Municipal Solid Waste - Industrial Waste to energy

Manoj Kumar Sharma
Manoj Kumar SharmaDirector at Design Museum Pvt Ltd à Design Museum Pvt Ltd
 ONE	
  WORLD	
  
	
  TIME	
  FOR	
  CHANGE	
   1	
  
WORLDWIDE	
  CONSUMER	
  BEHAVIOUR	
  
THE	
  PROBLEM	
  OF	
  
CONSUMPTION	
  
More	
  proteins	
  =	
  mass	
  producEon	
  Increasing	
  car	
  producEon	
  
MetropolizaEon	
  =	
  megaciEes	
  =	
  poluEon	
  
Growing	
  demand	
  for	
  energy	
  result	
  in	
  	
  
environment	
  demages	
  
The	
  consumpEon	
  spiral	
  
rotates	
  faster	
  and	
  faster	
  
Worldwide.	
  
	
  
We	
  have	
  created	
  
a	
  «throw-­‐away	
  society».	
  
	
  
Raw	
  material	
  is	
  wasted	
  
instead	
  of	
  using	
  it	
  to	
  	
  
produce	
  energy.	
  
2	
  
THE	
  WORLD	
  IS	
  ONE	
  BIG	
  GARBAGE	
  DUMP	
  
THE	
  PROBLEM	
  OF	
  
WASTE	
  
Garbage	
  covers	
  the	
  planet	
  
Earth.	
  
	
  
One	
  person	
  produces	
  an	
  
average	
  of	
  half	
  a	
  ton	
  	
  
garbage	
  per	
  year	
  
	
  
It	
  is	
  stored	
  on	
  dumps,	
  	
  
consumes	
  landfills	
  and	
  
swims	
  in	
  the	
  water	
  
	
  
This	
  problem	
  needs	
  	
  
to	
  be	
  solved	
  to	
  protect	
  
our	
  planet	
  
	
  
	
  
3	
  
WORLDWIDE	
  FACTS	
   APPROACH	
  
The	
  LTC	
  method	
  offers	
  
sustainable	
  soluEons	
  for	
  
the	
  highly	
  efficient	
  and	
  
environement	
  friendly	
  	
  
producEon	
  of	
  energy	
  
out	
  of	
  all	
  oraganic	
  raw-­‐	
  or	
  
waste	
  material	
  
	
  
A	
  conversion	
  from	
  garbage	
  
to	
  energy	
  according	
  
to	
  the	
  LTC	
  technology	
  
avoids	
  poluEon,	
  replaces	
  
fossil	
  fuels,	
  reducdes	
  CO2	
  
emmissions	
  and	
  
increases	
  the	
  operaEng	
  
economoy	
  in	
  energy	
  
extracEon.	
  
	
  
•  The	
  need	
  for	
  energy	
  is	
  increasing	
  
each	
  year.	
  
•  Greenhouse	
  gas	
  emissions	
  must	
  be	
  
reduced	
  fast	
  and	
  drasEcally	
  
•  The	
  amount	
  of	
  waste	
  rapidly	
  
increases	
  and	
  it	
  has	
  become	
  a	
  
global	
  problem	
  
•  The	
  natural	
  resources	
  of	
  fossil	
  fuels	
  
decreases	
  
4	
  
SOME	
  CALL	
  IT	
  WASTE	
   WE	
  CALL	
  IT	
  ENERGY	
  
With	
  the	
  patented	
  	
  
LTC	
  technology	
  
all	
  carbonated	
  /	
  organic	
  
substances	
  can	
  be	
  
converted	
  into	
  recyclable	
  	
  	
  
substances	
  and	
  renewable	
  
energy.	
  
	
  
Besides,	
  minerals,	
  oils	
  and	
  
carbon,	
  each	
  quality	
  of	
  
organic	
  waste	
  can	
  
be	
  converted:	
  
tyres,	
  plasEc,	
  cardboard	
  	
  
packaging,	
  paper,	
  green	
  
&	
  houshold	
  waste.	
  
	
  
Waste	
  landfills	
  turn	
  into	
  	
  
raw	
  materials	
  and	
  contribute	
  
in	
  an	
  environmental	
  friendly	
  
way	
  to	
  the	
  energy	
  supply	
  of	
  
the	
  communiEes.	
  
	
  
	
  
	
  
	
  
BIOMASS	
  
	
  
Energy:	
  1,8	
  MW	
  el/to	
  
PLASTIC	
  WASTE	
  
	
  
Energy:	
  3.5	
  MW	
  el/to	
  
USED	
  TIRES	
  
	
  
Energy:	
  5.0	
  MW	
  el/to	
  
BIOMASS	
  
	
  
Energy:	
  2,4	
  MW	
  el/to	
  
HOUSHOLD	
  WASTE	
  
	
  
Energy:	
  2,2	
  MW	
  el/to	
  
ELECTRIC	
  WASTE	
  
	
  
Energy:	
  3,1	
  MW	
  el/to	
  
5	
  
LTC	
  –	
  TECHNOLOGY	
   INPUT	
  MATERIAL	
  
With the patented LTC
technology all carbonated /
organic substances can be
converted into recyclable sub-
stances and renewable energy.
Besides, minerals, oils and
carbon, each quality of organic
waste can be converted:
tyres, plastic, cardboard
packaging houshold waste.
Waste landfills turn into raw
materials and contribute in an
environmental friendly way to
the energy supply of the
communities.
Flexible with input material.
Flexible & high Performance
with Energy production.
Biomass
Agricultural
waste
Wood scraps
and wood
chips
Industrial waste
Municipal waste
(
Hospital waste
Sewage sludge
Contaminated
oil
Waste oil and
fats
Animal manure
No fermentation
necessary
Used Tires
Plastic parts of
cars
PVC, PET, PE,
PA
6	
  
