SlideShare a Scribd company logo
1 of 20
Introduction to Text Mining
Agenda
• Defining Text Mining
• Structured vs. Unstructured Data
• Why Text Mining
• Some Text Mining Ambiguities
• Pre-processing the Text
Text Mining
• The discovery by computer of new, previously unknown information, by
automatically extracting information from a usually large amount of different
unstructured textual resources
Previously unknown means:
• Discovering genuinely new information
• Discovering new knowledge vs. merely finding patterns is like the difference
between a detective following clues to find the criminal vs. analysts looking at
crime statistics to assess overall trends in car theft
Unstructured means:
• Free naturally occurring text
• As opposed HTML, XML….
Text Mining Vs. Data Mining
• Data in Data mining is a series of numbers. Data for text mining is a collection of
documents.
• Data mining methods see data in spreadsheet format. Text mining methods see
data in document format
Structured vs. Unstructured Data
• Structured data
• Loadable into “spreadsheets”
• Arranged into rows and columns
• Each cell filled or could be filled
• Data mining friendly
• Unstructured daa
• Microsoft Word, HTML, PDF documents, PPTs
• Usually converted into XML  semi structured
• Not structured into cells
• Variable record length, notes, free form survey-answers
• Text is relatively sparse, inconsistent and not uniform
• Also images, video, music etc.
Why Text Mining?
• Leveraging text should improve decisions and predictions
• Text mining is gaining momentum
• Sentiment analysis (twitter, facebook)
• Predicting stock market
• Predicting churn
• Customer influence
• Customer service and help desk
• Not to mention Watson
Why Text Mining is Hard?
• Language is ambiguous
• Context is needed to clarify
• The same words can have different meaning (homographs)
• Bear (verb) – to support or carry
• Bear (noun) – a large animal
• Different words can mean the same (synonyms)
• Language is subtle
• Concept / word extraction usually results in huge number of dimensions
• Thousands of new fields
• Each field typically has low information content (sparse)
• Misspellings, abbreviations, spelling variants
• Renders search engines, SQL queries.. ineffective.
Some Text Mining Ambiguities
• Homonomy: same word, different meaning
• Mary walked along the bank of the river
• HarborBank is the richest bank in the citys
• Synonymy: Synonyms, different words, similar or same meaning, can
substitute one word for other without changing meaning
• Miss Nelson became a kind of big sister to Benjamin
• Miss Nelson became a kind of large sister to Benjamin
• Polysemy: same word or form, but different, albeit related meaning
• The bank raised its interest rates yesterday
• The store is next to the newly constructed bank
• The bank appeared first in Italy I the Renaissance
• Hyponymy: Concept hierarchy or subclass
• Animal (noun) – cat, dog
• Injury – broken leg, intusion
Seven Types of Text Mining
• Search and Information Retrieval – storage and retrieval of text documents, including
search engines and keyword search
• Document Clustering – Grouping and categorizing terms, snippets, paragraphs or
documents using clustering methods
• Document Classification – grouping and categorizing snippets, paragraphs or document
using data mining classification methods, based on methods trained on labelled
examples
• Web Mining – Data and Text mining on the internet with specific focus on scaled and
interconnectedness of the web
• Information Extraction – Identification and extraction of relevant facts and relationships
from unstructured text
• Natural Language Processing – Low level language processing and understanding of
tasks (eg. Tagging part of speech)
• Concept extraction – Grouping of words and phrases into semantically similar groups
Text Mining – Some Definitions
• Document – a sequence of words and punctuation, following the grammatical
rules of the language.
