring part 2Condition monitoring part 2
Condition monitoring part 2
 
ECNG 6503 #1
ECNG 6503 #1 ECNG 6503 #1
ECNG 6503 #1
 
A step-by-step approach to prepare fault studies of electrical power systems
A step-by-step approach to prepare fault studies of electrical power systemsA step-by-step approach to prepare fault studies of electrical power systems
A step-by-step approach to prepare fault studies of electrical power systems
 
Why dehydration of transformer oil is important?
Why dehydration of transformer oil is important?Why dehydration of transformer oil is important?
Why dehydration of transformer oil is important?
 
Transformer oil
Transformer oilTransformer oil
Transformer oil
 
Dissolve gas anylysis measurement and interpretation technique
Dissolve gas anylysis measurement and interpretation techniqueDissolve gas anylysis measurement and interpretation technique
Dissolve gas anylysis measurement and interpretation technique
 

Similar to Motor & generator protection example settings

SPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKSPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARKSPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
EXCITATION SYSTEM.ppt
EXCITATION SYSTEM.pptEXCITATION SYSTEM.ppt
EXCITATION SYSTEM.pptvishal laddha
 
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKSPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKSPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKTsuyoshi Horigome
 
Ls catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eLs catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eDien Ha The
 
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vnLs catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vnDien Ha The
 
Ls catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eLs catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eDien Ha The
 
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARKTsuyoshi Horigome
 
Earth Leakage Relay | Motor Protection Relay - GIC India
Earth Leakage Relay | Motor Protection Relay - GIC IndiaEarth Leakage Relay | Motor Protection Relay - GIC India
Earth Leakage Relay | Motor Protection Relay - GIC IndiaPrasadPurohit1988
 
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKTsuyoshi Horigome
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relaydavid roy
 
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARKTsuyoshi Horigome
 
NF Corp Programmable AC/DC Power Source ec750 sa_1000sa
NF Corp Programmable AC/DC Power Source  ec750 sa_1000saNF Corp Programmable AC/DC Power Source  ec750 sa_1000sa
NF Corp Programmable AC/DC Power Source ec750 sa_1000saNIHON DENKEI SINGAPORE
 
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARKSPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARKTsuyoshi Horigome
 

Similar to Motor & generator protection example settings (20)

SPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARKSPICE MODEL of RF-270RH-1.5V in SPICE PARK
SPICE MODEL of RF-270RH-1.5V in SPICE PARK
 
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARKSPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
SPICE MODEL of RURD460S , TC=150degree (Standard Model) in SPICE PARK
 
EXCITATION SYSTEM.ppt
EXCITATION SYSTEM.pptEXCITATION SYSTEM.ppt
EXCITATION SYSTEM.ppt
 
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKSPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
 
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARKSPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Standard Model) in SPICE PARK
 
Ls catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eLs catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-e
 
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vnLs catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
Ls catalog thiet bi tu dong dpr 1000-e_dienhathe.vn
 
Ls catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-eLs catalog thiet bi tu dong dpr 1000-e
Ls catalog thiet bi tu dong dpr 1000-e
 
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC4MT (Professional Model) in SPICE PARK
 
Earth Leakage Relay | Motor Protection Relay - GIC India
Earth Leakage Relay | Motor Protection Relay - GIC IndiaEarth Leakage Relay | Motor Protection Relay - GIC India
Earth Leakage Relay | Motor Protection Relay - GIC India
 
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
 
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARKSPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
SPICE MODEL of S30SC4MT (Professional Model) in SPICE PARK
 
Mean well ad155
Mean well   ad155Mean well   ad155
Mean well ad155
 
Line Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relayLine Differential - Test report for Alstom make Micom P546 relay
Line Differential - Test report for Alstom make Micom P546 relay
 
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARKSPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
SPICE MODEL of RURG3060 , TC=80degree (Standard Model) in SPICE PARK
 
