SlideShare a Scribd company logo
1 of 38
Download to read offline
Institute of Structural Engineering Page 1
Method of Finite Elements I
Chapter 4
Isoparametric Elements
Institute of Structural Engineering Page 2
Method of Finite Elements I
30-Apr-10
Today’s Lecture Contents
• The Shape Function
• Isoparametric elements
• 1D Demonstration: Bar elements
• 2D Demonstration: Triangular elements
Institute of Structural Engineering Page 3
Method of Finite Elements I
30-Apr-10
Shape functions comprise interpolation functions which relate the
variables in the finite element with their values in the element nodes. The
latter are obtained through solving the problem using finite element
procedures.
In general we may write:
where:
is the function under investigation (for example:
displacement field)
is the shape functions matrix
is the vector of unknowns in the nodes
(for example: displacements)
The Shape Function
 
( ) i i
i
u x H x u u
 
 H
( )
u x
( )
x
H
 
1 2
T
N
u u u u

Institute of Structural Engineering Page 4
Method of Finite Elements I
30-Apr-10
Regardless of the dimension of the element used, we have to bear in
mind that Shape Functions need to satisfy the following constraints:
• in node i has a value of 1 and in all other nodes assumes a
value of 0.
• Furthermore we have to satisfy the continuity between the
adjoining elements.
Example: rectangular element with 6 nodes
The Shape Function
 
i
H x
H4 H5
Institute of Structural Engineering Page 5
Method of Finite Elements I
30-Apr-10
Usually, polynomial functions are used as interpolation functions,
for example:
The Shape Function
 
0
N
i
n i
i
P x a x

 
where n is the order of the polynomial; is equal to the
number of unknowns in the nodes (degrees of freedom).
In MFE we use three different polynomials:
 Lagrange
 Serendipity and
 Hermitian polynomials.
Institute of Structural Engineering Page 6
Method of Finite Elements I
30-Apr-10
Lagrange Polynomials
The Shape Function
A function φ(x) can be approximated by a polynomial of the order m
and the values of φ(x) in those m+1 points:
     
1
1
m
i
i
i
x x L x
  


  
where:
 
    
    
1
1 2 1
1 1 2 1
m
j m
i
j i j i i i m
i j
x x x x x x x x
L x
x x x x x x x x


 

   
 
   

Institute of Structural Engineering Page 7
Method of Finite Elements I
30-Apr-10
Lagrange Polynomials
The Shape Function
A function φ(x) can be approximated by a polynomial of the order m
and the values of φ(x) in those m+1 points:
f x
( )»f x
( )= Li
x
( )fi
i=1
m+1
å
Institute of Structural Engineering Page 8
Method of Finite Elements I
30-Apr-10
Lagrange
Polynomials
Example
Institute of Structural Engineering Page 9
Method of Finite Elements I
30-Apr-10
Serendipity Polynomials
These functions are similar to Lagrangian polynomials, but for their
incompleteness. Due to this fact we do not need to introduce
additional inner nodes, as for Lagrangian polynomials of higher order.
Serendipity Polynomials
Lagrange Polynomials
Institute of Structural Engineering Page 10
Method of Finite Elements I
30-Apr-10
Hermitian Polynomials
Lagrangian polynomials and serendipity functions provide a C0
continuity. If we additionally need continuity of the first derivatives
between the finite elements we use Hermitian polynomials.
A Hermitian polynomial of the order n, Hn(x), is a 2n+1 order
polynomial. For example a Hermitian polynomial of the first order is
actually a third order polynomial.
Let us consider a bar element with nodes on its ends. Unknowns are
values of the function φ in the nodes 1 and 2, φ1 and φ2, and first
derivatives of φ in respect to x , φ1,x and φ2,x
Remember: The 1st derivative of
displacement, corresponds to rotation
Institute of Structural Engineering Page 11
Method of Finite Elements I
30-Apr-10
Hermitian Polynomials
Institute of Structural Engineering Page 12
Method of Finite Elements I
30-Apr-10
In general, we would like to be able to represent any element in a
standardized manner – introducing a transformation between the
natural coordinates and the real coordinates (global or local)
Different schemes exist for establishing such transformations:
1 sub parametric representations (less nodes for
geometric than for displacement representation)
2 isoparametric representations (same nodes for both
geometry and displacement representation)
3 super parametric representations (more nodes for
geometric than for displacement representation)
Isoparametric Elements
Institute of Structural Engineering Page 13
Method of Finite Elements I
30-Apr-10
Displacement fields as well as the geometrical representation of the
finite elements are approximated using the same approximating
functions – shape functions
x
y
r
s
1, -1
1, 1
-1, 1
-1, -1
1 1
ˆ ˆ
,
u v
2 2
ˆ ˆ
,
u v
3 3
ˆ ˆ
,
u v
4 4
ˆ ˆ
,
u v
1
4
2
3
Isoparametric Elements
This transformation allows us to refer to similar elements (eg. truss, beams, 2D
elements, in a standard manner, using the natural coordinates (r,s), without
every time referring to the specific global coordinate system used (x,y).
Institute of Structural Engineering Page 14
Method of Finite Elements I
30-Apr-10
Isoparametric elements can be one-, two- or three-dimensional:
The principle is to assure that the value of the shape function hi
is equal to one in node i and equals zero in other nodes.
1 1 1
; ;
n n n
i i i i i i
i i i
x h x y h y z h z
  