LTC	
  –	
  TECHNOLOGIE	
   LTC-PROCESS
PROCESS SCHEME
LTC is a thermocatalytical
pulping process without air
supply (no combustion!), no
open flame.
LTC decomposes organic
material into their basic
elements and converts them
into a clean strong gas.
LTC produces gas or
electricity or oils with CO2-
emissions that have been
reduced by 70%.
LOW TEMPERATURE
CONVERSION
SyntheEc	
  
diesel	
  
SyntheEc	
  
gas	
  
Electricity	
  
OUTPUT-­‐PRODUCT-­‐DESIGN	
  
Product	
  mix	
  freely	
  selectable	
  
Process	
  heat	
  
for	
  	
  
drying	
  
Power	
  generaBon	
  
gas	
  turbine	
  
CirculaBon	
  high	
  power	
  blower	
  
Waste:	
  
Inert	
  mineral	
  
Process	
  about	
  4%	
  
Baffle	
  reactor	
  	
  
material	
  crushing	
  
INPUT-­‐MATERIAL	
  
PLASTIC	
  
WASTE	
  
	
  
USED	
  TIRES	
  
	
  
ELEKTRONIC	
  
SCRAP	
  
	
  
	
  HOUSEHOLD	
  
RUBBISH	
  
	
  
BIOMASS	
  
	
  
SEWAGE	
  	
  
SLUDGE	
  	
  	
  	
  	
  
	
  
150
o
	
  C	
  =	
  biomass,	
  legovers	
  
250
o
	
  C	
  =	
  hardwood,	
  plywood,	
  texEles	
  
450
o
	
  C	
  =	
  plasEc,	
  oil,	
  used	
  Eres	
  
650
o
	
  C	
  =	
  composites	
  
3	
  stage	
  
conversion	
  process	
  
or	
   or	
  
7	
  
THE	
  IDEA	
  OF	
  THE	
  LTC	
  TECHNOLOGY	
  
WHAT	
  »	
  LTC	
  «	
  STANDS	
  
FOR	
  
LOW	
  
TEMPERATURE	
  
CONVERSION	
  
WORKING	
  METHOD	
  OF	
  LTC	
  TECHNOLOGY	
  
	
  
Ø  The	
  process	
  works	
  in	
  a	
  closed	
  circuit	
  
Ø  At	
  temperature	
  not	
  exceeding	
  650	
  
Celcius	
  
Ø  All	
  output	
  gases	
  are	
  cleaned	
  during	
  	
  
conversion	
  of	
  input	
  material	
  
Ø  Minor	
  emission	
  
Ø  Due	
  to	
  the	
  low	
  temperature	
  anorganic	
  
substances	
  like	
  metals	
  or	
  minerals	
  
remain	
  unchanged	
  and	
  result	
  in	
  high	
  
value	
  reycable	
  materials	
  
Ø  Minimal	
  energy	
  transformaEon	
  
loss	
  of	
  	
  45	
  %	
  	
  by	
  electricity	
  producEon	
  
Ø  LTC	
  produces	
  40	
  –	
  50	
  %	
  more	
  energy	
  
than	
  convenEonal	
  cumbusEon	
  plants	
  .	
  
Ø  The	
  added	
  carbonaceous	
  material	
  	
  can	
  
be	
  transformed	
  in	
  pure	
  carbon	
  and	
  
nano-­‐carbon,	
  that	
  can	
  be	
  used	
  for	
  
energy	
  extracEon	
  	
  
	
  
ADVANTAGES	
  OF	
  THE	
  LTC	
  
TECHNOLOGY	
  
	
  
Ø  No	
  toxic	
  substances	
  as	
  furane	
  or	
  
dioxins	
  are	
  produced	
  
Ø  The	
  chemical	
  structure	
  of	
  the	
  
anorganic	
  material	
  will	
  not	
  be	
  
changed	
  (e.g.	
  metals	
  or	
  minerals)	
  
Ø  Arising	
  carbonaceous	
  gas	
  
(CO2,	
  CH4)	
  can	
  be	
  further	
  
transformed	
  to	
  hydrocarbons	
  such	
  
as	
  diesel	
  
Ø  The	
  efficiency	
  depends	
  on	
  the	
  input	
  
material.	
  (1.8	
  -­‐	
  5.0	
  MW	
  per	
  ton)	
  
Ø  40	
  –	
  50	
  %	
  higher	
  than	
  combusEon	
  
Ø  The	
  plant	
  works	
  self	
  sufficient	
  
Ø  No	
  external	
  energy	
  is	
  required	
  
(only	
  for	
  start-­‐up)	
  
Ø  The	
  plants	
  are	
  built	
  modular	
  
Ø  The	
  size	
  is	
  scalable	
  
8	
  
LTC – TECHNOLOGIE	
   LTC-PROCESS
LTC-Systems guarantee an energy-
efficiency of 45% - 65%, depending on
the starting material.
This efficiency is possible because the
LTC process works in its own circulation
and therefore the produced heat can
be reused for the converting process.
LTC plants feed themselves with the
energy they have produced and do
not need any external energy supply
for heating or cooling.
LTC plants offer local solutions for
waste problems both for industry and
communities.
There is the possibility to store the
produced gas and generate the
electricity when needed
This leads to further possibilities to
generate optimal revenue for the
LTC plant operator.
Conventional combustion systems
convert only max. 35% of the waste
inputs into electricity
Loose a large part of heat not
converted into energy.
Energy can not be stored and only be
transported with a complex
infrastucture.
9	
  
LTC	
  vs.	
  COMBUSTION	
  vs.	
  WIND	
  
STATE	
  OF	
  ART	
  
TECHNOLOGY	
  
The	
  LTC	
  Technology	
  
is	
  economically	
  and	
  
ecologically	
  	
  
clean	
  «State-­‐of-­‐art»	
  
technology	
  
	
  
Higher	
  performance	
  	
  
than	
  running	
  
combusEon	
  plants	
  with	
  
combined	
  heat	
  and	
  power	
  
	
  
Higher	
  performance	
  than	
  	
  
wind	
  turbines.	
  
