SlideShare une entreprise Scribd logo
1  sur  16
APROXIMACIONES DE LA FÓRMULA DE TAYLOR CON EL MATHEMATICA
Luisa Lucila Lazzari
ilazzari@econ.uba.ar
Andrea Parma
matejuan1@yahoo.com.ar
Julio C. Ferreiro
jcferreiro@speedy.com.ar
1ª Cátedra de Análisis Matemático II
Facultad de Ciencias Económicas
Universidad de Buenos Aires
Julio 2006
1- INTRODUCCION
Este trabajo forma parte de una investigación iniciada en el año 2005, que consiste en el diseño y
desarrollo de aplicaciones del software Mathematica como herramienta de cálculo simbólico y
numérico, y recurso didáctico, para ser usada en la enseñanza de las asignaturas Análisis Matemático I
y II.
El objetivo fundamental es que el alumno desarrolle algunas actividades con el programa
Mathematica que le permitan facilitar la construcción del conocimiento de los temas desarrollados en
las clases teóricas. Las ventajas del uso de la tecnología en la educación matemática son muy
significativas, pues permite un manejo más dinámico de múltiples sistemas de representación de
objetos matemáticos.
En esta presentación se analizan diferentes casos de aproximación de funciones, expresadas en forma
explícita o definidas implícitamente por una ecuación, mediante las fórmulas de Taylor y de Mac
Laurin. Este tema desempeña un papel importante en muchas áreas de la matemática aplicada y
computacional.
Además de obtener la fórmula de Taylor con el Mathematica, se visualizan y comparan los gráficos de
la función original con sus aproximaciones lineales, cuadráticas y de orden superior. Para el caso de
funciones de dos variables independientes se realiza el gráfico de las curvas de nivel y se muestran sus
diferencias.
2. POLINOMIO DE TAYLOR PARA FUNCIONES DE UNA VARIABLE INDEPENDIENTE
2.1. Desarrollo de la función f : ∇  ∇ xcosy = en la proximidad de x= 0
El programa Mathematica tiene un comando llamado Series que permite obtener el desarrollo de una
función f en serie de potencias en la proximidad de x = a hasta orden n.
Su sintaxis es: Series[f, {var, a, n}]
En primer lugar se considera una función sencilla ( ) xcosxf =1 y se obtiene el desarrollo de Mac
Laurin, hasta orden 5.
en la que ( ) ( ) xcx
!
cf
xRx
VI
<<== 0donde
6
][0 6
6
6 representa el resto o cota de error de
Lagrange que se obtiene al aproximar la función xcosy = mediante un polinomio de 5º grado.
Se realiza el gráfico de la función cuya fórmula es xcosf =1 (Figura 1) con el Mathematica,
considerando [ ]88;x −∈ . Para trabajar más cómodamente se define la función a utilizar mediante la
forma genérica f [var_] = , así es fácil invocarla cuando se la precise
Nótese que la Figura 1 no está en la misma escala en ambos ejes, pero de este modo se aprecian mejor
algunas de sus características.
Si se considera una aproximación de 1º orden, se obtiene el polinomio )(1 xP cuya gráfica (Figura 2)
es de grado 0, pues ( ) 001 =′f
Figura 1.
-7.5 -5 -2.5 2.5 5 7.5
-1
-0.5
0.5
1
Figura 2.
[1]
Luego se obtienen las aproximaciones de 2º y 3º orden que son iguales y de grado 2, pues ( ) 001 =′′′f
. Se grafican estos polinomios, designándolos ( )xP2 (Figura 3).
Se calculan los polinomios de 4º y 5º grado, ( )xP4 , que son iguales pues ( ) 00 =vf . Su gráfica se
muestra en la Figura 4.
Figura 3.
2
1
2
x
y −=
Figura 4.
2.2. Visualización simultánea de funciones
Para visualizar dos o más gráficos en el mismo sistema de ejes cartesianos, se utiliza el comando
Show del Mathematica.
La gráfica de la función original y su aproximación de grado 2, se presentan en la Figura 5.
En la Figura 6 están representadas todas las aproximaciones obtenidas, junto con la función original.
Figura 5. Gráfico de la función y su
aproximación de grado 2
-7.5 -5 -2.5 2.5 5 7.5
-2
2
4
Figura 6. Gráfico de la función y sus
aproximaciones
Si se desea dibujar todas las aproximaciones en una matriz de gráficos para su mejor visualización, se
utiliza la opción GraphicsArray, combinada con Show (Figura 7).
3. SERIE DE TAYLOR
Sea una función de una variable independiente con derivadas de todos los órdenes en algún intervalo
( )ra;ra +− , con 0>r .
La fórmula de Taylor es:
( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )xRax
!n
af
...ax
!
af
ax
!
af
axafafxf n
n
n
1
32
32
)( ++−++−
′′′
+−
′′
+−′+= con
( )
( )( )
( )
( )
1
1
1
n
n
n ax
!n
cf
xR −
+
=
+
+ y ( )ra;rac +−∈ .
La serie de Taylor ( ) ( )( ) ( ) ( ) ( ) ( ) +−
′′′
+−
′′
+−′+= 32
32
)( ax
!
af
ax
!
af
axafafxf
representa a la función f en el intervalo ( )ra;ra +− si y solo si
( ) 01 =
∞→
+
n
n xRlim .
3.1. La serie de Taylor para la función xcosxf =)(1
En 2.1. se desarrolló la función xcosxf =)(1 obteniéndose la expresión [1]. Entonces
⋅⋅⋅++−=
24
4
2
2
1
xx
cosx [2]
Figura 7. Diferentes aproximaciones de la función
La expresión [2] es válida, siempre que ( )
( ) ( )
( )
0
!1
1
1
1 =
+
= +
+
∞→
+
∞→
n
n
n
n
n
x
n
cf
limxRlim
Para xcosy = se cumple
( )( ) ( )( ) 1o1 11
≤=≤= ++
xcosxfsenxxf nn
De modo que ( )
( )!1
1
1
+
≤
+
+
n
x
xR
n
n
Pero a su vez la serie de potencias
( )∑
∞
+
+
0 !1
1
n
x
n
es convergente ∈∀x ∇.
En efecto,
( )
( )
( )
0
2
!1
!2
1
2
1
=
+
=
+
+
==
∞→+
+
∞→
+
∞→ n
x
lím
n
x
n
x
lím
a
a
lím
nn
n
nn
n
n
ρ ,
por lo tanto el radio de convergencia es infinito. A su vez si la serie es convergente ∈∀x ∇ se puede
asegurar que ∈∀x ∇.
( )
0
!1
1
=
+
+
∞→ n
x
lim
n
n
. Como consecuencia ( ) 0=
∞→
xRlim n
n
y la serie [2]
representa a la función.
3.2. La función de Cauchy
La función de Cauchy está definida de la siguiente manera:
f : ∇  ∇ / ( )