• Term – usually a word, but can be a word-pair or phrase
• Corpus – a collection of documents
• Lexicon – set of all unique words in corpus
Pre-processing the Text
• Text Normalization
• Parts of Speech Tagging
• Removal of stop words
Stop words – common words that don’t add meaningful content to the document
• Stemming
• Removing suffices and prefixes leaving the root or stem of the word.
• Term weighting
• POS Tagging
• Tokenization
Text Normalization
• Case
• Make all lower case (if you don’t care about proper nouns, titles, etc)
• Clean up transcription and typing errrors
• do n’t, movei
• Correct misspelled words
• Phonetically
• Use fuzzy matching algorithms such as Soundex, Metaphone or string edit distance
• Dictionaries
• Use POS and context to make good guess
Parts of Speech Tagging
• Useful for recognizing names of people, places, organizations, titles
• English language
• Minimum set includes noun, verb, adjective, adverb, prepositions, congjunctions
POS Tags from Penn Tree Bank
Tag Description Tag Description Tag Description
CC Coordinating Conjunction CD Cardinal Number DT Determiner
EX Existential there FW Foreign Word IN Preposition or subordinating
conjuction
JJ Adjective JJR Adjective, comparative JJS Adjective, superlative
LS List Item Marker MD Modal NN Noun, singular or mass
NNS Noun Plural NNPS Proper Noun Plural PDT Prederminer
POS Possessive Ending PRP Personal pronoun PRPS Possessive pronoun
RB Adverb RBR Adverb, comparative RBS Adverb, superlative
RP Particle SYM Symbol TO To
UH Interjection VB Verb, base form VBD Verb, past tens
Example of Tagging
• In this talk, Mr. Pole discussed how Target was using Predictive Analytics including
descriptions of using potential value models, coupon models, and yes predicting
when a woman is due
• In/IN this/DT talk/NN, Mr./NNP Pole/NNP discussed/VBD how/WRB Target/NNP
was/VBD using/VBG Predictive/NNP Analytics/NNP including/VBG
descriptions/NNS of/IN using/VBG potential/JJ value/NN models/NNS,
coupon/NN models/NNS, and yes predicting/VBG when/WRB a/DT woman/NN is
due/JJ
Tokenization
• Converts streams of characters into words
• Main clues (in English): Whitespace
• No single algorithms ‘works’ always
• Some languages do not have white space (Chinese, Japanese)
Stemming
• Normalizes / unifies variations of the same data
• ‘walking’, ‘walks’, ‘walked’, ‘walked’  walk
• Inflectional stemming
• Remove plurals
• Normalize verb tenses
• Remove other affixes
• Stemming to root
• Reduce word to most basic element
• More aggressive than inflectional
• ‘denormalization’  norm
• ‘Apply’, ‘applications’, ‘reapplied’  apply
Common English Stop Words
• a, an, and, are, as, at, be, but, buy, for, if, in, into, is, it, no, not, of, on, or, such,
that, the, their, then, these, they, this, to, was, will, with
• Stop words are very common and rarely provide useful information for
information extraction and concept extraction
• Removing stop words also reduce dimensionality
Dictionaries and Lexicons
• Highly recommended, can be very time consuming
• Reduces set of key words to focus on
• Words of interest
• Dictionary words
• Increase set of keywords to focus on
• Proper nouns
• Acronyms
• Titles
• Numbers
• Key ways to use dictionary
• Local dictionary (specialized words)
• Stop words and too frequent words
• Stemming – reduce stems to dictionary words
• Synonyms – replace synonyms with root words in the list
• Resolve abbreviations and acronyms
Sentiment Analysis Workflow
Content Retrieval
Content Extraction
Corpus Generation
Corpus Transformation
Corpus Filtering
Sentiment Calculation
WebDataRetrievalCorpusPre
Processing
Sentiment
Analysis
Sentiment Indicators
• 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =
𝑝−𝑛
𝑝+𝑛
• 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑝+𝑛
𝑁
• 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑝
𝑁
• 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑛
𝑁
• 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑝 − 𝑛
𝑁