NF Corp Programmable AC/DC Power Source ec750 sa_1000sa
NF Corp Programmable AC/DC Power Source  ec750 sa_1000saNF Corp Programmable AC/DC Power Source  ec750 sa_1000sa
NF Corp Programmable AC/DC Power Source ec750 sa_1000sa
 
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
 
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARKSPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
SPICE MODEL of S60SC6MT (Professional Model) in SPICE PARK
 
Invertronic 110V englisch
Invertronic 110V englischInvertronic 110V englisch
Invertronic 110V englisch
 
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARKSPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
SPICE MODEL of 20DL2C41A (Standard Model) in SPICE PARK
 

More from H. Kheir

Motor protection
Motor protectionMotor protection
Motor protectionH. Kheir
 
تعليم الاسيانيه بدون معلم الاساسيات
تعليم الاسيانيه بدون معلم الاساسياتتعليم الاسيانيه بدون معلم الاساسيات
تعليم الاسيانيه بدون معلم الاساسياتH. Kheir
 
تعليم الاسيانيه بدون معلم المستوي: المبادىء
تعليم الاسيانيه بدون معلم المستوي: المبادىء  تعليم الاسيانيه بدون معلم المستوي: المبادىء
تعليم الاسيانيه بدون معلم المستوي: المبادىء H. Kheir
 
تعليم الايطاليه بدون معلم المستوى المتوسط
تعليم الايطاليه بدون معلم  المستوى المتوسطتعليم الايطاليه بدون معلم  المستوى المتوسط
تعليم الايطاليه بدون معلم المستوى المتوسطH. Kheir
 
تعليم الانجليزية بدون معلم المستوي المتوسط
تعليم الانجليزية بدون معلم المستوي المتوسطتعليم الانجليزية بدون معلم المستوي المتوسط
تعليم الانجليزية بدون معلم المستوي المتوسطH. Kheir
 
تعليم الإنجليزية بدون معلم الاساسيات
تعليم الإنجليزية بدون معلم الاساسياتتعليم الإنجليزية بدون معلم الاساسيات
تعليم الإنجليزية بدون معلم الاساسياتH. Kheir
 
تعليم الإنجليزية بدون معلم المستوي: المبادىء
تعليم الإنجليزية بدون معلم المستوي: المبادىءتعليم الإنجليزية بدون معلم المستوي: المبادىء
تعليم الإنجليزية بدون معلم المستوي: المبادىءH. Kheir
 
تعليم الفرنسية بدون معلم
تعليم الفرنسية بدون معلم  تعليم الفرنسية بدون معلم
تعليم الفرنسية بدون معلم H. Kheir
 
Learn french language
Learn french languageLearn french language
Learn french languageH. Kheir
 
Learn italian language
Learn italian languageLearn italian language
Learn italian languageH. Kheir
 
Protection and control, part 1
Protection and control, part 1Protection and control, part 1
Protection and control, part 1H. Kheir
 
Switchyards (outdoor substations), part 1
Switchyards (outdoor substations), part 1Switchyards (outdoor substations), part 1
Switchyards (outdoor substations), part 1H. Kheir
 
Computer Programming For Power Systems Analysts.
Computer Programming For Power Systems Analysts.Computer Programming For Power Systems Analysts.
Computer Programming For Power Systems Analysts.H. Kheir
 
How-to use off-the-shelf software packages to perform power systems analysis
How-to use off-the-shelf software packages to perform power systems analysisHow-to use off-the-shelf software packages to perform power systems analysis
How-to use off-the-shelf software packages to perform power systems analysisH. Kheir
 
Learning spanish language
Learning spanish languageLearning spanish language
Learning spanish languageH. Kheir
 
Linux tips
Linux tipsLinux tips
Linux tipsH. Kheir
 
Transformers protection, an introduction
Transformers protection, an introductionTransformers protection, an introduction
Transformers protection, an introductionH. Kheir
 

More from H. Kheir (17)

