SlideShare a Scribd company logo
1 of 41
Hydrogen as a Fuel Low Carbon:  Innovation, Opportunities and Training  Presented by: Dirk Kok
Agenda An Urgent Case History of Hydrogen What is a Fuel Cell? Different fuel cells Future of Fuel Cells
An Urgent Case
An Urgent Case
An Urgent Case BBC Breakfast 07-012-2009 The Climate Conference in Copenhagen, Denmark Higher targets are needed
King report 60% emissions reduction Evolutionary improvements guaranteed with current development 80% Growth in Ultra Low Carbon Vehicles 90-100%  Complete change in paradigm Public Transport most efficient in +10M
History 1839 – Sir William Robert Grove “Gas Voltaic Battery” - 1st Fuel Cell   1937 – Baur and Preis 1st Solid Oxide Fuel Cell 1940-45 German Submarines FC made SUB “trackless” 1955 – Francis Thomas Bacon 5kW stationary Alkaline Fuel Cell
History 1960’s – Grubb and Niedrach (GE) PEM Fuel Cell invented 1967 – GM Electrovan 1 driver + 1 passenger  1969 – NASA First Alkaline Fuel Cell  	on the moon.
History Today:  Major OEMs have demonstration or lease versions ICE and Fuel Cell vehicles Price per kW is coming down Hydrogen Supply Funding available (TSB)
Health and Safety After 1 minute After 3 seconds ,[object Object]
It is very flammable
Hydrogen burns with a flame that is hard to see
It is lighter than air (unlike petrol which ‘pools’),[object Object],[object Object]
What is a Fuel Cell A fuel cell is a device that converts energy from one form into another It converts the ‘Chemical Energy’ in a fuel into Electrical Energy and Heat. It does this without burning the fuel. This is very different to the type of engine in a car!
What is a Fuel Cell 2H24H+ + 4e- O2+ 4H+ + 4e-           2H2O Electrons Electrolyte Reactionthat produces electrons (-) Reactionthat consumes electrons (+) Fuel  Oxidant (water)
The science of a fuel cell Oxygen Side O2 O2 O2 O2 O O H2O Electrolyte  H+ H+ e- e- H H Hydrogen Side H2 H2 H2 H2
Cell Construction Hydrogen Oxygen in Cooling area Water in Water in Hydrogen Oxygen Out Silicon separation
Cell Construction Cooling area Hydrogen in Hydrogen out Silicon separation
Inside the cell
Inside the cell
Different fuel cell technologies Low temperature Fuel Cells: Proton Exchange Membrane (PEM) – highest power density Alkaline – oldest commercial technology (used by NASA) Direct Methanol – similar to PEM but able to use methanol directly Phosphoric Acid – commercially available technology
Different fuel cell technologies High temperature fuel cells:  Molten Carbonate – requires molten electrolyte Solid Oxide – high temperature oxides allow ion transport
Main Types of Fuel Cell
Differences
FCS 1kW Solid Oxide stack High Temperature – Solid Oxide ,[object Object],anions (O2-) at high temps. 800-1000oC ,[object Object]
Many materials challenges due to high operating temperatures
High efficiency
High grade heat available for CHP
Slow start up times
Most suited to stationary applications,[object Object]
The hot electrolyte (~650oC) is very corrosive
High temps. Allow cheaper catalysts (nickel based) to be used
High efficiency
High grade heat available for CHP
Slow start up times
Most suited to stationary applications,[object Object]
CO easily poisons catalysts
Very thin membranes allow low resistance losses and high power density
Fast start up – well suited to portable powerBallard Nexa 1.2kW system
Advantages of PEMFC No toxic chemicals All three products are useable:  Electricity Water Heat High Efficiency 60%
2.5kW Alkaline system Low Temperature - Alkaline ,[object Object],KOH conducts OH- anions ,[object Object]