  
  
1 1 1
ˆ ˆ ˆ
; ;
n n n
i i i i i i
i i i
u hu v hv w h w
  
  
  
Isoparametric Elements
Institute of Structural Engineering Page 15
Method of Finite Elements I
30-Apr-10
In order to establish the stiffness matrixes we must differentiate
the displacements with respect to the coordinates (x, y, z).
Since the shape functions are usually defined in natural
coordinates we must introduce the necessary coordinate
transformation between natural and global or local coordinate
system. For example:
x y z
r x r y r z r
x y z
s x s y s z s
x y z
t x t y t z t
   
   
   
      
  
      
      
  
      
      
  
      
Chain rule of differentiation!
Isoparametric Elements
Institute of Structural Engineering Page 16
Method of Finite Elements I
30-Apr-10
Written in matrix notation:
x y z
r x r y r z r
x y z
s x s y s y s
x y z
t x t y t z t
   
   
   
      
  
      
      
   
      
      
  
      
x y z
r r r r x
x y z
s s s s y
x y z
t t t t z
 
 
 
 
    
   
 
   
    
 
   
    
 
   
  
   
    
 
   
    
 
   
 
   
   
    
 
Isoparametric Elements
Institute of Structural Engineering Page 17
Method of Finite Elements I
30-Apr-10
We recall the Jacobian operator J:
1

 
  
 
J J
r x x r
 
 
x y z
r r r r x
x y z
s s s s y
x y z
t t t t z
 
 
 
 
    
   
 
   
    
 
   
    
 
   
  
   
    
 
   
    
 
   
 
   
   
    
 
Isoparametric Elements
Institute of Structural Engineering Page 18
Method of Finite Elements I
30-Apr-10
Let us now consider the derivation of the stiffness matrix K.
Firstly, we write for the strain matrix (using matrix B):
and than we can write up the integrals for calculating the stiffness
matrix:
ˆ

ε Bu
det
T
V
T
V
dV
dr ds dt




K B CB
B CB J
Isoparametric Elements
Institute of Structural Engineering Page 19
Method of Finite Elements I
30-Apr-10
Bar Element
Institute of Structural Engineering Page 20
Method of Finite Elements I
30-Apr-10
Bar Element
The relation between the x-coordinate
and the r-coordinate is given as:
The relation between the displacement
u and the nodal displacements are
given in the same way:
1
û 2
û
y
x
1
x
2
x
0
r 
1
r   1
r 
1 2
2
1
1 1
ˆ ˆ
(1 ) (1 )
2 2
ˆ
i i
i
u r u r u
hu

   
 
1 2
2
1
1 1
(1 ) (1 )
2 2
i i
i
x r x r x
h x

   
 
Institute of Structural Engineering Page 21
Method of Finite Elements I
30-Apr-10
Bar Element
We need to be able to establish the strains – meaning we need to
be able to take the derivatives of the displacement field in regard
to the x-coordinate
du du dr
dx dr dx
  
1 2 2 1
1 2 2 1
2 1 2 1
2 1
1 1 1
ˆ ˆ ˆ ˆ
( (1 ) (1 ) ) ( )
2 2 2
1 1 1
( (1 ) (1 ) ) ( )
2 2 2 2
ˆ ˆ ˆ ˆ
( ) ( )
( )
du d
r u r u u u
dr dr
dx d L
r x r x x x
dr dr
u u u u
du
dx x x L

     
      

 
  

1
û 2
û
y
x
1
x
2
x
0
r 
1
r   1
r 
Institute of Structural Engineering Page 22
Method of Finite Elements I
30-Apr-10
Bar Element
The strain-displacement matrix then becomes:
and the stiffness matrix is calculated as:
 
1
1 1
L
 
B
 
1
2
1
1
2 1
1
1 1 ,
1 2
1 1 1 1
1 1 1 1
2
AE dx L
dr
L dr
AE L AE
r
L L



 
   
 
 

 
   
 
   
 
   

K J J
K K
Institute of Structural Engineering Page 23
Method of Finite Elements I
30-Apr-10
The natural coordinates for the 3-node bar element:
Bar Elements
Node 2
Node 1 Node 3
0.3L 0.7L
1
0
r
x
 

0
0.3
r
x L


1
r
x L


1
r   0
r  1
r 
1
1
r   0
r  1
r 
1
2
2 1
h r
 
2
1
1 1
(1 ) (1 )
2 2
h r r
   
1
r   0
r  1
r 
1
2
3
1 1
(1 ) (1 )
2 2
h r r
   
Institute of Structural Engineering Page 24
Method of Finite Elements I
30-Apr-10
The natural coordinates for the generalized bar element:
Bar Elements
Node 1
1
r   0
r  1
r 
1
r  
1
3
r   1
r 
1
3
r 
Three nodes
Four nodes
Node 3 Node 2
Node 4
Institute of Structural Engineering Page 25
Method of Finite Elements I
30-Apr-10
The shape functions for the
generalized bar element:
Bar Elements
1
2
2
3
3 2
4
1
(1 )
2
1
(1 )
2
(1 )
1
( 27 9 27 9)
16
h r
h r
h r
h r r r
 