=
≠=
−
0si0
0si
2
1
x
xexf x
Para 0≠x , la función f(x) tiene derivadas de todos los órdenes, que se determinan mediante las
reglas de derivación elementales.
Se calculan con el Mathematica las derivadas de orden 1º, 2º y enésimo.
Por lo tanto las derivadas son:
( ) ( ) ( )
( )( ) ( ) ( ) x/x/pxex/pxf
xexxxfxexxf
n
x/
n
n
x/x/
1derespectopolinomiounes1donde01general,En
046;02
21
2164213
≠∀=
≠∀+−=′′≠∀=′
−
−−−−−
Se observa que ( )( )xf n
, para ∈n  es una combinación lineal de expresiones del tipo
211 x/
k
e
x
−






, donde ∈k .
Además se verifica que ( ) ( ) ∈∀= n,f n 00 , es decir 0
1 21
0
=




 −
→
x/
kx
e
x
lim . Esto se comprueba
fácilmente haciendo el cambio de variable 2
1 x/t = 0
1 221
0
==





∞→
−
→ t
k/
t
x/
kx e
t
lime
x
lim .
Por lo tanto la función de Cauchy tiene derivadas de todos los órdenes nulas en el origen. La serie de
Mac Laurin es:
( )( ) ∈∀=+++=∑
∞
x...xxx
n
f n
n
0000
!
0 2
0
∇.
Finalmente se observa que esta serie no representa la función de Cauchy, pues converge a y = 0.
Es obvio que para esta función no se cumple ( ) 01 =+
∞→
xRlim n
n
. Es posible visualizar esta situación en
la Figura 8, sacando como conclusión que ( ) ( )
( )( ) ( ) ( )xfxfx
i
f
xfxR i
n
i
i
n =−=−= ∑
=
+ 0
!
0
0
1
Figura 8. Función de Cauchy y convergencia de la serie
4. POLINOMIO DE TAYLOR PARA FUNCIONES DE DOS VARIABLES
INDEPENDIENTES
4.1. Polinomio de Mac Laurin para la función f : ∇2
 ∇ / f (x, y) = sen x sen y
Para obtener el polinomio de 2º grado que aproxime la función f(x, y) = sen x sen y en un entorno del
origen se utiliza la fórmula de Mac Laurin para dos variables independientes, con ayuda del operador
diferencial simbólico.
( ) ( ) ( )
( )
( )
( )
( )
( )
( )
( ) 10
!1
1
00
!
1
00
!2
1
0000
1
2
<<





∂
∂
+
∂
∂
+
+





∂
∂
+
∂
∂
+
++





∂
∂
+
∂
∂
+





∂
∂
+
∂
∂
+=
+
θθθ ,y,xf
y
y
x
x
n
,f
y
y
x
x
n
,f
y
y
x
x,f
y
y
x
x,fy,xf
nn

Para una aproximación de 2º orden, la fórmula de Mac Laurin se reduce a:
( ) ( ) ( )
( )
( ) 3
2
00
!2
1
0000 R,f
y
y
x
x,f
y
y
x
x,fy,xf +





∂
∂
+
∂
∂
+





∂
∂
+
∂
∂
+=
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]
  