More Related Content

What's hot

How fuel cells work
How fuel cells workHow fuel cells work
How fuel cells workKamaraja AS
 
HYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleHYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleShubham Dubey
 
Fuel cell seminar
Fuel cell seminarFuel cell seminar
Fuel cell seminarBipin Gupta
 
Hydrogen as an energy carrier
Hydrogen as an energy carrierHydrogen as an energy carrier
Hydrogen as an energy carrierKushal Gurung
 
Redox flow battery - Power Sector
Redox flow battery - Power SectorRedox flow battery - Power Sector
Redox flow battery - Power SectorIrish Pereira
 
Hydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable FutureHydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable FutureGavin Harper
 
Hydrogen Fuel Cell vehicles.pptx
Hydrogen Fuel Cell vehicles.pptxHydrogen Fuel Cell vehicles.pptx
Hydrogen Fuel Cell vehicles.pptxMaqboolPT
 
Hydrogen as future fuel
Hydrogen as future fuelHydrogen as future fuel
Hydrogen as future fuelHARSH SHAH
 
Hydrogen Fuel Cell Technology
Hydrogen Fuel Cell TechnologyHydrogen Fuel Cell Technology
Hydrogen Fuel Cell TechnologyAbhishek Mittal
 
Hydrogen fuel cell
Hydrogen fuel cellHydrogen fuel cell
Hydrogen fuel cellvipan kumar
 

What's hot (20)

Fuelcell technology
Fuelcell technologyFuelcell technology
Fuelcell technology
 
How fuel cells work
How fuel cells workHow fuel cells work
How fuel cells work
 
HYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleHYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell Vehicle
 
Fuel cell seminar
Fuel cell seminarFuel cell seminar
Fuel cell seminar
 
Hydrogen as an energy carrier
Hydrogen as an energy carrierHydrogen as an energy carrier
Hydrogen as an energy carrier
 
Fuel Cells
Fuel CellsFuel Cells
Fuel Cells
 
Redox flow battery - Power Sector
Redox flow battery - Power SectorRedox flow battery - Power Sector
Redox flow battery - Power Sector
 
Hydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable FutureHydrogen And Fuel Cell Technology For A Sustainable Future
Hydrogen And Fuel Cell Technology For A Sustainable Future
 
hydrogen energy fuel for the future
hydrogen energy fuel for the futurehydrogen energy fuel for the future
hydrogen energy fuel for the future
 
Hydrogen Fuel Cell vehicles.pptx
Hydrogen Fuel Cell vehicles.pptxHydrogen Fuel Cell vehicles.pptx
Hydrogen Fuel Cell vehicles.pptx
 
Hydrogen as future fuel
Hydrogen as future fuelHydrogen as future fuel
Hydrogen as future fuel
 
Nuclear battery-ppt
Nuclear battery-pptNuclear battery-ppt
Nuclear battery-ppt
 
Hydrogen fuel cell
Hydrogen fuel cellHydrogen fuel cell
Hydrogen fuel cell
 
Hydrogen Fuel Cell Technology
Hydrogen Fuel Cell TechnologyHydrogen Fuel Cell Technology
Hydrogen Fuel Cell Technology
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
Hydrogen fuel cell
Hydrogen fuel cellHydrogen fuel cell
Hydrogen fuel cell
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
Green hydrogen
Green hydrogenGreen hydrogen
Green hydrogen
 
Hydrogen fuel cell
Hydrogen fuel cellHydrogen fuel cell
Hydrogen fuel cell
 
Hydrogen fuel
Hydrogen fuelHydrogen fuel
Hydrogen fuel
 

Similar to An Introduction To Hydrogen Fuel Cells

Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalAtiek Rostika
 
Hydrogen fuel an alternative source of energy
Hydrogen fuel  an alternative source of energyHydrogen fuel  an alternative source of energy
Hydrogen fuel an alternative source of energydeepakabhale1995
 