	
  
AddiEonal	
  advantage	
  is	
  
the	
  high	
  energy	
  standard	
  
	
  
Possiblity	
  to	
  apply	
  for	
  	
  a	
  
CO2	
  trading	
  cerEficaEon	
  
	
  
Input	
  
	
  
Emission	
   Waste	
  
Category	
  
Output	
  
Products	
  
Remaining	
  
Material	
  
Carbonic:	
  
oil,	
  coal,	
  
plasEc	
  
household,	
  
paper,	
  
bio	
  mass	
  
nearly	
  	
  
Zero	
  
1	
  KW	
  =	
  365g	
  
CO2	
  
	
  
Any	
  organic	
  
waste	
  and	
  
landfill	
  
disposal	
  
Electriciy	
  
Syn	
  gas	
  
Syn	
  fuel	
  
Syn	
  petrol	
  
Charcoal	
  
Energy	
  
Storage	
  
High	
  
quality	
  
inorganic	
  
output	
  
(e.g.	
  
metals,	
  
glas,	
  stones	
  
Substances	
  
with	
  high	
  
condensing	
  
are	
  
preferred	
  
	
  
CO2	
  
1KW=1,5	
  kg	
  
CO2	
  
NOx	
  
SOx	
  
heavy	
  	
  
Metals	
  
Only	
  High	
  
condensing	
  
waste	
  
Electricity	
  
	
  
Heat	
  
Contamina
ted	
  ash	
  
emissions	
  
low	
  quality	
  
metals	
  
Wind	
  
	
  
	
  
	
  
	
  
	
  
Noise	
  
shadow	
  
bird	
  Issues	
  
ProducEon
&Install	
  =	
  
CO2	
  
None	
   Electricity	
   None	
  
LTC-­‐TECHNOLOGY	
  
WIND	
  
COMBUSTION	
  
10	
  
LTC	
  –	
  PLANT	
  SCENARIO	
  -­‐	
  1	
  
BASIC	
  MODEL	
  
1	
  T	
  /	
  H	
  
The	
  innovaEve	
  patented	
  
LTC	
  technology	
  can	
  be	
  	
  
Build	
  in	
  a	
  modular	
  
method.	
  
	
  
The	
  construcEon	
  can	
  
therefore	
  be	
  adapted	
  to	
  
Input	
  requirements.	
  
	
  
It	
  is	
  recommended	
  to	
  
start	
  small	
  and	
  extend	
  
LTC	
  plants	
  in	
  phases.	
  
	
  
LTC	
  plants	
  guaranty	
  high	
  
efficiency	
  and	
  long	
  lifeEme	
  
	
  
Use	
  of	
  Material:	
  8000	
  t/per	
  Year	
  
	
  
Energy	
  Performance: 	
  15	
  –	
  42	
  GW	
  /	
  per	
  Year	
  *	
  
	
  
Energy	
  Supply: 	
  aprox.	
  2500	
  inhabitants	
  
	
   	
  aprox.	
  300	
  households	
  
	
  
Plant	
  Area:	
   	
  aprox.	
  225	
  m2	
  
	
  
	
  
*	
  Energy	
  performance	
  depends	
  on	
  the	
  used	
  raw	
  material	
  
11	
  
LTC	
  –	
  PLANT	
  SCENARIO	
  –	
  2	
  
BASIC	
  MODEL	
  
3	
  T	
  /	
  H	
  
Use	
  of	
  Material:	
  
24’000	
  t/per	
  Year	
  
	
  
Energy	
  Performance:	
  
45	
  –	
  126	
  GW	
  /	
  per	
  Year	
  *	
  
	
  
Energy	
  Supply:	
  
aprox.	
  7’500	
  inhabitants	
  
aprox.	
  900	
  households	
  
	
  
Plant	
  Area:	
  
aprox.	
  675	
  m2	
  
	
  
	
  
*	
  Energy	
  performance	
  depends	
  on	
  
the	
  used	
  raw	
  material	
  
12	
  
LTC	
  –	
  PLANT	
  SCENARIO	
  –	
  3	
  
BASIC	
  MODEL	
  
5	
  T	
  /	
  H	
  
Use	
  of	
  Material:	
  
40’000	
  t/per	
  Year	
  
	
  
Energy	
  Performance:	
  
75	
  –	
  201	
  GW	
  /	
  per	
  Year	
  *	
  
	
  
Energy	
  Supply:	
  
aprox.	
  12’500	
  lnhabitants	
  
aprox.	
  1’500	
  households	
  
	
  
Plant	
  Area:	
  
aprox.	
  1’125	
  m2	
  
	
  
	
  
*	
  Energy	
  performance	
  depends	
  on	
  
the	
  used	
  raw	
  material	
  
13	
  
LTC	
  vs.	
  COMBUSTION	
   COMPARISON
LTC-plots ensure highest
efficiency, resistance and a
long lifetime.
Low running costs because of
full automation and low
personnel requirements.
Simple and efficient installation
at the location.
Energy self-sufficient running
because of supply by the plot.
The operational control of the
LTC Power Plants runs on
remote maintenance and
therefore has low need for
servicing.
14	
  
LTC	
  vs.	
  WIND	
  vs.	
  INCINERATORS	
   COMPARISON
Used Tires
2 – 4 years
Plastic Waste
3 – 4 years
Elektronic Waste
2 – 3 years
Sewage Sludge
6 – 8 years
Municipal Waste
6 – 8 Years
Biomass
4 – 6 years
LTC - AMORTISATION
WIND
LTC
AMORTISATION IN YEARS
20	
  YEARS	
  
2	
  –	
  8	
  years	
  
10-­‐13	
  years	
  
*	
  
INCINERATORS >20	
  years	
  
*	
  The	
  amorEzaEon	
  depends	
  on	
  the	
  prices	
  payed	
  by	
  the	
  garbage	
  collectors	
  to	
  the	
  combustors.	
  
