SlideShare une entreprise Scribd logo
1  sur  34
Télécharger pour lire hors ligne
Investigating Atoms and Atomic
Theory
 Students should be able to:
 Describe the particle theory of matter.
 Use the Bohr model to differentiate among the
three basic particles in the atom (proton,
neutron, and electron) and their charges,
relative masses, and locations.
 Compare the Bohr atomic model to the
electron cloud model with respect to their
ability to represent accurately the structure of
the atom.
Atomos: Not to Be Cut
The History of Atomic Theory
Atomic Models
 This model of the
atom may look
familiar to you. This is
the Bohr model. In
this model, the
nucleus is orbited by
electrons, which are
in different energy
levels.
 A model uses familiar ideas to
explain unfamiliar facts
observed in nature.
 A model can be changed as
new information is collected.
 The atomic
model has
changed
throughout the
centuries,
starting in 400
BC, when it
looked like a
billiard ball →
Who are these men?
In this lesson, we’ll learn
about the men whose quests
for knowledge about the
fundamental nature of the
universe helped define our
views.
Democritus
 This is the Greek
philosopher Democritus
who began the search for
a description of matter
more than 2400 years
ago.
 He asked: Could
matter be divided into
smaller and smaller
pieces forever, or was
there a limit to the
number of times a
piece of matter could
be divided?
400 BC
Atomos
 His theory: Matter could
not be divided into
smaller and smaller
pieces forever, eventually
the smallest possible
piece would be obtained.
 This piece would be
indivisible.
 He named the smallest
piece of matter “atomos,”
meaning “not to be cut.”
Atomos
 To Democritus, atoms
were small, hard
particles that were all
made of the same
material but were
different shapes and
sizes.
 Atoms were infinite in
number, always
moving and capable
of joining together.
This theory was ignored and
forgotten for more than 2000
years!
Why?
 The eminent
philosophers
of the time,
Aristotle and
Plato, had a
more
respected,
(and
ultimately
wrong)
theory.
Aristotle and Plato favored the earth, fire, air
and water approach to the nature of matter.
Their ideas held sway because of their
eminence as philosophers. The atomos idea
was buried for approximately 2000 years.
Dalton’s Model
 In the early 1800s,
the English
Chemist John
Dalton performed a
number of
experiments that
eventually led to
the acceptance of
the idea of atoms.
Dalton’s Theory
 He deduced that all
elements are composed of
atoms. Atoms are
indivisible and
indestructible particles.
 Atoms of the same element
are exactly alike.
 Atoms of different elements
are different.
 Compounds are formed by
the joining of atoms of two
or more elements.
.
This theory
became one
of the
foundations
of modern
chemistry.
Thomson’s Plum Pudding
Model
 In 1897, the
English scientist
J.J. Thomson
provided the first
hint that an atom
is made of even
smaller particles.
Thomson Model
 He proposed a
model of the atom
that is sometimes
called the “Plum
Pudding” model.
 Atoms were made
from a positively
charged substance
with negatively
charged electrons
scattered about,
like raisins in a
pudding.
Thomson Model
 Thomson studied
the passage of
an electric
current through a
gas.
 As the current
passed through
the gas, it gave
off rays of
negatively
charged
Thomson Model
 This surprised
Thomson,
because the
atoms of the gas
were uncharged.
Where had the
negative charges
come from?
Where did
they come
from?
Thomson concluded that the
negative charges came from within
the atom.
A particle smaller than an atom had
to exist.
The atom was divisible!
Thomson called the negatively
charged “corpuscles,” today known
as electrons.
Since the gas was known to be
neutral, having no charge, he
reasoned that there must be
positively charged particles in the
atom.
But he could never find them.
Rutherford’s Gold Foil
Experiment
 In 1908, the
English physicist
Ernest Rutherford
was hard at work
on an experiment
that seemed to
have little to do
with unraveling the
mysteries of the
atomic structure.
 Rutherford’s experiment Involved
firing a stream of tiny positively
charged particles at a thin sheet of
gold foil (2000 atoms thick)
 Most of the positively
charged “bullets” passed
right through the gold
atoms in the sheet of
gold foil without changing
course at all.
 Some of the positively
charged “bullets,”
however, did bounce
away from the gold sheet
as if they had hit
something solid. He
knew that positive
charges repel positive
charges.
 http://chemmovies.unl.edu/ChemAnime/R
UTHERFD/RUTHERFD.html
 http://chemmovies.unl.edu/ChemAnime/R
UTHERFD/RUTHERFD.html
 This could only mean that the gold atoms in the
sheet were mostly open space. Atoms were not
a pudding filled with a positively charged
material.
 Rutherford concluded that an atom had a small,
dense, positively charged center that repelled
his positively charged “bullets.”
 He called the center of the atom the “nucleus”
 The nucleus is tiny compared to the atom as a
whole.
Rutherford
 Rutherford reasoned
that all of an atom’s
positively charged
particles were
contained in the
nucleus. The
negatively charged
particles were
scattered outside the
nucleus around the
atom’s edge.
Bohr Model
 In 1913, the
Danish scientist
Niels Bohr
proposed an
improvement. In
his model, he
placed each
electron in a
specific energy
level.
Bohr Model
 According to
Bohr’s atomic
model, electrons
move in definite
orbits around the
nucleus, much like
planets circle the
sun. These orbits,
or energy levels,
are located at
certain distances
from the nucleus.
Wave Model
The Wave Model
 Today’s atomic
model is based on
the principles of
wave mechanics.
 According to the
theory of wave
mechanics,
electrons do not
move about an
atom in a definite
path, like the
planets around the
sun.
The Wave Model
 In fact, it is impossible to determine the exact
location of an electron. The probable location of
an electron is based on how much energy the
electron has.
 According to the modern atomic model, at atom
has a small positively charged nucleus
surrounded by a large region in which there are
enough electrons to make an atom neutral.
Electron Cloud:
 A space in which
electrons are likely to be
found.
 Electrons whirl about the
nucleus billions of times
in one second
 They are not moving
around in random
patterns.
 Location of electrons
depends upon how much
energy the electron has.
Electron Cloud:
 Depending on their energy they are locked into a
certain area in the cloud.
 Electrons with the lowest energy are found in
the energy level closest to the nucleus
 Electrons with the highest energy are found
in the outermost energy levels, farther from
the nucleus.
Indivisible Electron Nucleus Orbit Electron
Cloud
Greek X
Dalton X
Thomson X
Rutherford X X
Bohr X X X
Wave X X X