More Related Content

What's hot

Natural Language Processing
Natural Language ProcessingNatural Language Processing
Natural Language Processing
Mariana Soffer
 

What's hot (20)

Text mining Pre-processing
Text mining Pre-processingText mining Pre-processing
Text mining Pre-processing
 
Web Mining & Text Mining
Web Mining & Text MiningWeb Mining & Text Mining
Web Mining & Text Mining
 
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
What Is Data Science? Data Science Course - Data Science Tutorial For Beginne...
 
Data Mining: an Introduction
Data Mining: an IntroductionData Mining: an Introduction
Data Mining: an Introduction
 
Text mining
Text miningText mining
Text mining
 
Text Mining
Text MiningText Mining
Text Mining
 
Natural Language Processing
Natural Language ProcessingNatural Language Processing
Natural Language Processing
 
Natural Language Processing (NLP) & Text Mining Tutorial Using NLTK | NLP Tra...
Natural Language Processing (NLP) & Text Mining Tutorial Using NLTK | NLP Tra...Natural Language Processing (NLP) & Text Mining Tutorial Using NLTK | NLP Tra...
Natural Language Processing (NLP) & Text Mining Tutorial Using NLTK | NLP Tra...
 
Data analytics
Data analyticsData analytics
Data analytics
 
Nlp
NlpNlp
Nlp
 
Lifecycle of a Data Science Project
Lifecycle of a Data Science ProjectLifecycle of a Data Science Project
Lifecycle of a Data Science Project
 
Deep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word EmbeddingsDeep Learning for Natural Language Processing: Word Embeddings
Deep Learning for Natural Language Processing: Word Embeddings
 
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
Data Science For Beginners | Who Is A Data Scientist? | Data Science Tutorial...
 
Analyzing Text Preprocessing and Feature Selection Methods for Sentiment Anal...
Analyzing Text Preprocessing and Feature Selection Methods for Sentiment Anal...Analyzing Text Preprocessing and Feature Selection Methods for Sentiment Anal...
Analyzing Text Preprocessing and Feature Selection Methods for Sentiment Anal...
 
Data Mining: Classification and analysis
Data Mining: Classification and analysisData Mining: Classification and analysis
Data Mining: Classification and analysis
 
Data preprocessing using Machine Learning
Data  preprocessing using Machine Learning Data  preprocessing using Machine Learning
Data preprocessing using Machine Learning
 
Machine Learning In Python | Python Machine Learning Tutorial | Deep Learning...
Machine Learning In Python | Python Machine Learning Tutorial | Deep Learning...Machine Learning In Python | Python Machine Learning Tutorial | Deep Learning...
Machine Learning In Python | Python Machine Learning Tutorial | Deep Learning...
 
NLP
NLPNLP
NLP
 
Machine Learning Deep Learning AI and Data Science
Machine Learning Deep Learning AI and Data Science Machine Learning Deep Learning AI and Data Science
Machine Learning Deep Learning AI and Data Science
 
Data quality and data profiling
Data quality and data profilingData quality and data profiling
Data quality and data profiling
 

Viewers also liked

Introduction to text mining
Introduction to text miningIntroduction to text mining
Introduction to text mining
Lars Juhl Jensen
 
Data mining slides
Data mining slidesData mining slides
Data mining slides
smj
 
Text mining, By Hadi Mohammadzadeh
Text mining, By Hadi MohammadzadehText mining, By Hadi Mohammadzadeh
Text mining, By Hadi Mohammadzadeh
Hadi Mohammadzadeh
 

Viewers also liked (20)

Textmining Introduction
Textmining IntroductionTextmining Introduction
Textmining Introduction
 
Big Data & Text Mining
Big Data & Text MiningBig Data & Text Mining
Big Data & Text Mining
 
Introduction to text mining
Introduction to text miningIntroduction to text mining
Introduction to text mining
 
Text mining tutorial
Text mining tutorialText mining tutorial
Text mining tutorial
 
Elements of Text Mining Part - I
Elements of Text Mining Part - IElements of Text Mining Part - I
Elements of Text Mining Part - I
 
Quick Tour of Text Mining
Quick Tour of Text MiningQuick Tour of Text Mining
Quick Tour of Text Mining
 
Data mining slides
Data mining slidesData mining slides
Data mining slides
 
Data mining
Data miningData mining
Data mining
 
Text Mining with R -- an Analysis of Twitter Data
Text Mining with R -- an Analysis of Twitter DataText Mining with R -- an Analysis of Twitter Data
Text Mining with R -- an Analysis of Twitter Data
 
A Survey on the Classification Techniques In Educational Data Mining
A Survey on the Classification Techniques In Educational Data MiningA Survey on the Classification Techniques In Educational Data Mining
A Survey on the Classification Techniques In Educational Data Mining
 