Hydrogen fuel cell by mukul solanki
Hydrogen fuel cell by mukul solankiHydrogen fuel cell by mukul solanki
Hydrogen fuel cell by mukul solankiMukul Solanki
 
Fuel cells by argonne
Fuel cells by argonneFuel cells by argonne
Fuel cells by argonnevikram3026
 
Hydrogen fuel cell seminar
Hydrogen fuel cell seminar Hydrogen fuel cell seminar
Hydrogen fuel cell seminar RiteshYadav134
 
Fuel Cells: The Fuel for Tomorrow
Fuel Cells: The Fuel for TomorrowFuel Cells: The Fuel for Tomorrow
Fuel Cells: The Fuel for TomorrowDebajyoti Bose
 
Hydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.pptHydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.pptRaheelMuhammad5
 
hydrogenfuelcell ppt.pptx
hydrogenfuelcell ppt.pptxhydrogenfuelcell ppt.pptx
hydrogenfuelcell ppt.pptxHassan Yousaf
 
fuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdffuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdfShashankIET
 
PROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATION
PROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATIONPROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATION
PROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATIONMohit Rajput
 
Fuel cells (Energy Production) India
Fuel cells (Energy Production) IndiaFuel cells (Energy Production) India
Fuel cells (Energy Production) IndiaAR. UTKARSH TOMAR
 

Similar to An Introduction To Hydrogen Fuel Cells (20)

Fuel cell
Fuel cellFuel cell
Fuel cell
 
fuelcells++++-.pptx
fuelcells++++-.pptxfuelcells++++-.pptx
fuelcells++++-.pptx
 
Bonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinalBonnett fuelcellpresentationfinal
Bonnett fuelcellpresentationfinal
 
CH 3 Fuel Cell
CH 3 Fuel CellCH 3 Fuel Cell
CH 3 Fuel Cell
 
Hydrogen fuel an alternative source of energy
Hydrogen fuel  an alternative source of energyHydrogen fuel  an alternative source of energy
Hydrogen fuel an alternative source of energy
 
Hydrogen fuel cell by mukul solanki
Hydrogen fuel cell by mukul solankiHydrogen fuel cell by mukul solanki
Hydrogen fuel cell by mukul solanki
 
FUEL CELL TECHNOLOGY.pptx
FUEL CELL TECHNOLOGY.pptxFUEL CELL TECHNOLOGY.pptx
FUEL CELL TECHNOLOGY.pptx
 
Fuel cells by argonne
Fuel cells by argonneFuel cells by argonne
Fuel cells by argonne
 
Fuel cell technology
Fuel cell technologyFuel cell technology
Fuel cell technology
 
Hydrogen fuel cell seminar
Hydrogen fuel cell seminar Hydrogen fuel cell seminar
Hydrogen fuel cell seminar
 
Fuel Cells: The Fuel for Tomorrow
Fuel Cells: The Fuel for TomorrowFuel Cells: The Fuel for Tomorrow
Fuel Cells: The Fuel for Tomorrow
 
Fuel cell
Fuel cell Fuel cell
Fuel cell
 
Hydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.pptHydrogen Fuel Cell Technology by 09-ME-60.ppt
Hydrogen Fuel Cell Technology by 09-ME-60.ppt
 
Fuel cell
Fuel cellFuel cell
Fuel cell
 
hydrogenfuelcell ppt.pptx
hydrogenfuelcell ppt.pptxhydrogenfuelcell ppt.pptx
hydrogenfuelcell ppt.pptx
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
fuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdffuelcells-130923024224-phpapp01 (1).pdf
fuelcells-130923024224-phpapp01 (1).pdf
 
Fuel cells
Fuel cellsFuel cells
Fuel cells
 
PROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATION
PROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATIONPROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATION
PROTON EXCHANGE MEMBRANE FUEL CELL: POWERING AVIATION
 