 
 
    
2
2
1
(1 )
2
1
(1 )
2
r
r
 
 
3 2
3 2
3 2
1
( 9 9 1)
16
1
(9 9 1)
16
1
(27 7 27 7)
16
r r r
r r r
r r r
    
   
   
Include only if
node 3 is present
Include only if nodes 3 and 4
are present
Shape functions
Institute of Structural Engineering Page 26
Method of Finite Elements I
30-Apr-10
Let us now move in the 2D. The natural coordinates for the
standard triangular element (r and s) may be represented as:
and the shape functions may be given as:
r
s
1 2
3
(0,0) (1,0)
(0,1)
1
2
3
1
h r s
h r
h s
  


Triangular Elements
Institute of Structural Engineering Page 27
Method of Finite Elements I
30-Apr-10
Let us establish the stiffness matrix for a triangular constant strain
element:
4
3
x r s
y s
 

r
s
1 2
3
(0,0) (1,0)
(0,1)
1 2
3
(0,0) (4,0)
(1,3)
x
y
3 3
1 1
x ,
i i i i
i i
h x y h y
 
 
 
1
2
3
1
h r s
h r
h s
  


Triangular Elements
Institute of Structural Engineering Page 28
Method of Finite Elements I
30-Apr-10
x y z
r r r r x
x y z
s s s s y
x y z
t t t t z
 
 
 
 
    
   
 
   
    
 
   
    
 
   
  
   
    
 
   
    
 
   
 
   
   
    
 
In this case (2D) we obtain for the Jacobi matrix :
4
3
x r s
y s
 

1
4 0
1 3
3 0
1
1 4
det
3 0
1
1 4
12

 
  
 

 
  

 
 
  

 
J
J
J
Triangular Elements
1
x r

 

 
J
Institute of Structural Engineering Page 29
Method of Finite Elements I
30-Apr-10
Further on, we obtain for the interpolation matrix H and for
displacement field (u, v) in element:
(1 ) 0 0 0
0 (1 ) 0 0
r s r s
r s r s
 
 
  
 
 
H
1 1 2 2 3 3
1 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆ ˆ
(1 ) 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ
0 (1 ) 0 0
u r s u v ru v su v
v u r s v u rv u sv
       
       
Triangular Elements
Institute of Structural Engineering Page 30
Method of Finite Elements I
30-Apr-10
For plane stress problems one has
, ,
xx yy xy
u v u v
x y y x
  
   
   
   
r s r s
x x r x s x x x r
r s r s
y y r y s y y y s
       
     
 
        
       
 
   
   

        
     

 
     
       
 
 
    
 
   
  
   
   
   
 
  
   
 
   
 
  
   
   
   
   
 
  
   
   
x y
x x
r r r
x y
y y
s s s
J
Triangular Elements
Institute of Structural Engineering Page 31
Method of Finite Elements I
30-Apr-10
1 1 2 2 3 3
1 1 2 2 3 3
ˆ ˆ ˆ ˆ ˆ ˆ
(1 ) 0 0 0
ˆ ˆ ˆ ˆ ˆ ˆ
0 (1 ) 0 0
u r s u v ru v su v
v u r s v u rv u sv
       
       
, ,
xx yy xy
u v u v
x y y x
  
   
   
   
1 2 1 3
1 3 1 2
ˆ ˆ ˆ ˆ
,
ˆ ˆ ˆ ˆ
,
u u
u u u u
r s
v v
v v v v
s r
 
     
 
 
     
 
Having in mind that
one obtains
Triangular Elements
Institute of Structural Engineering Page 32
Method of Finite Elements I
30-Apr-10
and so
with
1
1
1 0 1 0 0 0
ˆ
1 0 0 0 1 0
0 1 0 1 0 0
ˆ
0 1 0 0 0 1
u
x
u
y
v
x
v
y



 
  
 

    
 
   
 

 

 
  
 

    
 
   
 

 
J u
J u
1 3 0
1
1 4
12
  
  

 
J
Triangular Elements
u/r
u/s
v/r
v/s
Institute of Structural Engineering Page 33
Method of Finite Elements I
30-Apr-10
one gets
3 0 1 0 1 0 0 0
1
ˆ
1 4 1 0 0 0 1 0
12
3 0 0 1 0 1 0 0
1
1 4 0 1 0 0 0
12
u
x
u
y
v
x
v
y

 
  
   

      
  
     
 

 

 
  
 

    
  
   
 

 
u
ˆ
1
 
 
 
u
Triangular Elements
Institute of Structural Engineering Page 34
Method of Finite Elements I
30-Apr-10
and
3 0 3 0 0 0
1
ˆ
3 0 1 0 4 0
12
0 3 0 3 0 0
1
ˆ
0 3 0 1 0 4
12
u
x
u
y
v
x
v
y

 
  
 

    
  
   
 

 

 
  
 

    
  
   
 

 
u
u
3 0 3 0 0 0
1
0 3 0 1 0 4
12
3 3 1 3 4 0

 
 
  
 
 
  