Motor protection
Motor protectionMotor protection
Motor protection
 
تعليم الاسيانيه بدون معلم الاساسيات
تعليم الاسيانيه بدون معلم الاساسياتتعليم الاسيانيه بدون معلم الاساسيات
تعليم الاسيانيه بدون معلم الاساسيات
 
تعليم الاسيانيه بدون معلم المستوي: المبادىء
تعليم الاسيانيه بدون معلم المستوي: المبادىء  تعليم الاسيانيه بدون معلم المستوي: المبادىء
تعليم الاسيانيه بدون معلم المستوي: المبادىء
 
تعليم الايطاليه بدون معلم المستوى المتوسط
تعليم الايطاليه بدون معلم  المستوى المتوسطتعليم الايطاليه بدون معلم  المستوى المتوسط
تعليم الايطاليه بدون معلم المستوى المتوسط
 
تعليم الانجليزية بدون معلم المستوي المتوسط
تعليم الانجليزية بدون معلم المستوي المتوسطتعليم الانجليزية بدون معلم المستوي المتوسط
تعليم الانجليزية بدون معلم المستوي المتوسط
 
تعليم الإنجليزية بدون معلم الاساسيات
تعليم الإنجليزية بدون معلم الاساسياتتعليم الإنجليزية بدون معلم الاساسيات
تعليم الإنجليزية بدون معلم الاساسيات
 
تعليم الإنجليزية بدون معلم المستوي: المبادىء
تعليم الإنجليزية بدون معلم المستوي: المبادىءتعليم الإنجليزية بدون معلم المستوي: المبادىء
تعليم الإنجليزية بدون معلم المستوي: المبادىء
 
تعليم الفرنسية بدون معلم
تعليم الفرنسية بدون معلم  تعليم الفرنسية بدون معلم
تعليم الفرنسية بدون معلم
 
Learn french language
Learn french languageLearn french language
Learn french language
 
Learn italian language
Learn italian languageLearn italian language
Learn italian language
 
Protection and control, part 1
Protection and control, part 1Protection and control, part 1
Protection and control, part 1
 
Switchyards (outdoor substations), part 1
Switchyards (outdoor substations), part 1Switchyards (outdoor substations), part 1
Switchyards (outdoor substations), part 1
 
Computer Programming For Power Systems Analysts.
Computer Programming For Power Systems Analysts.Computer Programming For Power Systems Analysts.
Computer Programming For Power Systems Analysts.
 
How-to use off-the-shelf software packages to perform power systems analysis
How-to use off-the-shelf software packages to perform power systems analysisHow-to use off-the-shelf software packages to perform power systems analysis
How-to use off-the-shelf software packages to perform power systems analysis
 
Learning spanish language
Learning spanish languageLearning spanish language
Learning spanish language
 
Linux tips
Linux tipsLinux tips
Linux tips
 
Transformers protection, an introduction
Transformers protection, an introductionTransformers protection, an introduction
Transformers protection, an introduction
 

Recently uploaded

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Shubhangi Sonawane
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 