3
3223
22
33
6
1
0000200
2
1
000000
R
yyyxyyxxyxxx
yyxyxxyx
cy,cxfycy,cxfxycy,cxfyxcy,cxfx
,fy,fyx,fx,fy,fx,fy,xf
′′′+′′′+′′′+′′′
+′′+′′+′′+′+′+=
Donde
( ) ( ) ( ) ( ) ( ) ( ) 000000100000000000 =′′=′=′′=′=′′= ,f,,f,,f,,f,,f,,f yyyxyxxx
Reemplazando en la expresión anterior, se obtiene
( )
yxysenxsen
yyxxysenxsen
≅
+++++≅ )0()1(2)0(
2
1
000 22
El error en la aproximación es
( ) ( ) ( ) ( )( )cy,cxfycy,cxfxycy,cxfyxcy,cxfxR yyyxyyxxyxxx ′′′+′′′+′′′+′′′= 3223
3 33
6
1
En la Figura 9 puede observarse el gráfico de la función y la aproximación de segundo orden.
Si se desarrolla la función en un entorno del origen hasta el término de cuarto orden, se obtiene la
siguiente expresión:
Figura 9. f(x;y) = senx seny y su aproximación de 2º orden
( )
66
33
yxyx
xyy,xf −−≅
En la Figura 10.a se presenta el gráfico del polinomio de 4º orden de aproximación y en la Figura 10.b
el polinomio y la función, superpuestos.
Se observa que en la Figura 10.b, la parte que tiene mallado en el entorno del origen (ver recuadro),
aproxima con más exactitud que en la Figura 10.a.
4.2. Comparación de curvas de nivel
Se obtienen con el Mathematica las curvas de nivel de la función original y se comparan con las de sus
aproximaciones de 2º y 4º orden.
Figura 10. a. Polinomio de 4º orden
Figura 10. b. Función y polinomio
superpuestos
-2
-1
0
1
2 -2
-1
0
1
2
-1
0
1
-2
-1
0
1
2
-2
-1
0
1
2 -2
-1
0
1
2
-1
0
1
-2
-1
0
1
2
Figura 11. Curvas de nivel de la función
Figura 12. Curvas de nivel del polinomio de 2º grado
Se observa que las curvas de nivel de la función original (Figura 11) son más similares a las de su
aproximación de 4º orden (Figura 13).
5. POLINOMIO DE TAYLOR PARA FUNCIONES DEFINIDAS EN FORMA IMPLÍCITA
5.1. Gráfica de una función ( )xfy = definida implícitamente en un determinado dominio
Dada la ecuación
( ) 0123
=+−−= xxyyy;xH [3]
se analiza si la misma define una función ( )xfy = en un entorno del punto (1;1). Para ello se
verifican, con la ayuda del Mathematica, las hipótesis del Teorema de Cauchy-Dini:
a) ( ) 011 =;H
0
Figura 13. Curvas de nivel del polinomio de 4º grado
b) Las derivadas parciales de ( )y;xH son continuas en un ( )11;E
c) ( ) 011 ≠
∂
∂
;
y
H
Al cumplirse las condiciones de Cauchy-Dini, se asegura la existencia de la función ( )xfy = en un
entorno del punto (1; 1).
Para dibujar esta función con el Mathematica (Figura 14) se obtiene la intersección de los gráficos de
( )y;xHz = y de z = 0 (curva de nivel cero de la función ( )y;xHz = ).
Agregando al comando Show un punto de vista adecuado, se obtiene la gráfica de ( )xfy = en un
( )11;E con bastante precisión (Figura 15.a).
También se puede realizar la gráfica de la función ( )xfy = en un entorno del punto (1;1) trabajando
con el comando ContourPlot, considerando un rango conveniente para x e y (Figura 15.b).
Figura 14. Intersección de los gráficos de y de z = 0
5.2. Polinomio de Taylor para la función ( )xfy = definida implícitamente en un determinado
dominio
En primer lugar se calcula la derivada primera de la función ( )xfy = en el punto (1;1), utilizando la
fórmula:
y
x
H
H
dx
dy
′
′
−=
1
Por lo tanto ( ) 11;1
dx
dy
u ==
Ahora se calcula la derivada segunda )1;1(
dx
yd
2
2
Para ello se debe derivar la función [4], teniendo en cuenta que ( )xyy = .
Se asigna a la variable y la expresión ( )xy en [4] y luego se deriva. Esto se puede realizar debido a
que el Mathematica es un programa de cálculo simbólico.
[4]
Figura 15.a. Gráfico de la función como intersección de
los gráficos de y de z = 0
Figura 15.b. Gráfico de la función dada en forma
implícita como curva de nivel
y por la regla generalizada de la cadena para funciones de varias variables, se obtiene:
El Polinomio de Taylor de orden dos que aproxima a la función ( )xyy = en un E(1;1) es:
La gráfica de la aproximación de 2º orden se presenta en la Figura 16.
También se representa (Figura 17) la aproximación de 1º orden en un entorno del punto (1;1).
:
Figura 16. Aproximación de 2º orden
Figura 17. Aproximación de 1º orden
Finalmente se compara la función original, con sus aproximaciones de 1º y 2º orden (Figura 18).
Para hallar el polinomio de grado tres, se calcula '''y con el Mathematica.
Se observa la complejidad de las expresiones de las derivadas sucesivas y la ventaja del uso del
software para realizar este tipo de cálculos.
Así, el polinomio de tercer grado que aproxima a una de las posibles funciones definidas
implícitamente en el entorno considerado es:
y el de cuarto grado, es:
En la Figura 19 se muestra la función original con sus aproximaciones de 2º, 3º y 4º orden.
Figura 18. Función original y
aproximaciones de 1º y 2º orden
6. CONCLUSIONES
El uso de la computadora en la enseñanza de la matemática permite incluir ejercitación más compleja
desde el punto de vista del cálculo y también más próxima a las reales condiciones del trabajo que
desempeñarán los alumnos en su vida profesional, a la vez que dinamiza la operatoria rutinaria.
Potencia el desarrollo del conocimiento y del aprendizaje, la creatividad, el aprendizaje por
descubrimiento y exploración y la resolución de problemas concretos vinculados a su desempeño
profesional.
El empleo de programas de cálculo simbólico, como el Mathematica, para el estudio y representación
de funciones mediante el desarrollo de Taylor resulta muy adecuado, tanto desde el punto de vista
didáctico como práctico.
Este tema es muy importante para los estudiantes de carreras de Ciencias Económicas dado la gran
cantidad de aplicaciones que presenta, entre las que se pueden mencionar:
• En Análisis Numérico, entre otros temas, se aplica al cálculo de errores, ajuste de datos observados
a una curva por mínimos cuadrados, en los métodos numéricos de integración, en el método de
Runge-Kutta para problemas de valor inicial para ecuaciones diferenciales ordinarias.
• En la Teoría de Inversiones, los desarrollos en serie de Taylor permiten obtener modelos más
generales de inversiones bajo incertidumbre, en particular los que emplean movimientos
Brownianos y el lema de Ito, como así también la ecuación de Kolmogorov.
• En Estadística y Econometría se suelen hacer lineales los estimadores aplicando la fórmula de
Taylor. También se utiliza en la formulación y estimación de modelos especiales, como los
intrínsecamente lineales (que resultan no lineales respecto a las variables pero lineales respecto a
los parámetros a estimar) y los íntrinsecamente no lineales (que son modelos no lineales respecto a
las variables y a los parámetros); así como recurso en demostraciones teóricas referidas al testeo
de hipótesis.
• En Administración Financiera, se utiliza en particular en el tema de cobertura de un portafolio de
inversiones. La serie de Taylor en dos o más variables permite expresar el cambio del portafolio
en función del precio del activo y del tiempo, para períodos de tiempo cortos. Esto es posible dado
que si la volatilidad del activo se considera constante, el valor del portafolio puede expresarse en
Figura 16. Aproximación de 2º ordenFigura 16. Aproximación de 2º ordenFigura 16. Aproximación de 2º orden
Figura 19. Función original con sus
aproximaciones de 2º, 3º y 4º orden.
función del precio del activo y del tiempo; y si la volatilidad del activo se asume variable, el
portafolio es función de la volatilidad, el precio y el tiempo, en cuyo caso el desarrollo de Taylor
corresponde a tres variables.
Referencias bibliográficas
• Balbás de la Corte, A.; Gil Fana, J.A.; Gutiérrez Valdeón, S. (1991). Análisis Matemático para la
Economía I y II. Madrid, Editorial AC, Thomson.
• Castillo, E.; Iglesias, A.; Gutiérrez, J.; Alvarez, E.; Cobo, A. (1996). Mathematica. Madrid,
Paraninfo.
• de Burgos, J. (1994). Cálculo infinitesimal de una variable. Madrid, Mc Graw Hill.
• Hughes Hallet, D.; Gleason, A. (2000). Cálculo. México, CECSA.
• Lazzari, L.; Parrino, M. (1995), “El uso de la computadora en la enseñanza de la Matemática”.
Temas y Propuestas, Año 4, N° 8. Facultad de Ciencias Económicas, Universidad de Buenos
Aires.
• McCallum, W.; Flash, D.; Gleason, A.; Gordon, S.; Mumford, D.; Osgood, B. (1998). Cálculo de
varias variables. México, Compañía Editorial Continental, S. A. de C.V..
• Purcell E. J.; Varberg D., Rigdon S. (2001). Cálculo. México, Pearson Educación.
• Rabuffetti, H.T. (1983). Introducción al Análisis Matemático. Cálculo 2. Buenos Aires, El
Ateneo.
• Rey Pastor, J.; Pi Calleja, P.; Trejo, C.A. (1957). Análisis Matemático 1 y 2. Buenos Aires,
Kapelusz.
• Thomas, G.; Finney, R.L. (1999). Cálculo en Varias Variables, 9a
edición. México, Addison
Wesley Longman.
• Troparevsky, M.; García, R. (1997). Matemática con Mathematica. Buenos Aires, Nueva Librería.
• Wolfram, S. (1991). Mathematica. Illinois, Addison-Wesley Publishing Company, Inc..
Equipo de apoyo necesario: PC y cañón de proyección