Fuel cells (Energy Production) India
Fuel cells (Energy Production) IndiaFuel cells (Energy Production) India
Fuel cells (Energy Production) India
 

An Introduction To Hydrogen Fuel Cells

  • 1. Hydrogen as a Fuel Low Carbon: Innovation, Opportunities and Training Presented by: Dirk Kok
  • 2. Agenda An Urgent Case History of Hydrogen What is a Fuel Cell? Different fuel cells Future of Fuel Cells
  • 5. An Urgent Case BBC Breakfast 07-012-2009 The Climate Conference in Copenhagen, Denmark Higher targets are needed
  • 6. King report 60% emissions reduction Evolutionary improvements guaranteed with current development 80% Growth in Ultra Low Carbon Vehicles 90-100% Complete change in paradigm Public Transport most efficient in +10M
  • 7. History 1839 – Sir William Robert Grove “Gas Voltaic Battery” - 1st Fuel Cell 1937 – Baur and Preis 1st Solid Oxide Fuel Cell 1940-45 German Submarines FC made SUB “trackless” 1955 – Francis Thomas Bacon 5kW stationary Alkaline Fuel Cell
  • 8. History 1960’s – Grubb and Niedrach (GE) PEM Fuel Cell invented 1967 – GM Electrovan 1 driver + 1 passenger 1969 – NASA First Alkaline Fuel Cell on the moon.
  • 9. History Today: Major OEMs have demonstration or lease versions ICE and Fuel Cell vehicles Price per kW is coming down Hydrogen Supply Funding available (TSB)
  • 10.
  • 11. It is very flammable
  • 12. Hydrogen burns with a flame that is hard to see
  • 13.
  • 14. What is a Fuel Cell A fuel cell is a device that converts energy from one form into another It converts the ‘Chemical Energy’ in a fuel into Electrical Energy and Heat. It does this without burning the fuel. This is very different to the type of engine in a car!
  • 15. What is a Fuel Cell 2H24H+ + 4e- O2+ 4H+ + 4e- 2H2O Electrons Electrolyte Reactionthat produces electrons (-) Reactionthat consumes electrons (+) Fuel Oxidant (water)
  • 16. The science of a fuel cell Oxygen Side O2 O2 O2 O2 O O H2O Electrolyte H+ H+ e- e- H H Hydrogen Side H2 H2 H2 H2
  • 17. Cell Construction Hydrogen Oxygen in Cooling area Water in Water in Hydrogen Oxygen Out Silicon separation
  • 18. Cell Construction Cooling area Hydrogen in Hydrogen out Silicon separation
  • 21. Different fuel cell technologies Low temperature Fuel Cells: Proton Exchange Membrane (PEM) – highest power density Alkaline – oldest commercial technology (used by NASA) Direct Methanol – similar to PEM but able to use methanol directly Phosphoric Acid – commercially available technology
  • 22. Different fuel cell technologies High temperature fuel cells: Molten Carbonate – requires molten electrolyte Solid Oxide – high temperature oxides allow ion transport
  • 23. Main Types of Fuel Cell
  • 25.
  • 26. Many materials challenges due to high operating temperatures
  • 28. High grade heat available for CHP
  • 30.
  • 31. The hot electrolyte (~650oC) is very corrosive
  • 32. High temps. Allow cheaper catalysts (nickel based) to be used
  • 34. High grade heat available for CHP
  • 36.
  • 37. CO easily poisons catalysts
  • 38. Very thin membranes allow low resistance losses and high power density
  • 39. Fast start up – well suited to portable powerBallard Nexa 1.2kW system
  • 40. Advantages of PEMFC No toxic chemicals All three products are useable: Electricity Water Heat High Efficiency 60%
  • 41.
  • 42. Operates in temp. range 60-100oC
  • 43.
  • 45. Phosphoric acid is a poor conductor at low temperatures, but corrosive at high temperatures
  • 46. Higher operating temperatures result in higher grade heat for co-generation200kW UTC PAFC system
  • 47. Typical Applications Central Heating Power High temp can be used to increase efficiency Fork Lift Trucks 1 off filling point Public transport Filling station for buses Space Electricity, Water, Heat
  • 48. Typical Applications Portable applications Battery chargers Power tools Laptops Personal vehicles Filling Safety training Driving behaviour – driving cycle
  • 49. CPI’s Fuel Cell Installations
  • 50. Future of Fuel Cells FUEL CELL COMMERCIALISATION ‘STARTED IN 2007’ Fuel Cell Shipments to Exceed 5 Million Units by 2013 Source: www.fuelcellstoday.com Portable Fuel Cell Market to Reach $2.3 Billion by 2016 Source: Pike Research at www.greencarcongress.com
  • 51. NAIGT report New Automotive Innovation and Growth Team Recommend: Provide incentives on a well-to-wheel basis The aim is reduction of CO2 and not just introduction of EV Well-to-Wheel reduction = R&D
  • 56. Opportunities Control strategies Hydrogen generation (renewables) Hydrogen storage Transportation Filling station and safety Fuel Cell Component development and improvement
  • 57. Recommended Reading Fuel Cell Systems Explained James Larminie, Andrew Dicks Wiley 2nd edition 2003 PEM Fuel Cells: Theory and Practice Frano Barbir Elsevier Academic Press 2005 Further reading Materials for Fuel Cells Michael Gasik (editor) Woodhead Publishing in Materials 2008 The Economic Dynamics of Fuel Cell Technologies Arman Avadikyan, Patrick Cohendet, Jean-Alain Héraud (editors) Springer 2003
  • 58. Questions Do you want to know more about: Today’s presentation Mentioned projects Or discuss project ideas: adrian.morris@sunderland.ac.uk dirk.kok@sunderland.ac.uk 0191 – 515 3888