Text mining and data mining
Text mining and data mining Text mining and data mining
Text mining and data mining
 
Data Acquisition for Sentiment Analysis
Data Acquisition for Sentiment AnalysisData Acquisition for Sentiment Analysis
Data Acquisition for Sentiment Analysis
 
Tesxt mining
Tesxt miningTesxt mining
Tesxt mining
 
Rares Songs
Rares SongsRares Songs
Rares Songs
 
Text Mining in Jeb Bush’s Email and Social Network
Text Mining in Jeb Bush’s Email and Social NetworkText Mining in Jeb Bush’s Email and Social Network
Text Mining in Jeb Bush’s Email and Social Network
 
Text mining the contributors to rail accidents
Text mining the contributors to rail accidentsText mining the contributors to rail accidents
Text mining the contributors to rail accidents
 
Text mining, By Hadi Mohammadzadeh
Text mining, By Hadi MohammadzadehText mining, By Hadi Mohammadzadeh
Text mining, By Hadi Mohammadzadeh
 
Data Mining and Text Mining in Educational Research
Data Mining and Text Mining in Educational ResearchData Mining and Text Mining in Educational Research
Data Mining and Text Mining in Educational Research
 
High Performance Predictive Analytics in R and Hadoop
High Performance Predictive Analytics in R and HadoopHigh Performance Predictive Analytics in R and Hadoop
High Performance Predictive Analytics in R and Hadoop
 
Comment l’intelligence artificielle réinvente la fouille de texte
Comment l’intelligence artificielle réinvente la fouille de texteComment l’intelligence artificielle réinvente la fouille de texte
Comment l’intelligence artificielle réinvente la fouille de texte
 

Similar to 3. introduction to text mining

NLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
NLP WITH NAÏVE BAYES CLASSIFIER (1).pptxNLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
NLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
rohithprabhas1
 
Intro 2 document
Intro 2 documentIntro 2 document
Intro 2 document
Uma Kant
 
Natural language processing (nlp)
Natural language processing (nlp)Natural language processing (nlp)
Natural language processing (nlp)
Kuppusamy P
 
Natural Language Processing (NLP).pptx
Natural Language Processing (NLP).pptxNatural Language Processing (NLP).pptx
Natural Language Processing (NLP).pptx
SHIBDASDUTTA
 

Similar to 3. introduction to text mining (20)

2_text operationinformation retrieval. ppt
2_text operationinformation retrieval. ppt2_text operationinformation retrieval. ppt
2_text operationinformation retrieval. ppt
 
Introduction to natural language processing (NLP)
Introduction to natural language processing (NLP)Introduction to natural language processing (NLP)
Introduction to natural language processing (NLP)
 
Skills and language objectives crwe feb 9 2020
Skills and language objectives crwe feb 9 2020Skills and language objectives crwe feb 9 2020
Skills and language objectives crwe feb 9 2020
 
NLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
NLP WITH NAÏVE BAYES CLASSIFIER (1).pptxNLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
NLP WITH NAÏVE BAYES CLASSIFIER (1).pptx
 
Finding information
Finding informationFinding information
Finding information
 
Sld-Natural-Language-Processing-for-large-volumes-of-human-text-data-Sozzi-Br...
Sld-Natural-Language-Processing-for-large-volumes-of-human-text-data-Sozzi-Br...Sld-Natural-Language-Processing-for-large-volumes-of-human-text-data-Sozzi-Br...
Sld-Natural-Language-Processing-for-large-volumes-of-human-text-data-Sozzi-Br...
 