15	
  
LTC	
  vs.	
  WIND	
  vs.	
  COMBUSTION	
   EFFICIENCY	
  
LTC	
  delivers	
  1.85	
  –	
  5	
  .0	
  MWh	
  
of	
  net	
  electricity	
  per	
  ton	
  
waste	
  
depending	
  on	
  the	
  
Input	
  heaEng	
  value	
  *	
  
	
  
The	
  best	
  combusEon	
  	
  
method	
  produces	
  about	
  
0.25	
  MW	
  of	
  electricity	
  
per	
  ton	
  
	
  
LTC	
  produces	
  recyclable	
  
remaining	
  materials	
  	
  and	
  
only	
  30	
  %	
  of	
  CO2	
  emissions	
  
compared	
  to	
  combusEon	
  
.	
  
With	
  the	
  new	
  zero	
  emission	
  
Modul	
  it	
  is	
  nearly	
  zero	
  CO2	
  
	
  
The	
  LTC	
  investment	
  is	
  about	
  
10-­‐25	
  %	
  less	
  than	
  convenEonal	
  
combusEon	
  plants	
  
6	
  
2.5	
  
3.2	
  
Electricity	
  per	
  ton	
  in	
  percentage	
  
LTC	
  
WIND	
  
rated	
  power	
  at	
  6-­‐7	
  
Beauford	
  Scale	
  
COMBUSTION	
  
16	
  
LTC	
  –	
  RETURN	
  ON	
  INVESTMENT	
  -­‐	
  ROI	
   Household	
  Waste	
  1	
  t/h	
  
HOUSE HOLD RUBBISH 1 t/h
An average European house-
hold consumes about 3.8 MWel/
a.
1 GW => 1.000 MW
1.000 MW : 3.8 MW =>
263 households =>
790 persons
In Germany the total of
household rubbish has stabilized
at about 13.6 mio. tons.
This corresponds to a per-capita
amount of about 0.15 tons p.a.
CAPACIITY
HOUSEHOLD RUBBISH
PLANT: 1 t/h
Energy => 2,2 MW/el/t/h
8.050 operating hours per year
=> 17.710 MW/el/t/a
=> 17.71 GW/el/t/a
FEED-IN TARIFFS *
D => 1 MW = EUR 145,00 (EUR 140-150)
* Depending on states
INVESTMENT
HOUSE HOLD RUBBISH
PLANT: 1 t/h
LTC-Plant / one-shot
=> EUR 11.000.000,00**
Refunding per year
(145 x 17.710)
=> EUR 2.567.950,00
ROI => 23,34%***
** Production cots / Example
*** Gross
17	
  
LTC	
  vs.	
  WIND	
  vs.	
  COMBUSTION	
  
CONSTRUCTION	
  
TIME	
  
Easy	
  and	
  efficient	
  	
  
installaEon	
  
	
  
Modules	
  
supplied	
  in	
  containers	
  
	
  
Energy	
  Autonomous	
  
operaEon	
  will	
  be	
  ensured	
  
through	
  the	
  	
  plant	
  delivery	
  
	
  
LTC	
  plants	
  run	
  by	
  remote	
  
maintenance	
  and	
  
operaEonal	
  control	
  
	
  
Minimal	
  low	
  labor	
  	
  
maintenance	
  requirements	
  
	
  
LTC	
  construcEons	
  are	
  	
  
adapted	
  to	
  the	
  
available	
  space	
  
COMBUSTION: 3-5
WIND: 2-3
LTC: 1-1,5
CONSTRUCTION TIME IN YEARS
18	
  
Contact	
  informaBon	
  
LTC	
  PowerTech	
  UK	
  Ltd.	
  |	
  Kemp	
  House	
  |	
  152-­‐160	
  City	
  Road	
  |	
  London	
  EC1V	
  2NX	
  |	
  
Reg.no.	
  9287593	
  
www.ltcpowertech.com	
  |	
  All	
  Rights	
  Reserved	
  
	
  info@ltcpowertech.com	
  	
  
19	
  
1 sur 19

Recommandé

Waste to energy projects with reference to MSW, Sourabh Manuja, TERI, India par
Waste to energy projects with reference to MSW, Sourabh Manuja, TERI, IndiaWaste to energy projects with reference to MSW, Sourabh Manuja, TERI, India
Waste to energy projects with reference to MSW, Sourabh Manuja, TERI, IndiaESD UNU-IAS
3.9K vues74 diapositives
Waste to energy par
Waste to energyWaste to energy
Waste to energyYuebo Yu
2.5K vues31 diapositives
MSW to Energy - Ravi Kant par
MSW to Energy - Ravi KantMSW to Energy - Ravi Kant
MSW to Energy - Ravi KantRavi Kant
2.4K vues47 diapositives
Waste to Energy by Muhammad Shakaib Qureshi par
Waste to Energy by Muhammad Shakaib QureshiWaste to Energy by Muhammad Shakaib Qureshi
Waste to Energy by Muhammad Shakaib QureshiMuhammad Shakaib
298 vues22 diapositives
WASTE TO ENERGY PRESENTATION par
WASTE TO ENERGY PRESENTATIONWASTE TO ENERGY PRESENTATION
WASTE TO ENERGY PRESENTATIONprapti borthakur
648 vues11 diapositives
Energy Generation from Waste par
Energy Generation from WasteEnergy Generation from Waste
Energy Generation from WasteMD. Aseer Awsaf
779 vues23 diapositives