Contenu connexe

Tendances (19)

Cap16 func trigon
Cap16 func trigonCap16 func trigon
Cap16 func trigon
 
Cap 7 desigualdades
Cap 7 desigualdadesCap 7 desigualdades
Cap 7 desigualdades
 
Sesión 10.funciones i
Sesión 10.funciones iSesión 10.funciones i
Sesión 10.funciones i
 
Cap 6 ecuaciones
Cap 6 ecuacionesCap 6 ecuaciones
Cap 6 ecuaciones
 
FUNCIONES RACIONALES
FUNCIONES RACIONALESFUNCIONES RACIONALES
FUNCIONES RACIONALES
 
Tema VIII (Funciones Racionales)
Tema VIII (Funciones Racionales)Tema VIII (Funciones Racionales)
Tema VIII (Funciones Racionales)
 
La Derivada
La DerivadaLa Derivada
La Derivada
 
Bloque4 funciones variasvariables
Bloque4 funciones variasvariablesBloque4 funciones variasvariables
Bloque4 funciones variasvariables
 
Praedo ii
Praedo iiPraedo ii
Praedo ii
 
serie de taylor
 serie de taylor serie de taylor
serie de taylor
 
Funciones Reales
Funciones RealesFunciones Reales
Funciones Reales
 
7.metodo de newton2
7.metodo de newton27.metodo de newton2
7.metodo de newton2
 
16. presentación ecuaciones diferenciales (1)
16. presentación   ecuaciones diferenciales (1)16. presentación   ecuaciones diferenciales (1)
16. presentación ecuaciones diferenciales (1)
 
16. presentación ecuaciones diferenciales
16. presentación   ecuaciones diferenciales16. presentación   ecuaciones diferenciales
16. presentación ecuaciones diferenciales
 
Resolver ecuaciones lineales y no lineales bueno
Resolver ecuaciones lineales y no lineales buenoResolver ecuaciones lineales y no lineales bueno
Resolver ecuaciones lineales y no lineales bueno
 
Limites y continuidad
Limites y continuidadLimites y continuidad
Limites y continuidad
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
La derivada es fácil
La derivada es fácilLa derivada es fácil
La derivada es fácil
 
Funciones
Funciones Funciones
Funciones
 

Similaire à Aproximaciones de Taylor con Mathematica

Cálculo de una variable Stewart
Cálculo de una variable StewartCálculo de una variable Stewart
Cálculo de una variable StewartGianniBeltrami
 
CUADERNILLO - UNIDAD 2
CUADERNILLO - UNIDAD 2CUADERNILLO - UNIDAD 2
CUADERNILLO - UNIDAD 2cetis 47
 
Revista horacio
Revista horacioRevista horacio
Revista horacioHORACIO920
 
Curso cero-mat-sept-2010-tema-3
Curso cero-mat-sept-2010-tema-3Curso cero-mat-sept-2010-tema-3
Curso cero-mat-sept-2010-tema-3rafaelangelrom
 
f08cf85a-0e95-477e-b582-062097776605.ppt
f08cf85a-0e95-477e-b582-062097776605.pptf08cf85a-0e95-477e-b582-062097776605.ppt
f08cf85a-0e95-477e-b582-062097776605.ppttevihandersonmoragar
 
CA101_Funciones_R01 (1).ppt
CA101_Funciones_R01 (1).pptCA101_Funciones_R01 (1).ppt
CA101_Funciones_R01 (1).pptCristianEugenio5
 
Derive 4 (funciones de una variable)
Derive 4 (funciones de una variable)Derive 4 (funciones de una variable)
Derive 4 (funciones de una variable)jalidf
 
CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...
CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...
CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...Pablo García y Colomé
 
N cap11 polinomiales
N cap11 polinomialesN cap11 polinomiales
N cap11 polinomialesStudent
 
Conceptos Básicos de Funciones - EMdH
Conceptos Básicos de Funciones - EMdHConceptos Básicos de Funciones - EMdH
Conceptos Básicos de Funciones - EMdHAdela M. Ramos
 
Clase del lunes 7 de abril 2014
Clase del lunes 7 de abril 2014Clase del lunes 7 de abril 2014
Clase del lunes 7 de abril 2014Gonzalo Jiménez
 

Similaire à Aproximaciones de Taylor con Mathematica (20)

Ay t mod7-8
Ay t mod7-8Ay t mod7-8
Ay t mod7-8
 
Cálculo de una variable Stewart
Cálculo de una variable StewartCálculo de una variable Stewart
Cálculo de una variable Stewart
 
Funciones y gráficas en matlab
Funciones y gráficas en matlabFunciones y gráficas en matlab
Funciones y gráficas en matlab
 