Editor's Notes

  1. Good Morning. This is the first part of my presentation on Hydrogen Fuel Cell systems. This morning’s session will focus on a broad overview of the Fuel Cell. 1. What is a fuel cell?2. A bit of History3. I will focus most on the PEMFC. 4. a bit about different fuel cell systems.The afternoon session will delve further into how a fuel cell plant design issues and what kind health and safety items have to be taken into account. As well, as operating procedures and maintenance. For this presentation I have to extend my thanks to our partners in a previous project: Centrum for Process Engineering in Wilton of whom I use some of their training slides.
  2. It is expected that the use of energy and the population growth and the miles travelled as well as number of vehicles nearly all will increase exponentially. So over the next 40 years this is what we can expect (approximation) based on personal transport and drivable age group only.The graph shows the effect of the no reductions in CO2 against the government set targets, based on expected population, miles travelled per person (both are expected to increase exponentially. It also shows how much the trees take out of the air (CO2) and the number in H2 can be varied to show the effects.NAIGT expects that it will take 30 years for a switch to occur – but do we have 30 years?King report:
  3. The graph shows the effect of the no reductions in CO2 against the government set targets, based on expected population, miles travelled per person (both are expected to increase exponentially. It also shows how much the trees take out of the air (CO2) and the number in H2 can be varied to show the effects.So we show how much energy we can take out if we manage the vegetation population, but this is in an extreme case. We need to look for further reductions in CO2 emissions.
  4. This case of urgency was enhanced this morning on the BBC breakfast show, where they stated that during the climate conference higher target were needed to combat climate change.
  5. The current trend of development already guarantees a 60% reductions based on ICE development. A promise of 60% reduction does not add anything. A promise – as made by world leaders – of 80% increased the number of ULCV, but does not really change the ICE influence. To really make an impact it is necessary to aim for 90% emissions change. The reason why this is important is that personal transport will remain the preferred and best form of transport even within cities. It is estimated that public transport is most effective in cities of 10 million plus inhabitants. But most cities are in the region of 0.5 million, where personal transport is fastest mode of transportation.Switching to a hydrogen economy is a possibility to greatly reduce carbon emissions and achieve the paradigm shift necessary and with the right strategy have a profitable economy as well.
  6. Hydrogen has been around for as long as we live and possibly longer. We exist partially of hydrogen considering that 60 percent of our body is water and there are 2 H’s to every 1 O; this means that our body is actually almost 40 percent of hydrogen based on the water content alone. 1960 – People at General Electric invent the PEM Fuel Cell.
  7. 1976 – GM’s Electrovan with limited space and very heavy the van provide a nice test bed but that was about it. 1969 – The reason for NASA to switch from PEM to Alkaline is the higher efficiency.
  8. Today: Major OEMs have demonstration or lease versionsICE and Fuel Cell vehiclesPrice per kW is coming downHydrogen SupplyFunding available (TSB)