Contenu connexe

Tendances

An introduction to waste to energy 130417 par
An introduction to waste to energy 130417An introduction to waste to energy 130417
An introduction to waste to energy 130417Moustafa M Elsayed
1.4K vues92 diapositives
Waste to Energy Complex Briefing par
Waste to Energy Complex Briefing Waste to Energy Complex Briefing
Waste to Energy Complex Briefing GlobalReEnergy
1.3K vues21 diapositives
Suhas Dixit - Waste To Energy par
Suhas Dixit - Waste To EnergySuhas Dixit - Waste To Energy
Suhas Dixit - Waste To EnergySuhas Dixit
766 vues11 diapositives
WASTE TO ENERGY par
WASTE TO ENERGYWASTE TO ENERGY
WASTE TO ENERGYPratik Kundu
69.5K vues45 diapositives
Malasia energy from waste par
Malasia energy from wasteMalasia energy from waste
Malasia energy from wasteBIOTECH INDIA
1.6K vues32 diapositives
Waste to Energy Technical Study par
Waste to Energy Technical StudyWaste to Energy Technical Study
Waste to Energy Technical StudyIBD CleanTech, Inc
1.2K vues10 diapositives

Tendances(20)

Waste to Energy Complex Briefing par GlobalReEnergy
Waste to Energy Complex Briefing Waste to Energy Complex Briefing
Waste to Energy Complex Briefing
GlobalReEnergy1.3K vues
Suhas Dixit - Waste To Energy par Suhas Dixit
Suhas Dixit - Waste To EnergySuhas Dixit - Waste To Energy
Suhas Dixit - Waste To Energy
Suhas Dixit766 vues
Presentation pyrolysis par Achu Ijah
Presentation pyrolysisPresentation pyrolysis
Presentation pyrolysis
Achu Ijah32.6K vues
Green energy - The sustainable energy source of the future 01262016 par Tony Green
Green energy - The sustainable energy source of the future 01262016Green energy - The sustainable energy source of the future 01262016
Green energy - The sustainable energy source of the future 01262016
Tony Green2.8K vues
Waste to Electricity Generation par R-One Power
Waste to Electricity GenerationWaste to Electricity Generation
Waste to Electricity Generation
R-One Power20.5K vues
Waste to Energy par Saira Nazar
Waste to EnergyWaste to Energy
Waste to Energy
Saira Nazar32.7K vues
Waste to energy par lilyshana
Waste to energy Waste to energy
Waste to energy
lilyshana8.4K vues
Biomass energy par gujjarsb
Biomass energyBiomass energy
Biomass energy
gujjarsb462 vues
ALTERNATIVE ENERGY SOURCES AND FUTURE PROSPECTS par Akansha Ganguly
ALTERNATIVE ENERGY SOURCES AND FUTURE PROSPECTSALTERNATIVE ENERGY SOURCES AND FUTURE PROSPECTS
ALTERNATIVE ENERGY SOURCES AND FUTURE PROSPECTS
Akansha Ganguly3.6K vues
Biomass As A Renewable Energy Source: The case of Converting Municipal Solid... par IEEE UKM Student Beanch
Biomass As A Renewable Energy Source: The case of Converting Municipal Solid...Biomass As A Renewable Energy Source: The case of Converting Municipal Solid...
Biomass As A Renewable Energy Source: The case of Converting Municipal Solid...

En vedette

Feniks Waste To Energy plant par
Feniks Waste To Energy plantFeniks Waste To Energy plant
Feniks Waste To Energy plantfeniks_usa
9.2K vues69 diapositives
Recycling Energy & Resources from Waste par
Recycling Energy & Resources from WasteRecycling Energy & Resources from Waste
Recycling Energy & Resources from Wasteguest81fe20
11.1K vues59 diapositives
Solid waste management ppt par
Solid waste management pptSolid waste management ppt
Solid waste management pptPallabi Priyadarsini
770.6K vues56 diapositives
Finnish Waste-to-Energy and Bioenergy offering par
Finnish Waste-to-Energy and Bioenergy  offeringFinnish Waste-to-Energy and Bioenergy  offering
Finnish Waste-to-Energy and Bioenergy offeringBusiness Finland
3.9K vues88 diapositives
Plastic waste to energy opportunities - PyrolysisPlant.com par
Plastic waste to energy opportunities - PyrolysisPlant.comPlastic waste to energy opportunities - PyrolysisPlant.com
Plastic waste to energy opportunities - PyrolysisPlant.comPyrolysis Plant
8.7K vues10 diapositives
solid waste management par
solid waste managementsolid waste management
solid waste managementAmit Nakli
327.4K vues26 diapositives

En vedette(20)