CUADERNILLO - UNIDAD 2
CUADERNILLO - UNIDAD 2CUADERNILLO - UNIDAD 2
CUADERNILLO - UNIDAD 2
 
Revista horacio
Revista horacioRevista horacio
Revista horacio
 
Curso cero-mat-sept-2010-tema-3
Curso cero-mat-sept-2010-tema-3Curso cero-mat-sept-2010-tema-3
Curso cero-mat-sept-2010-tema-3
 
CA101_Funciones.ppt
CA101_Funciones.pptCA101_Funciones.ppt
CA101_Funciones.ppt
 
f08cf85a-0e95-477e-b582-062097776605.ppt
f08cf85a-0e95-477e-b582-062097776605.pptf08cf85a-0e95-477e-b582-062097776605.ppt
f08cf85a-0e95-477e-b582-062097776605.ppt
 
CA101_Funciones_R01 (1).ppt
CA101_Funciones_R01 (1).pptCA101_Funciones_R01 (1).ppt
CA101_Funciones_R01 (1).ppt
 
Matematica Derivadas Bachillerato.pdf
Matematica Derivadas Bachillerato.pdfMatematica Derivadas Bachillerato.pdf
Matematica Derivadas Bachillerato.pdf
 
Metodos bis fal_sec
Metodos bis fal_secMetodos bis fal_sec
Metodos bis fal_sec
 
FUNCIONES REALES
FUNCIONES REALESFUNCIONES REALES
FUNCIONES REALES
 
Precalculo U1-1.pptx
Precalculo U1-1.pptxPrecalculo U1-1.pptx
Precalculo U1-1.pptx
 
Derive 4 (funciones de una variable)
Derive 4 (funciones de una variable)Derive 4 (funciones de una variable)
Derive 4 (funciones de una variable)
 
Funciones 04
Funciones 04Funciones 04
Funciones 04
 
Funciones y progresiones
Funciones y progresionesFunciones y progresiones
Funciones y progresiones
 
CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...
CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...
CÁLCULO INTEGRAL. CAPÍTULO 4. DERIVACIÓN Y DIFERENCIACIÓN DE FUNCIONES ESCALA...
 
N cap11 polinomiales
N cap11 polinomialesN cap11 polinomiales
N cap11 polinomiales
 
Conceptos Básicos de Funciones - EMdH
Conceptos Básicos de Funciones - EMdHConceptos Básicos de Funciones - EMdH
Conceptos Básicos de Funciones - EMdH
 
Clase del lunes 7 de abril 2014
Clase del lunes 7 de abril 2014Clase del lunes 7 de abril 2014
Clase del lunes 7 de abril 2014
 

Plus de Mabel Gay

Fenstermacher soltis enfoque-ejecutivo
Fenstermacher soltis enfoque-ejecutivoFenstermacher soltis enfoque-ejecutivo
Fenstermacher soltis enfoque-ejecutivoMabel Gay
 
Reconstrucción
ReconstrucciónReconstrucción
ReconstrucciónMabel Gay
 
El error constructivo en la clase de matemática educ
El error constructivo en la clase de matemática   educEl error constructivo en la clase de matemática   educ
El error constructivo en la clase de matemática educMabel Gay
 
Estrategia de-aprendizaje-2012
Estrategia de-aprendizaje-2012Estrategia de-aprendizaje-2012
Estrategia de-aprendizaje-2012Mabel Gay
 
Alergia elemental
Alergia elementalAlergia elemental
Alergia elementalMabel Gay
 
Curso de nivelación Matemática
Curso de nivelación MatemáticaCurso de nivelación Matemática
Curso de nivelación MatemáticaMabel Gay
 
Anexos de anatomía y fisiologia neurotransmisores
Anexos de anatomía y fisiologia   neurotransmisoresAnexos de anatomía y fisiologia   neurotransmisores
Anexos de anatomía y fisiologia neurotransmisoresMabel Gay
 
Figuras matemáticas
Figuras matemáticasFiguras matemáticas
Figuras matemáticasMabel Gay
 
Analítica en el espacio
Analítica en el espacioAnalítica en el espacio
Analítica en el espacioMabel Gay
 

Plus de Mabel Gay (9)

Fenstermacher soltis enfoque-ejecutivo
Fenstermacher soltis enfoque-ejecutivoFenstermacher soltis enfoque-ejecutivo
Fenstermacher soltis enfoque-ejecutivo
 
Reconstrucción
ReconstrucciónReconstrucción
Reconstrucción
 
El error constructivo en la clase de matemática educ
El error constructivo en la clase de matemática   educEl error constructivo en la clase de matemática   educ
El error constructivo en la clase de matemática educ
 
Estrategia de-aprendizaje-2012
Estrategia de-aprendizaje-2012Estrategia de-aprendizaje-2012
Estrategia de-aprendizaje-2012
 
Alergia elemental
Alergia elementalAlergia elemental
Alergia elemental
 
Curso de nivelación Matemática
Curso de nivelación MatemáticaCurso de nivelación Matemática
Curso de nivelación Matemática
 
Anexos de anatomía y fisiologia neurotransmisores
Anexos de anatomía y fisiologia   neurotransmisoresAnexos de anatomía y fisiologia   neurotransmisores
Anexos de anatomía y fisiologia neurotransmisores
 
Figuras matemáticas
Figuras matemáticasFiguras matemáticas
Figuras matemáticas
 
Analítica en el espacio
Analítica en el espacioAnalítica en el espacio
Analítica en el espacio
 