Engineering Intelligent NLP Applications Using Deep Learning – Part 1
Engineering Intelligent NLP Applications Using Deep Learning – Part 1Engineering Intelligent NLP Applications Using Deep Learning – Part 1
Engineering Intelligent NLP Applications Using Deep Learning – Part 1
 
Text Mining
Text MiningText Mining
Text Mining
 
NLP_KASHK:Text Normalization
NLP_KASHK:Text NormalizationNLP_KASHK:Text Normalization
NLP_KASHK:Text Normalization
 
Esl weinstock spring 2014 libguide
Esl  weinstock spring 2014 libguideEsl  weinstock spring 2014 libguide
Esl weinstock spring 2014 libguide
 
Natural Language Processing Crash Course
Natural Language Processing Crash CourseNatural Language Processing Crash Course
Natural Language Processing Crash Course
 
IR
IRIR
IR
 
Intro 2 document
Intro 2 documentIntro 2 document
Intro 2 document
 
DHUG 2017 - Thesaurus Construction Training
DHUG 2017 - Thesaurus Construction TrainingDHUG 2017 - Thesaurus Construction Training
DHUG 2017 - Thesaurus Construction Training
 
Natural language processing (nlp)
Natural language processing (nlp)Natural language processing (nlp)
Natural language processing (nlp)
 
Textmining
TextminingTextmining
Textmining
 
Natural Language Processing (NLP).pptx
Natural Language Processing (NLP).pptxNatural Language Processing (NLP).pptx
Natural Language Processing (NLP).pptx
 
Riyadh UseR Group - 1st Meeting (Dec 2016(
Riyadh UseR Group - 1st Meeting (Dec 2016(Riyadh UseR Group - 1st Meeting (Dec 2016(
Riyadh UseR Group - 1st Meeting (Dec 2016(
 
NLTK
NLTKNLTK
NLTK
 
Intro
IntroIntro
Intro
 

Recently uploaded

如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一
w7jl3eyno
 
一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理
pyhepag
 
Toko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat Viagra
Toko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat ViagraToko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat Viagra
Toko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat Viagra
adet6151
 
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
hwhqz6r1y
 
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra MalangToko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
adet6151
 
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotecAbortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Riyadh +966572737505 get cytotec
 
一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理
cyebo
 
Exploratory Data Analysis - Dilip S.pptx
Exploratory Data Analysis - Dilip S.pptxExploratory Data Analysis - Dilip S.pptx
Exploratory Data Analysis - Dilip S.pptx
DilipVasan
 
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
fztigerwe
 
Fuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertaintyFuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertainty
RafigAliyev2
 

Recently uploaded (20)

2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call2024 Q1 Tableau User Group Leader Quarterly Call
2024 Q1 Tableau User Group Leader Quarterly Call
 
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一
如何办理澳洲悉尼大学毕业证(USYD毕业证书)学位证书成绩单原版一比一
 
一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理一比一原版西悉尼大学毕业证成绩单如何办理
一比一原版西悉尼大学毕业证成绩单如何办理
 
Toko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat Viagra
Toko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat ViagraToko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat Viagra
Toko Jual Viagra Asli Di Salatiga 081229400522 Obat Kuat Viagra
 
How to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data AnalyticsHow to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data Analytics
 
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
如何办理新加坡国立大学毕业证(NUS毕业证)学位证成绩单原版一比一
 
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra MalangToko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
Toko Jual Viagra Asli Di Malang 081229400522 COD Obat Kuat Viagra Malang
 
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotecAbortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
Abortion pills in Dammam Saudi Arabia// +966572737505 // buy cytotec
 
How I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prisonHow I opened a fake bank account and didn't go to prison
How I opened a fake bank account and didn't go to prison
 
一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理一比一原版麦考瑞大学毕业证成绩单如何办理
一比一原版麦考瑞大学毕业证成绩单如何办理
 
Formulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdfFormulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdf
 
Exploratory Data Analysis - Dilip S.pptx
Exploratory Data Analysis - Dilip S.pptxExploratory Data Analysis - Dilip S.pptx
Exploratory Data Analysis - Dilip S.pptx
 
Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)
 
社内勉強会資料  Mamba - A new era or ephemeral
社内勉強会資料   Mamba - A new era or ephemeral社内勉強会資料   Mamba - A new era or ephemeral
社内勉強会資料  Mamba - A new era or ephemeral
 
Machine Learning for Accident Severity Prediction
Machine Learning for Accident Severity PredictionMachine Learning for Accident Severity Prediction
Machine Learning for Accident Severity Prediction
 