Feniks Waste To Energy plant par feniks_usa
Feniks Waste To Energy plantFeniks Waste To Energy plant
Feniks Waste To Energy plant
feniks_usa9.2K vues
Recycling Energy & Resources from Waste par guest81fe20
Recycling Energy & Resources from WasteRecycling Energy & Resources from Waste
Recycling Energy & Resources from Waste
guest81fe2011.1K vues
Finnish Waste-to-Energy and Bioenergy offering par Business Finland
Finnish Waste-to-Energy and Bioenergy  offeringFinnish Waste-to-Energy and Bioenergy  offering
Finnish Waste-to-Energy and Bioenergy offering
Business Finland 3.9K vues
Plastic waste to energy opportunities - PyrolysisPlant.com par Pyrolysis Plant
Plastic waste to energy opportunities - PyrolysisPlant.comPlastic waste to energy opportunities - PyrolysisPlant.com
Plastic waste to energy opportunities - PyrolysisPlant.com
Pyrolysis Plant8.7K vues
solid waste management par Amit Nakli
solid waste managementsolid waste management
solid waste management
Amit Nakli327.4K vues
Waste to Energy presentation for Green Trade Summit par danielrobin
Waste to Energy presentation for Green Trade SummitWaste to Energy presentation for Green Trade Summit
Waste to Energy presentation for Green Trade Summit
danielrobin3.7K vues
SOLID WASTE MANAGEMENT PROJECT par Trishan Perera
SOLID WASTE MANAGEMENT PROJECTSOLID WASTE MANAGEMENT PROJECT
SOLID WASTE MANAGEMENT PROJECT
Trishan Perera142.3K vues
Generation of electricity from a water sprinkler par Ankan Aich
Generation of electricity from a water sprinklerGeneration of electricity from a water sprinkler
Generation of electricity from a water sprinkler
Ankan Aich432 vues
Sustainable chemistry from tomato skins at Azienda Agricola Virginio Chiesa par BiocopacPlus
Sustainable chemistry from tomato skins at Azienda Agricola Virginio ChiesaSustainable chemistry from tomato skins at Azienda Agricola Virginio Chiesa
Sustainable chemistry from tomato skins at Azienda Agricola Virginio Chiesa
BiocopacPlus143 vues
Hanbeggspjs par hanbeggs
HanbeggspjsHanbeggspjs
Hanbeggspjs
hanbeggs603 vues
Conference on Waste to Energy in India : Opportunities and Challenges on 29th... par Infraline Energy
Conference on Waste to Energy in India : Opportunities and Challenges on 29th...Conference on Waste to Energy in India : Opportunities and Challenges on 29th...
Conference on Waste to Energy in India : Opportunities and Challenges on 29th...
Infraline Energy755 vues

Similaire à Municipal Solid Waste - Industrial Waste to energy

Presentation par
PresentationPresentation
PresentationAtef Gresat
346 vues42 diapositives
integrated green Technologies for MSW par
integrated green Technologies for MSWintegrated green Technologies for MSW
integrated green Technologies for MSWMamdouh Abdel-Sabour
185 vues38 diapositives
Intro on different waste treatment technologies by Bernard Ammoun par
Intro on different waste treatment technologies by Bernard AmmounIntro on different waste treatment technologies by Bernard Ammoun
Intro on different waste treatment technologies by Bernard AmmounBernard Ammoun
1.5K vues39 diapositives
Viable E waste treatment Incineration vs Non Incineration par
Viable E waste treatment   Incineration vs Non IncinerationViable E waste treatment   Incineration vs Non Incineration
Viable E waste treatment Incineration vs Non IncinerationRohit Shinde
2.1K vues33 diapositives
Viable E Waste Treatment - Incineration vs Non Incineration par
Viable E Waste Treatment - Incineration vs Non IncinerationViable E Waste Treatment - Incineration vs Non Incineration
Viable E Waste Treatment - Incineration vs Non IncinerationRohit Shinde
981 vues33 diapositives
Presentation Holland RET (16-9) par
Presentation Holland RET (16-9)Presentation Holland RET (16-9)
Presentation Holland RET (16-9)Max Fossen
236 vues10 diapositives

Similaire à Municipal Solid Waste - Industrial Waste to energy(20)

Intro on different waste treatment technologies by Bernard Ammoun par Bernard Ammoun
Intro on different waste treatment technologies by Bernard AmmounIntro on different waste treatment technologies by Bernard Ammoun
Intro on different waste treatment technologies by Bernard Ammoun
Bernard Ammoun1.5K vues
Viable E waste treatment Incineration vs Non Incineration par Rohit Shinde
Viable E waste treatment   Incineration vs Non IncinerationViable E waste treatment   Incineration vs Non Incineration
Viable E waste treatment Incineration vs Non Incineration
Rohit Shinde2.1K vues
Viable E Waste Treatment - Incineration vs Non Incineration par Rohit Shinde
Viable E Waste Treatment - Incineration vs Non IncinerationViable E Waste Treatment - Incineration vs Non Incineration
Viable E Waste Treatment - Incineration vs Non Incineration
Rohit Shinde981 vues
Presentation Holland RET (16-9) par Max Fossen
Presentation Holland RET (16-9)Presentation Holland RET (16-9)
Presentation Holland RET (16-9)
Max Fossen236 vues
greenBLAZE _MSW and Organic Wastes Treatment par Victor Uzlov
greenBLAZE _MSW and Organic Wastes TreatmentgreenBLAZE _MSW and Organic Wastes Treatment
greenBLAZE _MSW and Organic Wastes Treatment
Victor Uzlov164 vues
New thermal techniques of waste disposal par Pankaj Das
New thermal techniques of waste disposalNew thermal techniques of waste disposal
New thermal techniques of waste disposal
Pankaj Das1.5K vues
Building Integrated Renewables Public par Gavin Harper
Building Integrated Renewables PublicBuilding Integrated Renewables Public
Building Integrated Renewables Public
Gavin Harper630 vues
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE par iQHub
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANEUTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
iQHub34 vues
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE par iQHub
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANEUTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
UTILISING CAPTURED CO₂ TO PRODUCE RENEWABLE METHANE
iQHub53 vues
talk on waste management & recovery by sailesh khawani par Sailesh Khawani
talk on waste management & recovery by sailesh khawanitalk on waste management & recovery by sailesh khawani
talk on waste management & recovery by sailesh khawani
Sailesh Khawani8.9K vues
Integrated green technologies for msw (mam ver.) par mamdouh sabour
Integrated green technologies for msw (mam ver.)Integrated green technologies for msw (mam ver.)
Integrated green technologies for msw (mam ver.)
mamdouh sabour546 vues