Aproximaciones de Taylor con Mathematica

  • 1. APROXIMACIONES DE LA FÓRMULA DE TAYLOR CON EL MATHEMATICA Luisa Lucila Lazzari ilazzari@econ.uba.ar Andrea Parma matejuan1@yahoo.com.ar Julio C. Ferreiro jcferreiro@speedy.com.ar 1ª Cátedra de Análisis Matemático II Facultad de Ciencias Económicas Universidad de Buenos Aires Julio 2006 1- INTRODUCCION Este trabajo forma parte de una investigación iniciada en el año 2005, que consiste en el diseño y desarrollo de aplicaciones del software Mathematica como herramienta de cálculo simbólico y numérico, y recurso didáctico, para ser usada en la enseñanza de las asignaturas Análisis Matemático I y II. El objetivo fundamental es que el alumno desarrolle algunas actividades con el programa Mathematica que le permitan facilitar la construcción del conocimiento de los temas desarrollados en las clases teóricas. Las ventajas del uso de la tecnología en la educación matemática son muy significativas, pues permite un manejo más dinámico de múltiples sistemas de representación de objetos matemáticos. En esta presentación se analizan diferentes casos de aproximación de funciones, expresadas en forma explícita o definidas implícitamente por una ecuación, mediante las fórmulas de Taylor y de Mac Laurin. Este tema desempeña un papel importante en muchas áreas de la matemática aplicada y computacional. Además de obtener la fórmula de Taylor con el Mathematica, se visualizan y comparan los gráficos de la función original con sus aproximaciones lineales, cuadráticas y de orden superior. Para el caso de funciones de dos variables independientes se realiza el gráfico de las curvas de nivel y se muestran sus diferencias. 2. POLINOMIO DE TAYLOR PARA FUNCIONES DE UNA VARIABLE INDEPENDIENTE 2.1. Desarrollo de la función f : ∇  ∇ xcosy = en la proximidad de x= 0 El programa Mathematica tiene un comando llamado Series que permite obtener el desarrollo de una función f en serie de potencias en la proximidad de x = a hasta orden n. Su sintaxis es: Series[f, {var, a, n}] En primer lugar se considera una función sencilla ( ) xcosxf =1 y se obtiene el desarrollo de Mac Laurin, hasta orden 5.
  • 2. en la que ( ) ( ) xcx ! cf xRx VI <<== 0donde 6 ][0 6 6 6 representa el resto o cota de error de Lagrange que se obtiene al aproximar la función xcosy = mediante un polinomio de 5º grado. Se realiza el gráfico de la función cuya fórmula es xcosf =1 (Figura 1) con el Mathematica, considerando [ ]88;x −∈ . Para trabajar más cómodamente se define la función a utilizar mediante la forma genérica f [var_] = , así es fácil invocarla cuando se la precise Nótese que la Figura 1 no está en la misma escala en ambos ejes, pero de este modo se aprecian mejor algunas de sus características. Si se considera una aproximación de 1º orden, se obtiene el polinomio )(1 xP cuya gráfica (Figura 2) es de grado 0, pues ( ) 001 =′f Figura 1. -7.5 -5 -2.5 2.5 5 7.5 -1 -0.5 0.5 1 Figura 2. [1]
  • 3. Luego se obtienen las aproximaciones de 2º y 3º orden que son iguales y de grado 2, pues ( ) 001 =′′′f . Se grafican estos polinomios, designándolos ( )xP2 (Figura 3). Se calculan los polinomios de 4º y 5º grado, ( )xP4 , que son iguales pues ( ) 00 =vf . Su gráfica se muestra en la Figura 4. Figura 3. 2 1 2 x y −= Figura 4.
  • 4. 2.2. Visualización simultánea de funciones Para visualizar dos o más gráficos en el mismo sistema de ejes cartesianos, se utiliza el comando Show del Mathematica. La gráfica de la función original y su aproximación de grado 2, se presentan en la Figura 5. En la Figura 6 están representadas todas las aproximaciones obtenidas, junto con la función original. Figura 5. Gráfico de la función y su aproximación de grado 2 -7.5 -5 -2.5 2.5 5 7.5 -2 2 4 Figura 6. Gráfico de la función y sus aproximaciones
  • 5. Si se desea dibujar todas las aproximaciones en una matriz de gráficos para su mejor visualización, se utiliza la opción GraphicsArray, combinada con Show (Figura 7). 3. SERIE DE TAYLOR Sea una función de una variable independiente con derivadas de todos los órdenes en algún intervalo ( )ra;ra +− , con 0>r . La fórmula de Taylor es: ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )xRax !n af ...ax ! af ax ! af axafafxf n n n 1 32 32 )( ++−++− ′′′ +− ′′ +−′+= con ( ) ( )( ) ( ) ( ) 1 1 1 n n n ax !n cf xR − + = + + y ( )ra;rac +−∈ . La serie de Taylor ( ) ( )( ) ( ) ( ) ( ) ( ) +− ′′′ +− ′′ +−′+= 32 32 )( ax ! af ax ! af axafafxf representa a la función f en el intervalo ( )ra;ra +− si y solo si ( ) 01 = ∞→ + n n xRlim . 3.1. La serie de Taylor para la función xcosxf =)(1 En 2.1. se desarrolló la función xcosxf =)(1 obteniéndose la expresión [1]. Entonces ⋅⋅⋅++−= 24 4 2 2 1 xx cosx [2] Figura 7. Diferentes aproximaciones de la función
  • 6. La expresión [2] es válida, siempre que ( ) ( ) ( ) ( ) 0 !1 1 1 1 = + = + + ∞→ + ∞→ n n n n n x n cf limxRlim Para xcosy = se cumple ( )( ) ( )( ) 1o1 11 ≤=≤= ++ xcosxfsenxxf nn De modo que ( ) ( )!1 1 1 + ≤ + + n x xR n n Pero a su vez la serie de potencias ( )∑ ∞ + + 0 !1 1 n x n es convergente ∈∀x ∇. En efecto, ( ) ( ) ( ) 0 2 !1 !2 1 2 1 = + = + + == ∞→+ + ∞→ + ∞→ n x lím n x n x lím a a lím nn n nn n n ρ , por lo tanto el radio de convergencia es infinito. A su vez si la serie es convergente ∈∀x ∇ se puede asegurar que ∈∀x ∇. ( ) 0 !1 1 = + + ∞→ n x lim n n . Como consecuencia ( ) 0= ∞→ xRlim n n y la serie [2] representa a la función. 3.2. La función de Cauchy La función de Cauchy está definida de la siguiente manera: f : ∇  ∇ / ( )      = ≠= − 0si0 0si 2 1 x xexf x Para 0≠x , la función f(x) tiene derivadas de todos los órdenes, que se determinan mediante las reglas de derivación elementales. Se calculan con el Mathematica las derivadas de orden 1º, 2º y enésimo. Por lo tanto las derivadas son: ( ) ( ) ( ) ( )( ) ( ) ( ) x/x/pxex/pxf xexxxfxexxf n x/ n n x/x/ 1derespectopolinomiounes1donde01general,En 046;02 21 2164213 ≠∀= ≠∀+−=′′≠∀=′ − −−−−−