Contenu connexe

Tendances

The history of atomic theory (1)
The history of atomic theory (1)The history of atomic theory (1)
The history of atomic theory (1)fannybby
 
The atomic theory
The atomic theoryThe atomic theory
The atomic theoryalexis1626
 
The atomic structure (models)
The atomic structure (models)The atomic structure (models)
The atomic structure (models)Russel Deleña
 
2008 Atomic Theories
2008  Atomic Theories2008  Atomic Theories
2008 Atomic Theoriestams
 
Evolution of atomic theory
Evolution of atomic theoryEvolution of atomic theory
Evolution of atomic theoryMrsKendall
 
8th chemistry atomicstructure
8th chemistry atomicstructure8th chemistry atomicstructure
8th chemistry atomicstructureSyed Mohuddin
 
Atomic Model Timeline
Atomic Model TimelineAtomic Model Timeline
Atomic Model TimelineSam
 
Introduction to atomic theory ppt
Introduction to atomic theory pptIntroduction to atomic theory ppt
Introduction to atomic theory pptMariana Serrato
 
Physical science 4.1 : Development of Atomic Theory
Physical science 4.1 : Development of Atomic TheoryPhysical science 4.1 : Development of Atomic Theory
Physical science 4.1 : Development of Atomic TheoryChris Foltz
 
History Of Atomic Structure
History Of Atomic StructureHistory Of Atomic Structure
History Of Atomic Structureguest5c8bc1
 
Atomic models
Atomic modelsAtomic models
Atomic modelshegla96
 
Intro to Atoms and Atomic Theory
Intro to Atoms and Atomic TheoryIntro to Atoms and Atomic Theory
Intro to Atoms and Atomic TheoryDorettaA
 