 
B
Triangular Elements
strain vector does not
depend on r or s so it is
constant strain triangle
u/x
v/y
u/y + v/x
Institute of Structural Engineering Page 35
Method of Finite Elements I
30-Apr-10
We now calculate the stiffness matrix as:
det
T T
V V
dV dr ds dt
 
 
K B CB B CB J
2
3 0 3
0 3 3
1 0 3 0 3 0 0 0
3 0 1
1 0 0 3 0
0 1 3
144(1 )
1
0 0
0 0 4
2
0 4 0




 
 
   
 
    
 
  

 
   

    

   
 
 
 

S
E t
K 1 0 4 det
3 3 1 3 4 0
 
 

 
 
  
 
drds
J
Triangular Elements
Institute of Structural Engineering Page 36
Method of Finite Elements I
30-Apr-10
which yields
2
3 3 3 0 4
3 3 3 1 0 4
12(1 )
3(1 ) 3(1
2
  
 

 
  

   

   

T
S
E t
K B det
) (1 ) 3(1 ) 4(1 )
0
2 2 2 2
  
 
 
 
 
 
   
 
 
drds
J
Triangular Elements
Institute of Structural Engineering Page 37
Method of Finite Elements I
30-Apr-10
and further
2
9(1 ) 9(1 ) 3(1 ) 9(1 ) 12(1 )
9 9 9 3 12
2 2 2 2 2
9(1 ) 3(1 ) 9(1 ) 12(1 )
9 9 3
2 2 2 2
12(1 )
    
  
   


     
     
    
   


 
S
E t
K
12
(1 ) 3(1 ) 4(1 )
9 3 12
2 2 2
Symmetrical
  
 

   
  
9(1 ) 12(1 )
1 4
2 2
16(1 )
0
2
 

 
 

16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
drds
Triangular Elements
Institute of Structural Engineering Page 38
Method of Finite Elements I
30-Apr-10
finally delivering the stiffness matrix for plane stress problem:
2
9(1 ) 9(1 ) 3(1 ) 9(1 ) 12(1 )
9 9 9 3 12
2 2 2 2 2
9(1 ) 3(1 ) 9(1 ) 12(1 )
9 9 3
2 2 2 2
24(1 )
    
  
   


     
     
    
   



E t
K
12
(1 ) 3(1 ) 4(1 )
9 3 12
2 2 2
Symmetrical
  
 

   
  
9(1 ) 12(1 )
1 4
2 2
16(1 )
0
2
 

 
 

16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Triangular Elements

More Related Content

What's hot

Finite Element Methode (FEM) Notes
Finite Element Methode (FEM) NotesFinite Element Methode (FEM) Notes
Finite Element Methode (FEM) NotesZulkifli Yunus
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1propaul
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular rahul183
 
Finite Element Method
Finite Element MethodFinite Element Method
Finite Element MethodTahir Khan
 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesAmit Ghongade
 
Finite Element Analysis -Dr.P.Parandaman
Finite Element Analysis  -Dr.P.ParandamanFinite Element Analysis  -Dr.P.Parandaman
Finite Element Analysis -Dr.P.ParandamanDr.P.Parandaman
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element methodmahesh gaikwad
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)Sreekanth G
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of fem01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of femSura Venkata Mahesh
 
Finite Element Analysis - The Basics
Finite Element Analysis - The BasicsFinite Element Analysis - The Basics
Finite Element Analysis - The BasicsSujith Jose
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite MaterialsMohammad Tawfik
 
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS velliyangiri1
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Mahdi Damghani
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric Raj Kumar
 

What's hot (20)

Finite Element Methode (FEM) Notes
Finite Element Methode (FEM) NotesFinite Element Methode (FEM) Notes
Finite Element Methode (FEM) Notes
 
FEM: Bars and Trusses
FEM: Bars and TrussesFEM: Bars and Trusses
FEM: Bars and Trusses
 
ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS
 
Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1Finite Element Analysis - UNIT-1
Finite Element Analysis - UNIT-1
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Finite Element Method
Finite Element MethodFinite Element Method
Finite Element Method
 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notes
 
Finite Element Analysis -Dr.P.Parandaman
Finite Element Analysis  -Dr.P.ParandamanFinite Element Analysis  -Dr.P.Parandaman
Finite Element Analysis -Dr.P.Parandaman
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - V NOTES AND QUESTION BANK
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element method
 
Introduction to finite element method(fem)
Introduction to finite element method(fem)Introduction to finite element method(fem)
Introduction to finite element method(fem)
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Basic Elasticity
Basic ElasticityBasic Elasticity
Basic Elasticity
 
01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of fem01. steps involved, merits, demerits & limitations of fem
01. steps involved, merits, demerits & limitations of fem
 
Lecture 11 & 12
Lecture 11 & 12Lecture 11 & 12
Lecture 11 & 12
 
Finite Element Analysis - The Basics
Finite Element Analysis - The BasicsFinite Element Analysis - The Basics
Finite Element Analysis - The Basics
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite Materials
 
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
ONE DIMENSIONAL FINITE ELEMENT ANALYSIS
 
Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1Lec9 finite element_beam_structures 1
Lec9 finite element_beam_structures 1
 