  • 7. Se observa que ( )( )xf n , para ∈n  es una combinación lineal de expresiones del tipo 211 x/ k e x −       , donde ∈k . Además se verifica que ( ) ( ) ∈∀= n,f n 00 , es decir 0 1 21 0 =      − → x/ kx e x lim . Esto se comprueba fácilmente haciendo el cambio de variable 2 1 x/t = 0 1 221 0 ==      ∞→ − → t k/ t x/ kx e t lime x lim . Por lo tanto la función de Cauchy tiene derivadas de todos los órdenes nulas en el origen. La serie de Mac Laurin es: ( )( ) ∈∀=+++=∑ ∞ x...xxx n f n n 0000 ! 0 2 0 ∇. Finalmente se observa que esta serie no representa la función de Cauchy, pues converge a y = 0. Es obvio que para esta función no se cumple ( ) 01 =+ ∞→ xRlim n n . Es posible visualizar esta situación en la Figura 8, sacando como conclusión que ( ) ( ) ( )( ) ( ) ( )xfxfx i f xfxR i n i i n =−=−= ∑ = + 0 ! 0 0 1 Figura 8. Función de Cauchy y convergencia de la serie
  • 8. 4. POLINOMIO DE TAYLOR PARA FUNCIONES DE DOS VARIABLES INDEPENDIENTES 4.1. Polinomio de Mac Laurin para la función f : ∇2  ∇ / f (x, y) = sen x sen y Para obtener el polinomio de 2º grado que aproxime la función f(x, y) = sen x sen y en un entorno del origen se utiliza la fórmula de Mac Laurin para dos variables independientes, con ayuda del operador diferencial simbólico. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 10 !1 1 00 ! 1 00 !2 1 0000 1 2 <<      ∂ ∂ + ∂ ∂ + +      ∂ ∂ + ∂ ∂ + ++      ∂ ∂ + ∂ ∂ +      ∂ ∂ + ∂ ∂ += + θθθ ,y,xf y y x x n ,f y y x x n ,f y y x x,f y y x x,fy,xf nn  Para una aproximación de 2º orden, la fórmula de Mac Laurin se reduce a: ( ) ( ) ( ) ( ) ( ) 3 2 00 !2 1 0000 R,f y y x x,f y y x x,fy,xf +      ∂ ∂ + ∂ ∂ +      ∂ ∂ + ∂ ∂ += ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]    3 3223 22 33 6 1 0000200 2 1 000000 R yyyxyyxxyxxx yyxyxxyx cy,cxfycy,cxfxycy,cxfyxcy,cxfx ,fy,fyx,fx,fy,fx,fy,xf ′′′+′′′+′′′+′′′ +′′+′′+′′+′+′+= Donde ( ) ( ) ( ) ( ) ( ) ( ) 000000100000000000 =′′=′=′′=′=′′= ,f,,f,,f,,f,,f,,f yyyxyxxx Reemplazando en la expresión anterior, se obtiene ( ) yxysenxsen yyxxysenxsen ≅ +++++≅ )0()1(2)0( 2 1 000 22 El error en la aproximación es ( ) ( ) ( ) ( )( )cy,cxfycy,cxfxycy,cxfyxcy,cxfxR yyyxyyxxyxxx ′′′+′′′+′′′+′′′= 3223 3 33 6 1 En la Figura 9 puede observarse el gráfico de la función y la aproximación de segundo orden. Si se desarrolla la función en un entorno del origen hasta el término de cuarto orden, se obtiene la siguiente expresión: Figura 9. f(x;y) = senx seny y su aproximación de 2º orden
  • 9. ( ) 66 33 yxyx xyy,xf −−≅ En la Figura 10.a se presenta el gráfico del polinomio de 4º orden de aproximación y en la Figura 10.b el polinomio y la función, superpuestos. Se observa que en la Figura 10.b, la parte que tiene mallado en el entorno del origen (ver recuadro), aproxima con más exactitud que en la Figura 10.a. 4.2. Comparación de curvas de nivel Se obtienen con el Mathematica las curvas de nivel de la función original y se comparan con las de sus aproximaciones de 2º y 4º orden. Figura 10. a. Polinomio de 4º orden Figura 10. b. Función y polinomio superpuestos -2 -1 0 1 2 -2 -1 0 1 2 -1 0 1 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -1 0 1 -2 -1 0 1 2 Figura 11. Curvas de nivel de la función Figura 12. Curvas de nivel del polinomio de 2º grado
  • 10. Se observa que las curvas de nivel de la función original (Figura 11) son más similares a las de su aproximación de 4º orden (Figura 13). 5. POLINOMIO DE TAYLOR PARA FUNCIONES DEFINIDAS EN FORMA IMPLÍCITA 5.1. Gráfica de una función ( )xfy = definida implícitamente en un determinado dominio Dada la ecuación ( ) 0123 =+−−= xxyyy;xH [3] se analiza si la misma define una función ( )xfy = en un entorno del punto (1;1). Para ello se verifican, con la ayuda del Mathematica, las hipótesis del Teorema de Cauchy-Dini: a) ( ) 011 =;H 0 Figura 13. Curvas de nivel del polinomio de 4º grado
  • 11. b) Las derivadas parciales de ( )y;xH son continuas en un ( )11;E c) ( ) 011 ≠ ∂ ∂ ; y H Al cumplirse las condiciones de Cauchy-Dini, se asegura la existencia de la función ( )xfy = en un entorno del punto (1; 1). Para dibujar esta función con el Mathematica (Figura 14) se obtiene la intersección de los gráficos de ( )y;xHz = y de z = 0 (curva de nivel cero de la función ( )y;xHz = ). Agregando al comando Show un punto de vista adecuado, se obtiene la gráfica de ( )xfy = en un ( )11;E con bastante precisión (Figura 15.a). También se puede realizar la gráfica de la función ( )xfy = en un entorno del punto (1;1) trabajando con el comando ContourPlot, considerando un rango conveniente para x e y (Figura 15.b). Figura 14. Intersección de los gráficos de y de z = 0
  • 12. 5.2. Polinomio de Taylor para la función ( )xfy = definida implícitamente en un determinado dominio En primer lugar se calcula la derivada primera de la función ( )xfy = en el punto (1;1), utilizando la fórmula: y x H H dx dy ′ ′ −= 1 Por lo tanto ( ) 11;1 dx dy u == Ahora se calcula la derivada segunda )1;1( dx yd 2 2 Para ello se debe derivar la función [4], teniendo en cuenta que ( )xyy = . Se asigna a la variable y la expresión ( )xy en [4] y luego se deriva. Esto se puede realizar debido a que el Mathematica es un programa de cálculo simbólico. [4] Figura 15.a. Gráfico de la función como intersección de los gráficos de y de z = 0 Figura 15.b. Gráfico de la función dada en forma implícita como curva de nivel