Tendances (18)

Chemistry ppt
Chemistry pptChemistry ppt
Chemistry ppt
 
The history of atomic theory (1)
The history of atomic theory (1)The history of atomic theory (1)
The history of atomic theory (1)
 
The atomic theory
The atomic theoryThe atomic theory
The atomic theory
 
Atomic Theory
Atomic TheoryAtomic Theory
Atomic Theory
 
The atomic structure (models)
The atomic structure (models)The atomic structure (models)
The atomic structure (models)
 
Ch 11.1 Atomic Models
Ch 11.1 Atomic ModelsCh 11.1 Atomic Models
Ch 11.1 Atomic Models
 
2008 Atomic Theories
2008  Atomic Theories2008  Atomic Theories
2008 Atomic Theories
 
Evolution of atomic theory
Evolution of atomic theoryEvolution of atomic theory
Evolution of atomic theory
 
8th chemistry atomicstructure
8th chemistry atomicstructure8th chemistry atomicstructure
8th chemistry atomicstructure
 
Atom models
Atom modelsAtom models
Atom models
 
Atomic Model Timeline
Atomic Model TimelineAtomic Model Timeline
Atomic Model Timeline
 
Introduction to atomic theory ppt
Introduction to atomic theory pptIntroduction to atomic theory ppt
Introduction to atomic theory ppt
 
Physical science 4.1 : Development of Atomic Theory
Physical science 4.1 : Development of Atomic TheoryPhysical science 4.1 : Development of Atomic Theory
Physical science 4.1 : Development of Atomic Theory
 
History Of Atomic Structure
History Of Atomic StructureHistory Of Atomic Structure
History Of Atomic Structure
 
Atomic models
Atomic modelsAtomic models
Atomic models
 
Atomic theory
Atomic theoryAtomic theory
Atomic theory
 
jj.thomson
jj.thomsonjj.thomson
jj.thomson
 
Intro to Atoms and Atomic Theory
Intro to Atoms and Atomic TheoryIntro to Atoms and Atomic Theory
Intro to Atoms and Atomic Theory
 

Similaire à Atomos (1)

Similaire à Atomos (1) (20)

atomos presentation. grade 11 lesson.ppt
atomos presentation. grade 11 lesson.pptatomos presentation. grade 11 lesson.ppt
atomos presentation. grade 11 lesson.ppt
 
atomos POWERT POINT PRESENTATION FOR GRADE 8.ppt
atomos POWERT POINT PRESENTATION FOR GRADE 8.pptatomos POWERT POINT PRESENTATION FOR GRADE 8.ppt
atomos POWERT POINT PRESENTATION FOR GRADE 8.ppt
 
atomos.ppt
atomos.pptatomos.ppt
atomos.ppt
 
Atomic structure ppt
Atomic structure pptAtomic structure ppt
Atomic structure ppt
 
Atomic Structure Ppt
Atomic Structure PptAtomic Structure Ppt
Atomic Structure Ppt
 
Atomos[1]
Atomos[1]Atomos[1]
Atomos[1]
 
Atomos
AtomosAtomos
Atomos
 
Atomos[1]
Atomos[1]Atomos[1]
Atomos[1]
 
atomos.ppt
atomos.pptatomos.ppt
atomos.ppt
 
Atomic models.ppt
Atomic models.pptAtomic models.ppt
Atomic models.ppt
 
SCI 10 HISTORY OF ATOMIC MODEL PPT 2-1.ppt
SCI 10 HISTORY OF ATOMIC MODEL PPT 2-1.pptSCI 10 HISTORY OF ATOMIC MODEL PPT 2-1.ppt
SCI 10 HISTORY OF ATOMIC MODEL PPT 2-1.ppt
 
HISTORY OF ATOMIC MODEL grade 9 topic.pptx
HISTORY OF ATOMIC MODEL grade 9 topic.pptxHISTORY OF ATOMIC MODEL grade 9 topic.pptx
HISTORY OF ATOMIC MODEL grade 9 topic.pptx
 