Motor & generator protection example settings

  • 1. Motor protection example Assume you have a motor rated 500 HP, .95 power factor & 90 % efficiency energized from a 4.16 Kv source, using a microprocessor motor protection relay, provide the typical settings. The full load current can be taken from the motor nameplate as well as the service factor. The motor full load current can be calculated from the following: I = 500 (.746)/1.732 (4.16)(.85)(.9) =60 amps Motor and Line Data Functions Function Description Adjustment / Display Range Setting Increments Setting Motor Nameplate FLA 1 – 2000A, adjustable between 50-100% of Max Amp Rating. FLA must be programmed Upper limit of range automatically adjusts 1 60 for relay to function downward as Service factor is increased. Motor Nameplate 1.00 - 1.30 SF .05 1 Overload Class During Start NEMA / UL Class 5 – 20 5 Class 20 Overload Class During Run NEMA / UL Class 5 – 30 5 Class 10 Overload Reset 0 = Manual,1 = Auto,2 = Disabled Overload 1 1 kV Voltage Input (nominal line, Medium Voltage) .60 – 15kV .01 4.16 Line Frequency 50 or 60 Hz 60 Acceleration Time 0-300 seconds [0=Disabled] 1 30 Current Imbalance Trip % 0.1 - 30% of FLA [0=Disabled] 1(%) 15 Current Imbalance Trip Delay 1 - 20 seconds 1 (Second) 5 Over Current Trip % 0,.50 – 300% of FLA [0=Disabled] 1 (%) 200 Over Current Trip Delay 1 - 20 seconds 1 8 Under Current % 0, 10 – 90% of FLA [0=Disabled] 1 (%) 35 Under Current Trip Delay 1 - 60 seconds 1 15 Stall Detection Trip Level 0.100 – 600% of FLA [0=Disabled] 5 (%) 600 Stall Detection Trip Delay 1 - 10 seconds 1 4 Peak Current Trip % 0.800 – 1400% [0=Disabled] 10(%) 1000 (%) Peak Current Trip Delay 0..01 - .5 seconds .01 .05 13/11/10 1
  • 2. Ground Fault Current Trip Value 0.5 – 90% of CT Value [0=Disabled] 1 (%) 50 Ground Fault Current Trip Delay 1 – 60 seconds 1 5 Voltage Protection Settings Voltage Imbalance Trip % 0.1 – 30% [0=Disabled] 1 (%) 20 Voltage Imbalance Trip Delay 1 – 20 seconds 1 10 Over Voltage Trip % 0.1 – 10% [0=Disabled] 1 (%) 5 Over Voltage Trip Delay 1 – 20 seconds 1 10 Under Voltage Trip on Start % 0.1 – 20% [0=Disabled] 1 (%) 20 UV Trip on Start Delay 1 – 180 seconds 1 20 Under Voltage Trip on Run % 0.1 – 20% [0=Disabled] 1 (%) 20 UV Trip Delay during Run 1 – 20 seconds 1 10 Phase and Frequency Protection Settings Phase Rotation Trip 0.1 or 2 0=Disabled, 1=ABC, 2=ACB] 1 2 Phase Rotation Trip Delay 1 – 20 seconds 1 2 Phase Loss Trip and Delay 0.1-20 Seconds [0= Disabled] 1 5 Over Frequency Trip Limit 0.1 – 10Hz [0=Disabled] 1 1 Over Frequency Trip Delay 1 – 20 seconds 1 5 Under Frequency Trip Limit 0.1 – 10Hz [0=Disabled] 1 1 Under Frequency Trip Delay 1 – 20 seconds 1 5 Motor KW Trip 0-2.0 = Disabled,1 = Over KW Trip,2 = Under KW Trip 1 0 Motor KW Trip Point 20 – 100% of full load KW (disabled) 1% 20(%) Motor KW Trip Delay Time 1 – 999 minutes (disabled) 1 1 Power Factor Trip Range 0.1 – 3 [0=Disabled, 1=lag, 2=lead, 3= lead/lag] 1 2 Power Factor Trip Point .01 – 1 .01 .10 Power Factor Trip Delay Time 1 – 20 seconds 1 10 13/11/10 2
  • 3. Power Factor Current Direction 0 - 1, [0=Normal, 1= Reversed] 1 1 Lockout / Inhibit Settings Coast Down (Back Spin) Lockout Timer 0 = Disabled, or 1 - 60 minutes 1 minute 1 Maximum Starts per Hour 0 = Disabled, or 1 – 10 starts 1 5 Minimum Time Between Starts Inhibit 0 = Disabled, or 1 - 60 minutes 1 minute 12 Note: NEMA Class trip curves are based on a common tripping point of 600% of motor Full Load Amps (FLA). Curves vary by the amount of time before the unit trips. As an example, a Class 20 curve will trip in 20 seconds at 600% of FLA. Another example, Class 10 will trip in 10 seconds at 600% of FLA. PT Value:1-200 (: 1) 1:1 = direct voltage input, 2-200: 1 = kV Voltage Input 1 40 (4160/104) V CT Value: 5-2000 (:5) 5 60 Number of Turns through CT: 1 – 5 (in 1 increments) 1 Generator protection example Ratings of generators: Rated output (eg. 1,120 MVA), Maximum output (1230 MVA), Rated rotation speed (300 rpm), Power factor (0.9), Number of poles (2), Terminal voltage (27), Rated Armature current (23949), Maximum Armature current (26302), Short-circuit