Axisymmetric
Axisymmetric Axisymmetric
Axisymmetric
 

Similar to Isoparametric Elements 4.pdf

06_finite_elements_basics.ppt
06_finite_elements_basics.ppt06_finite_elements_basics.ppt
06_finite_elements_basics.pptAditya765321
 
NN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdfNN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdfchiron1988
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graphijtsrd
 
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...Cemal Ardil
 
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...Ceni Babaoglu, PhD
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and DerivativesFaisal Waqar
 
論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations
論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations
論文紹介:Towards Robust Adaptive Object Detection Under Noisy AnnotationsToru Tamaki
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdfYesuf3
 
Conversion of transfer function to canonical state variable models
Conversion of transfer function to canonical state variable modelsConversion of transfer function to canonical state variable models
Conversion of transfer function to canonical state variable modelsJyoti Singh
 
A guide to Tensor and its applications in Machine Learning.pdf
A guide to Tensor and its applications in Machine Learning.pdfA guide to Tensor and its applications in Machine Learning.pdf
A guide to Tensor and its applications in Machine Learning.pdfVanessa Bridge
 
generalformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelgeneralformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelPiyushDhuri1
 
generalformulation.ppt
generalformulation.pptgeneralformulation.ppt
generalformulation.pptRajuRaju183149
 
Lesson 1_Functions.pptx
Lesson 1_Functions.pptxLesson 1_Functions.pptx
Lesson 1_Functions.pptxAlfredoLabador
 

Similar to Isoparametric Elements 4.pdf (20)

FEMSlide 1.pdf
FEMSlide 1.pdfFEMSlide 1.pdf
FEMSlide 1.pdf
 
06_finite_elements_basics.ppt
06_finite_elements_basics.ppt06_finite_elements_basics.ppt
06_finite_elements_basics.ppt
 
5994944.ppt
5994944.ppt5994944.ppt
5994944.ppt
 
Irjet v2i170
Irjet v2i170Irjet v2i170
Irjet v2i170
 
1 d analysis
1 d analysis1 d analysis
1 d analysis
 
UNIT I_1.pdf
UNIT I_1.pdfUNIT I_1.pdf
UNIT I_1.pdf
 
UNIT I_5.pdf
UNIT I_5.pdfUNIT I_5.pdf
UNIT I_5.pdf
 
NN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdfNN_02_Threshold_Logic_Units.pdf
NN_02_Threshold_Logic_Units.pdf
 
Formulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on GraphFormulas for Surface Weighted Numbers on Graph
Formulas for Surface Weighted Numbers on Graph
 
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
Neuro -fuzzy-networks-for-identification-of-mathematical-model-parameters-of-...
 
201977 1-1-4-pb
201977 1-1-4-pb201977 1-1-4-pb
201977 1-1-4-pb
 
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
 
Basics of Integration and Derivatives
Basics of Integration and DerivativesBasics of Integration and Derivatives
Basics of Integration and Derivatives
 
論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations
論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations
論文紹介:Towards Robust Adaptive Object Detection Under Noisy Annotations
 
Lecture 3.pdf
Lecture 3.pdfLecture 3.pdf
Lecture 3.pdf
 
Conversion of transfer function to canonical state variable models
Conversion of transfer function to canonical state variable modelsConversion of transfer function to canonical state variable models
Conversion of transfer function to canonical state variable models
 
A guide to Tensor and its applications in Machine Learning.pdf
A guide to Tensor and its applications in Machine Learning.pdfA guide to Tensor and its applications in Machine Learning.pdf
A guide to Tensor and its applications in Machine Learning.pdf
 
generalformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodelgeneralformulationofFiniteelementofmodel
generalformulationofFiniteelementofmodel
 
generalformulation.ppt
generalformulation.pptgeneralformulation.ppt
generalformulation.ppt
 
Lesson 1_Functions.pptx
Lesson 1_Functions.pptxLesson 1_Functions.pptx
Lesson 1_Functions.pptx
 

Recently uploaded

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringJuanCarlosMorales19600
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substationstephanwindworld
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...121011101441
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncssuser2ae721
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 

Recently uploaded (20)

Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Piping Basic stress analysis by engineering
Piping Basic stress analysis by engineeringPiping Basic stress analysis by engineering
Piping Basic stress analysis by engineering
 
Earthing details of Electrical Substation
Earthing details of Electrical SubstationEarthing details of Electrical Substation
Earthing details of Electrical Substation
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...Instrumentation, measurement and control of bio process parameters ( Temperat...
Instrumentation, measurement and control of bio process parameters ( Temperat...
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsyncWhy does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
Why does (not) Kafka need fsync: Eliminating tail latency spikes caused by fsync
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 