Chapter 3 - Atoms
Chapter 3 - AtomsChapter 3 - Atoms
Chapter 3 - Atoms
 
Atoms
AtomsAtoms
Atoms
 
Atom History Timeline and Structure.ppt
Atom History Timeline and Structure.pptAtom History Timeline and Structure.ppt
Atom History Timeline and Structure.ppt
 
Aneesh bapat structure of an atom
Aneesh bapat structure of an atomAneesh bapat structure of an atom
Aneesh bapat structure of an atom
 
Notes lab 04 the invisible atom
Notes lab 04 the invisible atomNotes lab 04 the invisible atom
Notes lab 04 the invisible atom
 
Atomic Models.pptx
Atomic Models.pptxAtomic Models.pptx
Atomic Models.pptx
 
History of Atom: Theories and Models
History of Atom: Theories and ModelsHistory of Atom: Theories and Models
History of Atom: Theories and Models
 
Atoms And Molecules
Atoms And MoleculesAtoms And Molecules
Atoms And Molecules
 

Plus de Manjinder Pannu

Urine formation function of kidney
Urine formation function of kidneyUrine formation function of kidney
Urine formation function of kidneyManjinder Pannu
 
Transmisson across a synapse[1]
Transmisson across a synapse[1]Transmisson across a synapse[1]
Transmisson across a synapse[1]Manjinder Pannu
 
Neurons structure and nerve impulse
Neurons structure and nerve impulseNeurons structure and nerve impulse
Neurons structure and nerve impulseManjinder Pannu
 
Nerve impulse may 2013[1]
Nerve impulse may 2013[1]Nerve impulse may 2013[1]
Nerve impulse may 2013[1]Manjinder Pannu
 
Introduction to the nervous system and nerve tissue[1]
Introduction to the nervous system and nerve tissue[1]Introduction to the nervous system and nerve tissue[1]
Introduction to the nervous system and nerve tissue[1]Manjinder Pannu
 
Homeostasis introduction
Homeostasis introductionHomeostasis introduction
Homeostasis introductionManjinder Pannu
 
ALL ABOUT AMINES ! (chemistry)
ALL ABOUT AMINES ! (chemistry) ALL ABOUT AMINES ! (chemistry)
ALL ABOUT AMINES ! (chemistry) Manjinder Pannu
 
Awesome diversity introduction powerpoint 2012
Awesome diversity introduction powerpoint 2012Awesome diversity introduction powerpoint 2012
Awesome diversity introduction powerpoint 2012Manjinder Pannu
 
8 campbell chapter-41_digestion
8 campbell chapter-41_digestion8 campbell chapter-41_digestion
8 campbell chapter-41_digestionManjinder Pannu
 

Plus de Manjinder Pannu (13)

Urine formation function of kidney
Urine formation function of kidneyUrine formation function of kidney
Urine formation function of kidney
 
Transmisson across a synapse[1]
Transmisson across a synapse[1]Transmisson across a synapse[1]
Transmisson across a synapse[1]
 
Thekidney
ThekidneyThekidney
Thekidney
 
Sheep+brain+dissection
Sheep+brain+dissectionSheep+brain+dissection
Sheep+brain+dissection
 
Neurons structure and nerve impulse
Neurons structure and nerve impulseNeurons structure and nerve impulse
Neurons structure and nerve impulse
 
Nerve impulse may 2013[1]
Nerve impulse may 2013[1]Nerve impulse may 2013[1]
Nerve impulse may 2013[1]
 
Introduction to the nervous system and nerve tissue[1]
Introduction to the nervous system and nerve tissue[1]Introduction to the nervous system and nerve tissue[1]
Introduction to the nervous system and nerve tissue[1]
 
Homeostasis introduction
Homeostasis introductionHomeostasis introduction
Homeostasis introduction
 
ALL ABOUT AMINES ! (chemistry)
ALL ABOUT AMINES ! (chemistry) ALL ABOUT AMINES ! (chemistry)
ALL ABOUT AMINES ! (chemistry)
 
Awesome diversity introduction powerpoint 2012
Awesome diversity introduction powerpoint 2012Awesome diversity introduction powerpoint 2012
Awesome diversity introduction powerpoint 2012
 