  • 13. y por la regla generalizada de la cadena para funciones de varias variables, se obtiene: El Polinomio de Taylor de orden dos que aproxima a la función ( )xyy = en un E(1;1) es: La gráfica de la aproximación de 2º orden se presenta en la Figura 16. También se representa (Figura 17) la aproximación de 1º orden en un entorno del punto (1;1). : Figura 16. Aproximación de 2º orden Figura 17. Aproximación de 1º orden
  • 14. Finalmente se compara la función original, con sus aproximaciones de 1º y 2º orden (Figura 18). Para hallar el polinomio de grado tres, se calcula '''y con el Mathematica. Se observa la complejidad de las expresiones de las derivadas sucesivas y la ventaja del uso del software para realizar este tipo de cálculos. Así, el polinomio de tercer grado que aproxima a una de las posibles funciones definidas implícitamente en el entorno considerado es: y el de cuarto grado, es: En la Figura 19 se muestra la función original con sus aproximaciones de 2º, 3º y 4º orden. Figura 18. Función original y aproximaciones de 1º y 2º orden
  • 15. 6. CONCLUSIONES El uso de la computadora en la enseñanza de la matemática permite incluir ejercitación más compleja desde el punto de vista del cálculo y también más próxima a las reales condiciones del trabajo que desempeñarán los alumnos en su vida profesional, a la vez que dinamiza la operatoria rutinaria. Potencia el desarrollo del conocimiento y del aprendizaje, la creatividad, el aprendizaje por descubrimiento y exploración y la resolución de problemas concretos vinculados a su desempeño profesional. El empleo de programas de cálculo simbólico, como el Mathematica, para el estudio y representación de funciones mediante el desarrollo de Taylor resulta muy adecuado, tanto desde el punto de vista didáctico como práctico. Este tema es muy importante para los estudiantes de carreras de Ciencias Económicas dado la gran cantidad de aplicaciones que presenta, entre las que se pueden mencionar: • En Análisis Numérico, entre otros temas, se aplica al cálculo de errores, ajuste de datos observados a una curva por mínimos cuadrados, en los métodos numéricos de integración, en el método de Runge-Kutta para problemas de valor inicial para ecuaciones diferenciales ordinarias. • En la Teoría de Inversiones, los desarrollos en serie de Taylor permiten obtener modelos más generales de inversiones bajo incertidumbre, en particular los que emplean movimientos Brownianos y el lema de Ito, como así también la ecuación de Kolmogorov. • En Estadística y Econometría se suelen hacer lineales los estimadores aplicando la fórmula de Taylor. También se utiliza en la formulación y estimación de modelos especiales, como los intrínsecamente lineales (que resultan no lineales respecto a las variables pero lineales respecto a los parámetros a estimar) y los íntrinsecamente no lineales (que son modelos no lineales respecto a las variables y a los parámetros); así como recurso en demostraciones teóricas referidas al testeo de hipótesis. • En Administración Financiera, se utiliza en particular en el tema de cobertura de un portafolio de inversiones. La serie de Taylor en dos o más variables permite expresar el cambio del portafolio en función del precio del activo y del tiempo, para períodos de tiempo cortos. Esto es posible dado que si la volatilidad del activo se considera constante, el valor del portafolio puede expresarse en Figura 16. Aproximación de 2º ordenFigura 16. Aproximación de 2º ordenFigura 16. Aproximación de 2º orden Figura 19. Función original con sus aproximaciones de 2º, 3º y 4º orden.
  • 16. función del precio del activo y del tiempo; y si la volatilidad del activo se asume variable, el portafolio es función de la volatilidad, el precio y el tiempo, en cuyo caso el desarrollo de Taylor corresponde a tres variables. Referencias bibliográficas • Balbás de la Corte, A.; Gil Fana, J.A.; Gutiérrez Valdeón, S. (1991). Análisis Matemático para la Economía I y II. Madrid, Editorial AC, Thomson. • Castillo, E.; Iglesias, A.; Gutiérrez, J.; Alvarez, E.; Cobo, A. (1996). Mathematica. Madrid, Paraninfo. • de Burgos, J. (1994). Cálculo infinitesimal de una variable. Madrid, Mc Graw Hill. • Hughes Hallet, D.; Gleason, A. (2000). Cálculo. México, CECSA. • Lazzari, L.; Parrino, M. (1995), “El uso de la computadora en la enseñanza de la Matemática”. Temas y Propuestas, Año 4, N° 8. Facultad de Ciencias Económicas, Universidad de Buenos Aires. • McCallum, W.; Flash, D.; Gleason, A.; Gordon, S.; Mumford, D.; Osgood, B. (1998). Cálculo de varias variables. México, Compañía Editorial Continental, S. A. de C.V.. • Purcell E. J.; Varberg D., Rigdon S. (2001). Cálculo. México, Pearson Educación. • Rabuffetti, H.T. (1983). Introducción al Análisis Matemático. Cálculo 2. Buenos Aires, El Ateneo. • Rey Pastor, J.; Pi Calleja, P.; Trejo, C.A. (1957). Análisis Matemático 1 y 2. Buenos Aires, Kapelusz. • Thomas, G.; Finney, R.L. (1999). Cálculo en Varias Variables, 9a edición. México, Addison Wesley Longman. • Troparevsky, M.; García, R. (1997). Matemática con Mathematica. Buenos Aires, Nueva Librería. • Wolfram, S. (1991). Mathematica. Illinois, Addison-Wesley Publishing Company, Inc.. Equipo de apoyo necesario: PC y cañón de proyección