Dernier

Effective Supervisory Skill par
Effective Supervisory SkillEffective Supervisory Skill
Effective Supervisory SkillSeta Wicaksana
14 vues26 diapositives
Unleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine Tools par
Unleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine ToolsUnleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine Tools
Unleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine ToolsRidiculous Machine Tools
7 vues7 diapositives
Tanishq par
Tanishq Tanishq
Tanishq supiriyakithuva
12 vues7 diapositives
Businesses to Start in 2024.pdf par
Businesses to Start in 2024.pdfBusinesses to Start in 2024.pdf
Businesses to Start in 2024.pdfDante St James
16 vues43 diapositives
Assignment 4: Reporting to Management.pptx par
Assignment 4: Reporting to Management.pptxAssignment 4: Reporting to Management.pptx
Assignment 4: Reporting to Management.pptxBethanyAline
17 vues20 diapositives
terms_2.pdf par
terms_2.pdfterms_2.pdf
terms_2.pdfJAWADIQBAL40
51 vues8 diapositives

Dernier(20)

Unleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine Tools par Ridiculous Machine Tools
Unleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine ToolsUnleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine Tools
Unleashing Precision with Cutting-Edge Machine Tools | Ridiculous Machine Tools
Assignment 4: Reporting to Management.pptx par BethanyAline
Assignment 4: Reporting to Management.pptxAssignment 4: Reporting to Management.pptx
Assignment 4: Reporting to Management.pptx
BethanyAline17 vues
Discover the Finest Interior Painting Services in Miami Elevate Your Space wi... par Florida Painting Miami
Discover the Finest Interior Painting Services in Miami Elevate Your Space wi...Discover the Finest Interior Painting Services in Miami Elevate Your Space wi...
Discover the Finest Interior Painting Services in Miami Elevate Your Space wi...
SUGAR cosmetics ppt par shafrinn5
SUGAR cosmetics pptSUGAR cosmetics ppt
SUGAR cosmetics ppt
shafrinn536 vues
Bloomerang Thank Yous Dec 2023.pdf par Bloomerang
Bloomerang Thank Yous Dec 2023.pdfBloomerang Thank Yous Dec 2023.pdf
Bloomerang Thank Yous Dec 2023.pdf
Bloomerang88 vues
bookmyshow-1.pptx par 125071035
bookmyshow-1.pptxbookmyshow-1.pptx
bookmyshow-1.pptx
12507103510 vues
Imports Next Level.pdf par Bloomerang
Imports Next Level.pdfImports Next Level.pdf
Imports Next Level.pdf
Bloomerang72 vues
The 10 Most Iconic Leaders in Supply Chain 2023_compressed.pdf par ciolook1
The 10 Most Iconic Leaders in Supply Chain 2023_compressed.pdfThe 10 Most Iconic Leaders in Supply Chain 2023_compressed.pdf
The 10 Most Iconic Leaders in Supply Chain 2023_compressed.pdf
ciolook16 vues
Pitch Deck Teardown: Scalestack's $1M AI sales tech Seed deck par HajeJanKamps
Pitch Deck Teardown: Scalestack's $1M AI sales tech Seed deckPitch Deck Teardown: Scalestack's $1M AI sales tech Seed deck
Pitch Deck Teardown: Scalestack's $1M AI sales tech Seed deck
HajeJanKamps163 vues