8 campbell chapter-41_digestion
8 campbell chapter-41_digestion8 campbell chapter-41_digestion
8 campbell chapter-41_digestion
 
1 taxonomy intro[1][1]
1 taxonomy intro[1][1]1 taxonomy intro[1][1]
1 taxonomy intro[1][1]
 
Child abuse
Child abuseChild abuse
Child abuse
 

Dernier

Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxAnupam32727
 
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...Osopher
 
How to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command LineHow to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command LineCeline George
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfChristalin Nelson
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...HetalPathak10
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptshraddhaparab530
 
An Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERPAn Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERPCeline George
 
Comparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptxComparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptxAvaniJani1
 
Objectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxObjectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxMadhavi Dharankar
 

Dernier (20)

Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of EngineeringFaculty Profile prashantha K EEE dept Sri Sairam college of Engineering
Faculty Profile prashantha K EEE dept Sri Sairam college of Engineering
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptxCLASSIFICATION OF ANTI - CANCER DRUGS.pptx
CLASSIFICATION OF ANTI - CANCER DRUGS.pptx
 
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
Healthy Minds, Flourishing Lives: A Philosophical Approach to Mental Health a...
 
How to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command LineHow to Uninstall a Module in Odoo 17 Using Command Line
How to Uninstall a Module in Odoo 17 Using Command Line
 
Chi-Square Test Non Parametric Test Categorical Variable
Chi-Square Test Non Parametric Test Categorical VariableChi-Square Test Non Parametric Test Categorical Variable
Chi-Square Test Non Parametric Test Categorical Variable
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
Plagiarism,forms,understand about plagiarism,avoid plagiarism,key significanc...
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdf
 
Spearman's correlation,Formula,Advantages,
Spearman's correlation,Formula,Advantages,Spearman's correlation,Formula,Advantages,
Spearman's correlation,Formula,Advantages,
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
Satirical Depths - A Study of Gabriel Okara's Poem - 'You Laughed and Laughed...
 
Integumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.pptIntegumentary System SMP B. Pharm Sem I.ppt
Integumentary System SMP B. Pharm Sem I.ppt
 
An Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERPAn Overview of the Calendar App in Odoo 17 ERP
An Overview of the Calendar App in Odoo 17 ERP
 
Comparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptxComparative Literature in India by Amiya dev.pptx
Comparative Literature in India by Amiya dev.pptx
 
Objectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxObjectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptx
 

Atomos (1)