Isoparametric Elements 4.pdf

  • 1. Institute of Structural Engineering Page 1 Method of Finite Elements I Chapter 4 Isoparametric Elements
  • 2. Institute of Structural Engineering Page 2 Method of Finite Elements I 30-Apr-10 Today’s Lecture Contents • The Shape Function • Isoparametric elements • 1D Demonstration: Bar elements • 2D Demonstration: Triangular elements
  • 3. Institute of Structural Engineering Page 3 Method of Finite Elements I 30-Apr-10 Shape functions comprise interpolation functions which relate the variables in the finite element with their values in the element nodes. The latter are obtained through solving the problem using finite element procedures. In general we may write: where: is the function under investigation (for example: displacement field) is the shape functions matrix is the vector of unknowns in the nodes (for example: displacements) The Shape Function   ( ) i i i u x H x u u    H ( ) u x ( ) x H   1 2 T N u u u u 
  • 4. Institute of Structural Engineering Page 4 Method of Finite Elements I 30-Apr-10 Regardless of the dimension of the element used, we have to bear in mind that Shape Functions need to satisfy the following constraints: • in node i has a value of 1 and in all other nodes assumes a value of 0. • Furthermore we have to satisfy the continuity between the adjoining elements. Example: rectangular element with 6 nodes The Shape Function   i H x H4 H5
  • 5. Institute of Structural Engineering Page 5 Method of Finite Elements I 30-Apr-10 Usually, polynomial functions are used as interpolation functions, for example: The Shape Function   0 N i n i i P x a x    where n is the order of the polynomial; is equal to the number of unknowns in the nodes (degrees of freedom). In MFE we use three different polynomials:  Lagrange  Serendipity and  Hermitian polynomials.
  • 6. Institute of Structural Engineering Page 6 Method of Finite Elements I 30-Apr-10 Lagrange Polynomials The Shape Function A function φ(x) can be approximated by a polynomial of the order m and the values of φ(x) in those m+1 points:       1 1 m i i i x x L x         where:             1 1 2 1 1 1 2 1 m j m i j i j i i i m i j x x x x x x x x L x x x x x x x x x                
  • 7. Institute of Structural Engineering Page 7 Method of Finite Elements I 30-Apr-10 Lagrange Polynomials The Shape Function A function φ(x) can be approximated by a polynomial of the order m and the values of φ(x) in those m+1 points: f x ( )»f x ( )= Li x ( )fi i=1 m+1 å
  • 8. Institute of Structural Engineering Page 8 Method of Finite Elements I 30-Apr-10 Lagrange Polynomials Example
  • 9. Institute of Structural Engineering Page 9 Method of Finite Elements I 30-Apr-10 Serendipity Polynomials These functions are similar to Lagrangian polynomials, but for their incompleteness. Due to this fact we do not need to introduce additional inner nodes, as for Lagrangian polynomials of higher order. Serendipity Polynomials Lagrange Polynomials
  • 10. Institute of Structural Engineering Page 10 Method of Finite Elements I 30-Apr-10 Hermitian Polynomials Lagrangian polynomials and serendipity functions provide a C0 continuity. If we additionally need continuity of the first derivatives between the finite elements we use Hermitian polynomials. A Hermitian polynomial of the order n, Hn(x), is a 2n+1 order polynomial. For example a Hermitian polynomial of the first order is actually a third order polynomial. Let us consider a bar element with nodes on its ends. Unknowns are values of the function φ in the nodes 1 and 2, φ1 and φ2, and first derivatives of φ in respect to x , φ1,x and φ2,x Remember: The 1st derivative of displacement, corresponds to rotation
  • 11. Institute of Structural Engineering Page 11 Method of Finite Elements I 30-Apr-10 Hermitian Polynomials
  • 12. Institute of Structural Engineering Page 12 Method of Finite Elements I 30-Apr-10 In general, we would like to be able to represent any element in a standardized manner – introducing a transformation between the natural coordinates and the real coordinates (global or local) Different schemes exist for establishing such transformations: 1 sub parametric representations (less nodes for geometric than for displacement representation) 2 isoparametric representations (same nodes for both geometry and displacement representation) 3 super parametric representations (more nodes for geometric than for displacement representation) Isoparametric Elements
  • 13. Institute of Structural Engineering Page 13 Method of Finite Elements I 30-Apr-10 Displacement fields as well as the geometrical representation of the finite elements are approximated using the same approximating functions – shape functions x y r s 1, -1 1, 1 -1, 1 -1, -1 1 1 ˆ ˆ , u v 2 2 ˆ ˆ , u v 3 3 ˆ ˆ , u v 4 4 ˆ ˆ , u v 1 4 2 3 Isoparametric Elements This transformation allows us to refer to similar elements (eg. truss, beams, 2D elements, in a standard manner, using the natural coordinates (r,s), without every time referring to the specific global coordinate system used (x,y).