ratio (> or = 0.5), Hydrogen gas pressure (0.52 Mpa G), Insulation type (F), Temperature rise class (B), Cooling method (Stator: direct water), Efficiency (99 %), Hydrogen consumption (12 m3/day). Functional Specifications of generator protective relay NOMINAL SYSTEM FREQUENCY SETTING RANGE.............................................50 or 60 Hz RATED PRIMARY INPUT CURRENT OF PHASE AND NEUTRAL CTS .........1 - 9999A in 1A steps RATED PRIMARY SYSTEM PHASE-TO-PHASE VOLTAGE OF PTS......2 – 655 kV in .0.1 kV steps RATED PT SECONDARY LINE-TO-LINE VOLTAGE ...............................50 – 125 V in 1 V steps LOW SET OVERCURRENT ELEMENT Characteristic: .......................................................................................Definite time or inverse Pickup: ...........................................................................................1.0 – 2.5 pu of rated generator current Time delay: ...........................................................................................0.05 – 30.0 seconds (at 5pu Igen) HIGH SET OVERCURRENT ELEMENT Characteristic: .......................................................................................Definite time Pickup: ............................................................................................1.0 – 9.9pu of rated generator current Time delay: ...........................................................................................0.05 – 3.0 seconds (at 5pu Igen) CURRENT UNBALANCE ELEMENT Maximum negative sequence current rating;.................................0.05 – 0.5pu of rated generator current 13/11/10 3
  • 4. Time multiplier of I2 t curve ...................................................................5 – 80 seconds Cooling time to rated.............................................................................10 – 1800 seconds Alarm level pickup.................................................................................0.03 – 0.5pu generator current Alarm level time delay...........................................................................1 – 100 seconds REVERSE POWER ELEMENT PICKUP ......................................0.02 to 0.2pu rated generator current Time delay ...........................................................................................1 – 100 seconds LOSS OF FIELD ELEMENT Mho circle size ..........................................................................50 – 300% of rated generator impedance Mho offset .................................................................................5 – 50% of rated generator impedance Time delay ............................................................................................0.2 – 60 seconds Integration time .....................................................................................0 – 10 seconds VOLTAGE ELEMENTS Characteristic ........................................................................................Over, Under or Over+Under Pick-up level.......................................................................................1 – 50% change from rated voltage Time delay ............................................................................................0.1 – 60.0 seconds FREQUENCY ELEMENTS Characteristic ........................................................................................Over, Under or Over+Under Pick-up level..........................................................................................0.05 – 9.99Hz from nominal Time delay ............................................................................................0.1 – 60.0 seconds THERMAL IMAGE ELEMENT Trip level ...............................................................................................Fixed at 110% rated Thermal time constant of alternator ......................................................1 – 400 minutes Pre-alarm level......................................................................................50 – 110% of rated UNDERPOWER ELEMENT PICKUP LEVEL ..........................................................0.05 – 1.00 of rated