  • 1. Investigating Atoms and Atomic Theory  Students should be able to:  Describe the particle theory of matter.  Use the Bohr model to differentiate among the three basic particles in the atom (proton, neutron, and electron) and their charges, relative masses, and locations.  Compare the Bohr atomic model to the electron cloud model with respect to their ability to represent accurately the structure of the atom.
  • 2. Atomos: Not to Be Cut The History of Atomic Theory
  • 3. Atomic Models  This model of the atom may look familiar to you. This is the Bohr model. In this model, the nucleus is orbited by electrons, which are in different energy levels.  A model uses familiar ideas to explain unfamiliar facts observed in nature.  A model can be changed as new information is collected.
  • 4.  The atomic model has changed throughout the centuries, starting in 400 BC, when it looked like a billiard ball →
  • 5. Who are these men? In this lesson, we’ll learn about the men whose quests for knowledge about the fundamental nature of the universe helped define our views.
  • 6. Democritus  This is the Greek philosopher Democritus who began the search for a description of matter more than 2400 years ago.  He asked: Could matter be divided into smaller and smaller pieces forever, or was there a limit to the number of times a piece of matter could be divided? 400 BC
  • 7. Atomos  His theory: Matter could not be divided into smaller and smaller pieces forever, eventually the smallest possible piece would be obtained.  This piece would be indivisible.  He named the smallest piece of matter “atomos,” meaning “not to be cut.”
  • 8. Atomos  To Democritus, atoms were small, hard particles that were all made of the same material but were different shapes and sizes.  Atoms were infinite in number, always moving and capable of joining together.
  • 9. This theory was ignored and forgotten for more than 2000 years!
  • 10. Why?  The eminent philosophers of the time, Aristotle and Plato, had a more respected, (and ultimately wrong) theory. Aristotle and Plato favored the earth, fire, air and water approach to the nature of matter. Their ideas held sway because of their eminence as philosophers. The atomos idea was buried for approximately 2000 years.
  • 11.
  • 12. Dalton’s Model  In the early 1800s, the English Chemist John Dalton performed a number of experiments that eventually led to the acceptance of the idea of atoms.
  • 13. Dalton’s Theory  He deduced that all elements are composed of atoms. Atoms are indivisible and indestructible particles.  Atoms of the same element are exactly alike.  Atoms of different elements are different.  Compounds are formed by the joining of atoms of two or more elements.
  • 14. . This theory became one of the foundations of modern chemistry.
  • 15. Thomson’s Plum Pudding Model  In 1897, the English scientist J.J. Thomson provided the first hint that an atom is made of even smaller particles.
  • 16. Thomson Model  He proposed a model of the atom that is sometimes called the “Plum Pudding” model.  Atoms were made from a positively charged substance with negatively charged electrons scattered about, like raisins in a pudding.
  • 17. Thomson Model  Thomson studied the passage of an electric current through a gas.  As the current passed through the gas, it gave off rays of negatively charged
  • 18. Thomson Model  This surprised Thomson, because the atoms of the gas were uncharged. Where had the negative charges come from? Where did they come from?
  • 19. Thomson concluded that the negative charges came from within the atom. A particle smaller than an atom had to exist. The atom was divisible! Thomson called the negatively charged “corpuscles,” today known as electrons. Since the gas was known to be neutral, having no charge, he reasoned that there must be positively charged particles in the atom. But he could never find them.
  • 20. Rutherford’s Gold Foil Experiment  In 1908, the English physicist Ernest Rutherford was hard at work on an experiment that seemed to have little to do with unraveling the mysteries of the atomic structure.
  • 21.  Rutherford’s experiment Involved firing a stream of tiny positively charged particles at a thin sheet of gold foil (2000 atoms thick)
  • 22.  Most of the positively charged “bullets” passed right through the gold atoms in the sheet of gold foil without changing course at all.  Some of the positively charged “bullets,” however, did bounce away from the gold sheet as if they had hit something solid. He knew that positive charges repel positive charges.
  • 23.
  • 25.  This could only mean that the gold atoms in the sheet were mostly open space. Atoms were not a pudding filled with a positively charged material.  Rutherford concluded that an atom had a small, dense, positively charged center that repelled his positively charged “bullets.”  He called the center of the atom the “nucleus”  The nucleus is tiny compared to the atom as a whole.
  • 26. Rutherford  Rutherford reasoned that all of an atom’s positively charged particles were contained in the nucleus. The negatively charged particles were scattered outside the nucleus around the atom’s edge.
  • 27. Bohr Model  In 1913, the Danish scientist Niels Bohr proposed an improvement. In his model, he placed each electron in a specific energy level.
  • 28. Bohr Model  According to Bohr’s atomic model, electrons move in definite orbits around the nucleus, much like planets circle the sun. These orbits, or energy levels, are located at certain distances from the nucleus.
  • 30. The Wave Model  Today’s atomic model is based on the principles of wave mechanics.  According to the theory of wave mechanics, electrons do not move about an atom in a definite path, like the planets around the sun.
  • 31. The Wave Model  In fact, it is impossible to determine the exact location of an electron. The probable location of an electron is based on how much energy the electron has.  According to the modern atomic model, at atom has a small positively charged nucleus surrounded by a large region in which there are enough electrons to make an atom neutral.
  • 32. Electron Cloud:  A space in which electrons are likely to be found.  Electrons whirl about the nucleus billions of times in one second  They are not moving around in random patterns.  Location of electrons depends upon how much energy the electron has.
  • 33. Electron Cloud:  Depending on their energy they are locked into a certain area in the cloud.  Electrons with the lowest energy are found in the energy level closest to the nucleus  Electrons with the highest energy are found in the outermost energy levels, farther from the nucleus.
  • 34. Indivisible Electron Nucleus Orbit Electron Cloud Greek X Dalton X Thomson X Rutherford X X Bohr X X X Wave X X X