  • 14. Institute of Structural Engineering Page 14 Method of Finite Elements I 30-Apr-10 Isoparametric elements can be one-, two- or three-dimensional: The principle is to assure that the value of the shape function hi is equal to one in node i and equals zero in other nodes. 1 1 1 ; ; n n n i i i i i i i i i x h x y h y z h z          1 1 1 ˆ ˆ ˆ ; ; n n n i i i i i i i i i u hu v hv w h w          Isoparametric Elements
  • 15. Institute of Structural Engineering Page 15 Method of Finite Elements I 30-Apr-10 In order to establish the stiffness matrixes we must differentiate the displacements with respect to the coordinates (x, y, z). Since the shape functions are usually defined in natural coordinates we must introduce the necessary coordinate transformation between natural and global or local coordinate system. For example: x y z r x r y r z r x y z s x s y s z s x y z t x t y t z t                                                                Chain rule of differentiation! Isoparametric Elements
  • 16. Institute of Structural Engineering Page 16 Method of Finite Elements I 30-Apr-10 Written in matrix notation: x y z r x r y r z r x y z s x s y s y s x y z t x t y t z t                                                                 x y z r r r r x x y z s s s s y x y z t t t t z                                                                                            Isoparametric Elements
  • 17. Institute of Structural Engineering Page 17 Method of Finite Elements I 30-Apr-10 We recall the Jacobian operator J: 1         J J r x x r     x y z r r r r x x y z s s s s y x y z t t t t z                                                                                            Isoparametric Elements
  • 18. Institute of Structural Engineering Page 18 Method of Finite Elements I 30-Apr-10 Let us now consider the derivation of the stiffness matrix K. Firstly, we write for the strain matrix (using matrix B): and than we can write up the integrals for calculating the stiffness matrix: ˆ  ε Bu det T V T V dV dr ds dt     K B CB B CB J Isoparametric Elements
  • 19. Institute of Structural Engineering Page 19 Method of Finite Elements I 30-Apr-10 Bar Element
  • 20. Institute of Structural Engineering Page 20 Method of Finite Elements I 30-Apr-10 Bar Element The relation between the x-coordinate and the r-coordinate is given as: The relation between the displacement u and the nodal displacements are given in the same way: 1 û 2 û y x 1 x 2 x 0 r  1 r   1 r  1 2 2 1 1 1 ˆ ˆ (1 ) (1 ) 2 2 ˆ i i i u r u r u hu        1 2 2 1 1 1 (1 ) (1 ) 2 2 i i i x r x r x h x       
  • 21. Institute of Structural Engineering Page 21 Method of Finite Elements I 30-Apr-10 Bar Element We need to be able to establish the strains – meaning we need to be able to take the derivatives of the displacement field in regard to the x-coordinate du du dr dx dr dx    1 2 2 1 1 2 2 1 2 1 2 1 2 1 1 1 1 ˆ ˆ ˆ ˆ ( (1 ) (1 ) ) ( ) 2 2 2 1 1 1 ( (1 ) (1 ) ) ( ) 2 2 2 2 ˆ ˆ ˆ ˆ ( ) ( ) ( ) du d r u r u u u dr dr dx d L r x r x x x dr dr u u u u du dx x x L                      1 û 2 û y x 1 x 2 x 0 r  1 r   1 r 
  • 22. Institute of Structural Engineering Page 22 Method of Finite Elements I 30-Apr-10 Bar Element The strain-displacement matrix then becomes: and the stiffness matrix is calculated as:   1 1 1 L   B   1 2 1 1 2 1 1 1 1 , 1 2 1 1 1 1 1 1 1 1 2 AE dx L dr L dr AE L AE r L L                                  K J J K K
  • 23. Institute of Structural Engineering Page 23 Method of Finite Elements I 30-Apr-10 The natural coordinates for the 3-node bar element: Bar Elements Node 2 Node 1 Node 3 0.3L 0.7L 1 0 r x    0 0.3 r x L   1 r x L   1 r   0 r  1 r  1 1 r   0 r  1 r  1 2 2 1 h r   2 1 1 1 (1 ) (1 ) 2 2 h r r     1 r   0 r  1 r  1 2 3 1 1 (1 ) (1 ) 2 2 h r r    
  • 24. Institute of Structural Engineering Page 24 Method of Finite Elements I 30-Apr-10 The natural coordinates for the generalized bar element: Bar Elements Node 1 1 r   0 r  1 r  1 r   1 3 r   1 r  1 3 r  Three nodes Four nodes Node 3 Node 2 Node 4
  • 25. Institute of Structural Engineering Page 25 Method of Finite Elements I 30-Apr-10 The shape functions for the generalized bar element: Bar Elements 1 2 2 3 3 2 4 1 (1 ) 2 1 (1 ) 2 (1 ) 1 ( 27 9 27 9) 16 h r h r h r h r r r            2 2 1 (1 ) 2 1 (1 ) 2 r r     3 2 3 2 3 2 1 ( 9 9 1) 16 1 (9 9 1) 16 1 (27 7 27 7) 16 r r r r r r r r r              Include only if node 3 is present Include only if nodes 3 and 4 are present Shape functions