  9. What you need to know about hydrogen- it exists all around us it is part of water and thus we have plenty. 1. You can not smell it.2. Like any fuel it can be dangerous. 3. It burns with a flame that is hard to see. 4. It is also lighter than air which means a flame will go upwards.We have seen -previously- what can go wrong with a battery. So now, lets have a look at a hydrogen fire and compare that to a petrol fire. This first picture shows a hydrogen fire on the left and a petrol fire on the right; this is three seconds in.Now we make a jump and let the fire burn for a minute. You can see that the hydrogen flame is almost going out while the petrol fire is really going. As you can see, petrol fires can actually be more dangerous than hydrogen fires.
  10. Hydrogen the good and the bad.Since the Hindenburg disaster and even in todays time, people are thinking about hydrogen as an extremely dangerous gas. But The Hindenburg disaster was an example of bad engineering and clever spin doctors who blamed hydrogen to save the at that moment very delicate political situation between America and Germany. But Hydrogen was not the cause of the fire although it did not help to stop it. During the 60’s NASA and the military had been conducting tests with hydrogen to use hydrogen as a fuel and in fuel cells. This resulted in conclusion that Hydrogen did not require more safety pre-cautions than working with petroleum. So, despite the history, hydrogen was used in the space program and got a little bit of popularity back.
  11. High energy Density, about 3x the amount of petrol. More efficient and clearer.
  12. What is a Fuel Cell? Well, a Fuel Cell is much like a battery. - Like a battery a fuel cell has got a Plus and a Minus side. - Unlike a battery a Fuel Cell does not contain the active chemicals instead you have to feed it. And this has to be done in a save and controllable fashion otherwise big accidents will happen.The active ingredients for the Hydrogen PEM FC are: Hydrogen, Oxygen in the form of air.Other Fuel Cell will be discussing later.
  13. In a schematic this works as follows: A fuel cell consists of a hydrogen side and an oxygen side separated by an electrolyte. An electrolyte allows only positive atoms to pass through. When hydrogen arrives at the barrier it splits into a positive and a negative part and the positive part travels through the electrolyte while the negative parts take the long way around and make the light go on. On the top side, the positive and negative parts combine with the oxygen out of the air to make water, which can be drunk.
  14. The slits are for the oxygen to enter and the larger holes for the gases to travel through.
  15. On the other side of the cell we can find the IN and OUT for the hydrogen. As well as still visible are the lines where the silicon from the cell below was set. This design has various manufacturing advantages: thanks to the silicon the cooling is on a large area on the top and bottom of every cell. Also, the tolerances are increased thus less accurate machining; you can see that if the slits or even the holes were bigger the silicon would still close the area of from every other part. And with the slits hydrogen can be brought to every cell individually. A big problem we found with this design is the effects of sudden pressure changes. Sudden pressure changes can cause the stack to loose its “cool” and the silicon does not close properly.
  16. Inside the cell there is a membrane with catalyst to separate the gases and speed up the reaction as well as an electrode to provide conductance for the electrons. Every Cell produces around 1 volt (depending on the control, design, humidity, age, etc) and the necessary voltage is created by stacking multiple cells.
  17. Inside the cell there is a membrane with catalyst to separate the gases and speed up the reaction as well as an electrode to provide conductance for the electrons. Every Cell produces around 1 volt (depending on the control, design, humidity, age, etc) and the necessary voltage is created by stacking multiple cells.
  18. They all have different characteristics Are suitable for different applications Use different fuels