power output Time delay ............................................................................................0.1 – 60.0 seconds UNDERIMPEDANCE ELEMENTS Pickup level...........................................................................................01 – 1.0 pu rated impedance Time delay ............................................................................................0.02 – 9.99 seconds FIRST LEVEL OVEREXCITATION ELEMENT Characteristic ........................................................................................Inverse Pickup level...........................................................................................1.0 - 2.0 pu Time multiplier.......................................................................................0.5 – 5.0 SECOND LEVEL OVEREXCITATION ELEMENT Characteristic ........................................................................................Definite time Pickup level...........................................................................................1.0 - 2.0 pu Time multiplier.......................................................................................0.1 – 60.0 seconds 95% STATOR GROUND FAULT ELEMENTS Pickup level.....................................................................................5 – 99% Rated zero sequence voltage Time delay ............................................................................................0.05 – 99.0 seconds 100% STATOR GROUND FAULT ELEMENT 3rd Harmonic Pickup level ..............................................................1 – 30% Rated zero sequence voltage Time delay ............................................................................................0.05 – 99.0 seconds Typical Settings IEEE No. Function Typical Settings and Remarks 24 Overexcitation PU: 1.1*VNOM/60; TD: 0.3; reset TD: 5 alarm P.U.: 1.18*VNOM/60 13/11/10 4
  • 5. alarm delay: 2.5s 25 Synchronism Check Max Slip: 6RPM; Max phase angle error: 10° Max VMAG error: 2.5% VNOM 32 Reverse Power (one stage) PU: turbine 1% of rated; 15 s . PU: Reciprocating engine: 10% of rated; 5 s 32-1 Reverse Power (non-electrical, trip supervision) PU: same as 32; 3 s 40 Loss-of-field (VAR Flow approach) Level 1 PU: 60% VA rating; Delay: 0.2s; Level 2 PU: 100% VA rating: 0.1s 46 Negative Sequence overcurrent I2 PU: 10% Irated; K=10 49 Stator Temperature (RTD) Lower: 95°C; upper: 105°C 50/87 Differential via flux summation Cts PU:10% INOM or less if 1A relay may be used 50/27 IE Inadvertent Energization Overcurrent with 27, 81 50: 0.5A (10% INOM) 27: 85% Supervision VNOM (81: Similar) 51N Stator Ground Over- current (Low, Med Z Gnd, PU: 10% INOM; curve: EI; TD: 4. Inst: Phase CT Residual) none. Higher PU required to coordinate with load. No higher than 25% INOM. 50/51N Stator Ground Over- current (Low, Med Z Gnd, P.U.: 10% INOM; Curve EI**, TD4; Inst Neutral CT or Flux Summation CT) 100% INOM. Higher PU if required to coordinate with load. No higher than 25% INOM. 51GN, 51N Stator Ground Over- current (High Z Gnd) PU: 10% IFAULT at HV Term.; Curve: VI***; TD:4. 51VC Voltage Controlled overcurrent PU: 50% INOM; Curve: VI***; TD: 4. Control voltage: 80%VNOM. 51VR Voltage Restrained overcurrent PU: 175% INOM; Curve: VI***; TD: 4. Zero Restraint Voltage: 100% VNOM L-L 59N, 27-3N, 59P Ground Overvoltage 59N: 5% VNEU during HV terminal fault; 27-3N: 25% V3rd during normal operation; TD: 10s 59P: 80% VNOM 67IE Directional O/C for Inadvertent Energization PU: 75-100% INOM GEN; Definite Time (0.1- 0.25 sec.) ; Inst: 200% INOM GEN 13/11/10 5
  • 6. 81 Over/under frequency For Generator protection: 57, 62Hz, 0.5s; For Island detection condition: 59, 61Hz, 0.1s 87G Generator Phase Differential Fixed: 0.4A; or Variable: Min P.U.: 0.1 * Tap; Tap: INOM; Slope: 15% 87N Generator Ground Variable: Min P.U.: 0.1 times tap; Slope 15%; Differential Time delay: 0.1s; choose low tap 67N: current polarization; time: 0.25A; Curve: VI***; TD: 2; Instantaneous: disconnect 87UD 13 Unit Differential Min PU: 0.35*Tap; Tap: INOM; Slope 30% **: EI: extremely inverse. ***: VI: very inverse. 13/11/10 6