  • 26. Institute of Structural Engineering Page 26 Method of Finite Elements I 30-Apr-10 Let us now move in the 2D. The natural coordinates for the standard triangular element (r and s) may be represented as: and the shape functions may be given as: r s 1 2 3 (0,0) (1,0) (0,1) 1 2 3 1 h r s h r h s      Triangular Elements
  • 27. Institute of Structural Engineering Page 27 Method of Finite Elements I 30-Apr-10 Let us establish the stiffness matrix for a triangular constant strain element: 4 3 x r s y s    r s 1 2 3 (0,0) (1,0) (0,1) 1 2 3 (0,0) (4,0) (1,3) x y 3 3 1 1 x , i i i i i i h x y h y       1 2 3 1 h r s h r h s      Triangular Elements
  • 28. Institute of Structural Engineering Page 28 Method of Finite Elements I 30-Apr-10 x y z r r r r x x y z s s s s y x y z t t t t z                                                                                            In this case (2D) we obtain for the Jacobi matrix : 4 3 x r s y s    1 4 0 1 3 3 0 1 1 4 det 3 0 1 1 4 12                          J J J Triangular Elements 1 x r       J
  • 29. Institute of Structural Engineering Page 29 Method of Finite Elements I 30-Apr-10 Further on, we obtain for the interpolation matrix H and for displacement field (u, v) in element: (1 ) 0 0 0 0 (1 ) 0 0 r s r s r s r s            H 1 1 2 2 3 3 1 1 2 2 3 3 ˆ ˆ ˆ ˆ ˆ ˆ (1 ) 0 0 0 ˆ ˆ ˆ ˆ ˆ ˆ 0 (1 ) 0 0 u r s u v ru v su v v u r s v u rv u sv                 Triangular Elements
  • 30. Institute of Structural Engineering Page 30 Method of Finite Elements I 30-Apr-10 For plane stress problems one has , , xx yy xy u v u v x y y x                r s r s x x r x s x x x r r s r s y y r y s y y y s                                                                                                                                                            x y x x r r r x y y y s s s J Triangular Elements
  • 31. Institute of Structural Engineering Page 31 Method of Finite Elements I 30-Apr-10 1 1 2 2 3 3 1 1 2 2 3 3 ˆ ˆ ˆ ˆ ˆ ˆ (1 ) 0 0 0 ˆ ˆ ˆ ˆ ˆ ˆ 0 (1 ) 0 0 u r s u v ru v su v v u r s v u rv u sv                 , , xx yy xy u v u v x y y x                1 2 1 3 1 3 1 2 ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ , u u u u u u r s v v v v v v s r                     Having in mind that one obtains Triangular Elements
  • 32. Institute of Structural Engineering Page 32 Method of Finite Elements I 30-Apr-10 and so with 1 1 1 0 1 0 0 0 ˆ 1 0 0 0 1 0 0 1 0 1 0 0 ˆ 0 1 0 0 0 1 u x u y v x v y                                                     J u J u 1 3 0 1 1 4 12          J Triangular Elements u/r u/s v/r v/s
  • 33. Institute of Structural Engineering Page 33 Method of Finite Elements I 30-Apr-10 one gets 3 0 1 0 1 0 0 0 1 ˆ 1 4 1 0 0 0 1 0 12 3 0 0 1 0 1 0 0 1 1 4 0 1 0 0 0 12 u x u y v x v y                                                           u ˆ 1       u Triangular Elements
  • 34. Institute of Structural Engineering Page 34 Method of Finite Elements I 30-Apr-10 and 3 0 3 0 0 0 1 ˆ 3 0 1 0 4 0 12 0 3 0 3 0 0 1 ˆ 0 3 0 1 0 4 12 u x u y v x v y                                                     u u 3 0 3 0 0 0 1 0 3 0 1 0 4 12 3 3 1 3 4 0                  B Triangular Elements strain vector does not depend on r or s so it is constant strain triangle u/x v/y u/y + v/x
  • 35. Institute of Structural Engineering Page 35 Method of Finite Elements I 30-Apr-10 We now calculate the stiffness matrix as: det T T V V dV dr ds dt     K B CB B CB J 2 3 0 3 0 3 3 1 0 3 0 3 0 0 0 3 0 1 1 0 0 3 0 0 1 3 144(1 ) 1 0 0 0 0 4 2 0 4 0                                                  S E t K 1 0 4 det 3 3 1 3 4 0               drds J Triangular Elements
  • 36. Institute of Structural Engineering Page 36 Method of Finite Elements I 30-Apr-10 which yields 2 3 3 3 0 4 3 3 3 1 0 4 12(1 ) 3(1 ) 3(1 2                       T S E t K B det ) (1 ) 3(1 ) 4(1 ) 0 2 2 2 2                      drds J Triangular Elements
  • 37. Institute of Structural Engineering Page 37 Method of Finite Elements I 30-Apr-10 and further 2 9(1 ) 9(1 ) 3(1 ) 9(1 ) 12(1 ) 9 9 9 3 12 2 2 2 2 2 9(1 ) 3(1 ) 9(1 ) 12(1 ) 9 9 3 2 2 2 2 12(1 )                                        S E t K 12 (1 ) 3(1 ) 4(1 ) 9 3 12 2 2 2 Symmetrical              9(1 ) 12(1 ) 1 4 2 2 16(1 ) 0 2         16                                 drds Triangular Elements
  • 38. Institute of Structural Engineering Page 38 Method of Finite Elements I 30-Apr-10 finally delivering the stiffness matrix for plane stress problem: 2 9(1 ) 9(1 ) 3(1 ) 9(1 ) 12(1 ) 9 9 9 3 12 2 2 2 2 2 9(1 ) 3(1 ) 9(1 ) 12(1 ) 9 9 3 2 2 2 2 24(1 )                                       E t K 12 (1 ) 3(1 ) 4(1 ) 9 3 12 2 2 2 Symmetrical              9(1 ) 12(1 ) 1 4 2 2 16(1 ) 0 2         16                                 Triangular Elements