  19. The advantages of the Proton Exchange Membrane are the combination of non toxic gasses. The usability of all the outputs: Electricity, Water and heat. And the high efficiency of the reaction about double that of an ICE.The disadvantages: high cost of manufacturing, the difficulty in control, the necessary addition of batteries for both the start-up and the temp or longer term storage.
  20. Central heating applications are ideal for the high temperature systems because the excess heat can be used to heat a building and thus increasing efficiency.Forklift trucks and Public transport provide a good market since they can be decide on their own filling sites; i.e. Not necessary to make it accessible to average Joe. Instead provide a trained engineer.
  21. There are potential future issues involved here: I am thinking about using your Fuel Cell powered Laptop on an airplane. For one there is the pressure influences, as well as bringing an fuel on the plane that maybe can be abused. It would greatly create acceptance if it gets to this level, but the repercussions of an terrorist attack or a mid air failure would set the entire economy back various decades.
  22. If we now take step back to the beginning and the urgent case I was arguing. There is a report by the NAIGT team.The NAIGT team is a large group of representatives from across the industry: representing the major stakeholders in the sector.Do not think EV alone! This is were the research and development is.This includes development with the aim to commercially produce Ultra Low Carbon Vehicles.But largely ignores the development of Air vehicles and steam vehicles. Very much aimed at the current established manufacturers.
  23. Proposed development:Micro / mild Hybrids first, followed by full hybrids, to plugin hybrids to Electrically Powered VehiclesImmediate from now:Focus on ICE with a minor change to EVMedium research from around 2020 onwards:Improvements across the boardEV finally getting a footholdLong term from around 2030 onwards:Fuel Cell technologies finally affordableICE getting closer to 70% efficiency (with electric vehicles already >80% efficient)This proposed scenario is not providing the change in paradigm that we need to tackle climate change.
  24. Proposed development:Micro / mild Hybrids first, followed by full hybrids, to plugin hybrids to Electrically Powered VehiclesImmediate from now:Focus on ICE with a minor change to EVMedium research from around 2020 onwards:Improvements across the boardEV finally getting a footholdLong term from around 2030 onwards:Fuel Cell technologies finally affordableICE getting closer to 70% efficiency (with electric vehicles already >80% efficient)This proposed scenario is not providing the change in paradigm that we need to tackle climate change.
  25. Proposed development:Micro / mild Hybrids first, followed by full hybrids, to plugin hybrids to Electrically Powered VehiclesImmediate from now:Focus on ICE with a minor change to EVMedium research from around 2020 onwards:Improvements across the boardEV finally getting a footholdLong term from around 2030 onwards:Fuel Cell technologies finally affordableICE getting closer to 70% efficiency (with electric vehicles already >80% efficient)This proposed scenario is not providing the change in paradigm that we need to tackle climate change.
  26. Proposed development:Micro / mild Hybrids first, followed by full hybrids, to plugin hybrids to Electrically Powered VehiclesImmediate from now:Focus on ICE with a minor change to EVMedium research from around 2020 onwards:Improvements across the boardEV finally getting a footholdLong term from around 2030 onwards:Fuel Cell technologies finally affordableICE getting closer to 70% efficiency (with electric vehicles already >80% efficient)This proposed scenario is not providing the change in paradigm that we need to tackle climate change.
  27. Well, that is it for now. A little break for lunch and after we come back here to for the second part; Healt safety and maintenance.