Pre-ProductionImproveddsfjgndflghtgg.pptx
Pre-ProductionImproveddsfjgndflghtgg.pptxPre-ProductionImproveddsfjgndflghtgg.pptx
Pre-ProductionImproveddsfjgndflghtgg.pptx
 
basics of data science with application areas.pdf
basics of data science with application areas.pdfbasics of data science with application areas.pdf
basics of data science with application areas.pdf
 
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
 
Fuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertaintyFuzzy Sets decision making under information of uncertainty
Fuzzy Sets decision making under information of uncertainty
 
The Significance of Transliteration Enhancing
The Significance of Transliteration EnhancingThe Significance of Transliteration Enhancing
The Significance of Transliteration Enhancing
 

3. introduction to text mining

  • 2. Agenda • Defining Text Mining • Structured vs. Unstructured Data • Why Text Mining • Some Text Mining Ambiguities • Pre-processing the Text
  • 3. Text Mining • The discovery by computer of new, previously unknown information, by automatically extracting information from a usually large amount of different unstructured textual resources Previously unknown means: • Discovering genuinely new information • Discovering new knowledge vs. merely finding patterns is like the difference between a detective following clues to find the criminal vs. analysts looking at crime statistics to assess overall trends in car theft Unstructured means: • Free naturally occurring text • As opposed HTML, XML….
  • 4. Text Mining Vs. Data Mining • Data in Data mining is a series of numbers. Data for text mining is a collection of documents. • Data mining methods see data in spreadsheet format. Text mining methods see data in document format
  • 5. Structured vs. Unstructured Data • Structured data • Loadable into “spreadsheets” • Arranged into rows and columns • Each cell filled or could be filled • Data mining friendly • Unstructured daa • Microsoft Word, HTML, PDF documents, PPTs • Usually converted into XML  semi structured • Not structured into cells • Variable record length, notes, free form survey-answers • Text is relatively sparse, inconsistent and not uniform • Also images, video, music etc.
  • 6. Why Text Mining? • Leveraging text should improve decisions and predictions • Text mining is gaining momentum • Sentiment analysis (twitter, facebook) • Predicting stock market • Predicting churn • Customer influence • Customer service and help desk • Not to mention Watson
  • 7. Why Text Mining is Hard? • Language is ambiguous • Context is needed to clarify • The same words can have different meaning (homographs) • Bear (verb) – to support or carry • Bear (noun) – a large animal • Different words can mean the same (synonyms) • Language is subtle • Concept / word extraction usually results in huge number of dimensions • Thousands of new fields • Each field typically has low information content (sparse) • Misspellings, abbreviations, spelling variants • Renders search engines, SQL queries.. ineffective.
  • 8. Some Text Mining Ambiguities • Homonomy: same word, different meaning • Mary walked along the bank of the river • HarborBank is the richest bank in the citys • Synonymy: Synonyms, different words, similar or same meaning, can substitute one word for other without changing meaning • Miss Nelson became a kind of big sister to Benjamin • Miss Nelson became a kind of large sister to Benjamin • Polysemy: same word or form, but different, albeit related meaning • The bank raised its interest rates yesterday • The store is next to the newly constructed bank • The bank appeared first in Italy I the Renaissance • Hyponymy: Concept hierarchy or subclass • Animal (noun) – cat, dog • Injury – broken leg, intusion
  • 9. Seven Types of Text Mining • Search and Information Retrieval – storage and retrieval of text documents, including search engines and keyword search • Document Clustering – Grouping and categorizing terms, snippets, paragraphs or documents using clustering methods • Document Classification – grouping and categorizing snippets, paragraphs or document using data mining classification methods, based on methods trained on labelled examples • Web Mining – Data and Text mining on the internet with specific focus on scaled and interconnectedness of the web • Information Extraction – Identification and extraction of relevant facts and relationships from unstructured text • Natural Language Processing – Low level language processing and understanding of tasks (eg. Tagging part of speech) • Concept extraction – Grouping of words and phrases into semantically similar groups
  • 10. Text Mining – Some Definitions • Document – a sequence of words and punctuation, following the grammatical rules of the language. • Term – usually a word, but can be a word-pair or phrase • Corpus – a collection of documents • Lexicon – set of all unique words in corpus
  • 11. Pre-processing the Text • Text Normalization • Parts of Speech Tagging • Removal of stop words Stop words – common words that don’t add meaningful content to the document • Stemming • Removing suffices and prefixes leaving the root or stem of the word. • Term weighting • POS Tagging • Tokenization
  • 12. Text Normalization • Case • Make all lower case (if you don’t care about proper nouns, titles, etc) • Clean up transcription and typing errrors • do n’t, movei • Correct misspelled words • Phonetically • Use fuzzy matching algorithms such as Soundex, Metaphone or string edit distance • Dictionaries • Use POS and context to make good guess
  • 13. Parts of Speech Tagging • Useful for recognizing names of people, places, organizations, titles • English language • Minimum set includes noun, verb, adjective, adverb, prepositions, congjunctions POS Tags from Penn Tree Bank Tag Description Tag Description Tag Description CC Coordinating Conjunction CD Cardinal Number DT Determiner EX Existential there FW Foreign Word IN Preposition or subordinating conjuction JJ Adjective JJR Adjective, comparative JJS Adjective, superlative LS List Item Marker MD Modal NN Noun, singular or mass NNS Noun Plural NNPS Proper Noun Plural PDT Prederminer POS Possessive Ending PRP Personal pronoun PRPS Possessive pronoun RB Adverb RBR Adverb, comparative RBS Adverb, superlative RP Particle SYM Symbol TO To UH Interjection VB Verb, base form VBD Verb, past tens
  • 14. Example of Tagging • In this talk, Mr. Pole discussed how Target was using Predictive Analytics including descriptions of using potential value models, coupon models, and yes predicting when a woman is due • In/IN this/DT talk/NN, Mr./NNP Pole/NNP discussed/VBD how/WRB Target/NNP was/VBD using/VBG Predictive/NNP Analytics/NNP including/VBG descriptions/NNS of/IN using/VBG potential/JJ value/NN models/NNS, coupon/NN models/NNS, and yes predicting/VBG when/WRB a/DT woman/NN is due/JJ
  • 15. Tokenization • Converts streams of characters into words • Main clues (in English): Whitespace • No single algorithms ‘works’ always • Some languages do not have white space (Chinese, Japanese)
  • 16. Stemming • Normalizes / unifies variations of the same data • ‘walking’, ‘walks’, ‘walked’, ‘walked’  walk • Inflectional stemming • Remove plurals • Normalize verb tenses • Remove other affixes • Stemming to root • Reduce word to most basic element • More aggressive than inflectional • ‘denormalization’  norm • ‘Apply’, ‘applications’, ‘reapplied’  apply
  • 17. Common English Stop Words • a, an, and, are, as, at, be, but, buy, for, if, in, into, is, it, no, not, of, on, or, such, that, the, their, then, these, they, this, to, was, will, with • Stop words are very common and rarely provide useful information for information extraction and concept extraction • Removing stop words also reduce dimensionality
  • 18. Dictionaries and Lexicons • Highly recommended, can be very time consuming • Reduces set of key words to focus on • Words of interest • Dictionary words • Increase set of keywords to focus on • Proper nouns • Acronyms • Titles • Numbers • Key ways to use dictionary • Local dictionary (specialized words) • Stop words and too frequent words • Stemming – reduce stems to dictionary words • Synonyms – replace synonyms with root words in the list • Resolve abbreviations and acronyms
  • 19. Sentiment Analysis Workflow Content Retrieval Content Extraction Corpus Generation Corpus Transformation Corpus Filtering Sentiment Calculation WebDataRetrievalCorpusPre Processing Sentiment Analysis
  • 20. Sentiment Indicators • 𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 = 𝑝−𝑛 𝑝+𝑛 • 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑝+𝑛 𝑁 • 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑝 𝑁 • 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑛 𝑁 • 𝑠𝑒𝑡𝑛𝑖𝑚𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 𝑝𝑒𝑟 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑝 − 𝑛 𝑁