Municipal Solid Waste - Industrial Waste to energy

  • 1.  ONE  WORLD    TIME  FOR  CHANGE   1  
  • 2. WORLDWIDE  CONSUMER  BEHAVIOUR   THE  PROBLEM  OF   CONSUMPTION   More  proteins  =  mass  producEon  Increasing  car  producEon   MetropolizaEon  =  megaciEes  =  poluEon   Growing  demand  for  energy  result  in     environment  demages   The  consumpEon  spiral   rotates  faster  and  faster   Worldwide.     We  have  created   a  «throw-­‐away  society».     Raw  material  is  wasted   instead  of  using  it  to     produce  energy.   2  
  • 3. THE  WORLD  IS  ONE  BIG  GARBAGE  DUMP   THE  PROBLEM  OF   WASTE   Garbage  covers  the  planet   Earth.     One  person  produces  an   average  of  half  a  ton     garbage  per  year     It  is  stored  on  dumps,     consumes  landfills  and   swims  in  the  water     This  problem  needs     to  be  solved  to  protect   our  planet       3  
  • 4. WORLDWIDE  FACTS   APPROACH   The  LTC  method  offers   sustainable  soluEons  for   the  highly  efficient  and   environement  friendly     producEon  of  energy   out  of  all  oraganic  raw-­‐  or   waste  material     A  conversion  from  garbage   to  energy  according   to  the  LTC  technology   avoids  poluEon,  replaces   fossil  fuels,  reducdes  CO2   emmissions  and   increases  the  operaEng   economoy  in  energy   extracEon.     •  The  need  for  energy  is  increasing   each  year.   •  Greenhouse  gas  emissions  must  be   reduced  fast  and  drasEcally   •  The  amount  of  waste  rapidly   increases  and  it  has  become  a   global  problem   •  The  natural  resources  of  fossil  fuels   decreases   4  
  • 5. SOME  CALL  IT  WASTE   WE  CALL  IT  ENERGY   With  the  patented     LTC  technology   all  carbonated  /  organic   substances  can  be   converted  into  recyclable       substances  and  renewable   energy.     Besides,  minerals,  oils  and   carbon,  each  quality  of   organic  waste  can   be  converted:   tyres,  plasEc,  cardboard     packaging,  paper,  green   &  houshold  waste.     Waste  landfills  turn  into     raw  materials  and  contribute   in  an  environmental  friendly   way  to  the  energy  supply  of   the  communiEes.           BIOMASS     Energy:  1,8  MW  el/to   PLASTIC  WASTE     Energy:  3.5  MW  el/to   USED  TIRES     Energy:  5.0  MW  el/to   BIOMASS     Energy:  2,4  MW  el/to   HOUSHOLD  WASTE     Energy:  2,2  MW  el/to   ELECTRIC  WASTE     Energy:  3,1  MW  el/to   5  
  • 6. LTC  –  TECHNOLOGY   INPUT  MATERIAL   With the patented LTC technology all carbonated / organic substances can be converted into recyclable sub- stances and renewable energy. Besides, minerals, oils and carbon, each quality of organic waste can be converted: tyres, plastic, cardboard packaging houshold waste. Waste landfills turn into raw materials and contribute in an environmental friendly way to the energy supply of the communities. Flexible with input material. Flexible & high Performance with Energy production. Biomass Agricultural waste Wood scraps and wood chips Industrial waste Municipal waste ( Hospital waste Sewage sludge Contaminated oil Waste oil and fats Animal manure No fermentation necessary Used Tires Plastic parts of cars PVC, PET, PE, PA 6  
  • 7. LTC  –  TECHNOLOGIE   LTC-PROCESS PROCESS SCHEME LTC is a thermocatalytical pulping process without air supply (no combustion!), no open flame. LTC decomposes organic material into their basic elements and converts them into a clean strong gas. LTC produces gas or electricity or oils with CO2- emissions that have been reduced by 70%. LOW TEMPERATURE CONVERSION SyntheEc   diesel   SyntheEc   gas   Electricity   OUTPUT-­‐PRODUCT-­‐DESIGN   Product  mix  freely  selectable   Process  heat   for     drying   Power  generaBon   gas  turbine   CirculaBon  high  power  blower   Waste:   Inert  mineral   Process  about  4%   Baffle  reactor     material  crushing   INPUT-­‐MATERIAL   PLASTIC   WASTE     USED  TIRES     ELEKTRONIC   SCRAP      HOUSEHOLD   RUBBISH     BIOMASS     SEWAGE     SLUDGE             150 o  C  =  biomass,  legovers   250 o  C  =  hardwood,  plywood,  texEles   450 o  C  =  plasEc,  oil,  used  Eres   650 o  C  =  composites   3  stage   conversion  process   or   or   7  
  • 8. THE  IDEA  OF  THE  LTC  TECHNOLOGY   WHAT  »  LTC  «  STANDS   FOR   LOW   TEMPERATURE   CONVERSION   WORKING  METHOD  OF  LTC  TECHNOLOGY     Ø  The  process  works  in  a  closed  circuit   Ø  At  temperature  not  exceeding  650   Celcius   Ø  All  output  gases  are  cleaned  during     conversion  of  input  material   Ø  Minor  emission   Ø  Due  to  the  low  temperature  anorganic   substances  like  metals  or  minerals   remain  unchanged  and  result  in  high   value  reycable  materials   Ø  Minimal  energy  transformaEon   loss  of    45  %    by  electricity  producEon   Ø  LTC  produces  40  –  50  %  more  energy   than  convenEonal  cumbusEon  plants  .   Ø  The  added  carbonaceous  material    can   be  transformed  in  pure  carbon  and   nano-­‐carbon,  that  can  be  used  for   energy  extracEon       ADVANTAGES  OF  THE  LTC   TECHNOLOGY     Ø  No  toxic  substances  as  furane  or   dioxins  are  produced   Ø  The  chemical  structure  of  the   anorganic  material  will  not  be   changed  (e.g.  metals  or  minerals)   Ø  Arising  carbonaceous  gas   (CO2,  CH4)  can  be  further   transformed  to  hydrocarbons  such   as  diesel   Ø  The  efficiency  depends  on  the  input   material.  (1.8  -­‐  5.0  MW  per  ton)   Ø  40  –  50  %  higher  than  combusEon   Ø  The  plant  works  self  sufficient   Ø  No  external  energy  is  required   (only  for  start-­‐up)   Ø  The  plants  are  built  modular   Ø  The  size  is  scalable   8  
  • 9. LTC – TECHNOLOGIE   LTC-PROCESS LTC-Systems guarantee an energy- efficiency of 45% - 65%, depending on the starting material. This efficiency is possible because the LTC process works in its own circulation and therefore the produced heat can be reused for the converting process. LTC plants feed themselves with the energy they have produced and do not need any external energy supply for heating or cooling. LTC plants offer local solutions for waste problems both for industry and communities. There is the possibility to store the produced gas and generate the electricity when needed This leads to further possibilities to generate optimal revenue for the LTC plant operator. Conventional combustion systems convert only max. 35% of the waste inputs into electricity Loose a large part of heat not converted into energy. Energy can not be stored and only be transported with a complex infrastucture. 9  
  • 10. LTC  vs.  COMBUSTION  vs.  WIND   STATE  OF  ART   TECHNOLOGY   The  LTC  Technology   is  economically  and   ecologically     clean  «State-­‐of-­‐art»   technology     Higher  performance     than  running   combusEon  plants  with   combined  heat  and  power     Higher  performance  than     wind  turbines.     AddiEonal  advantage  is   the  high  energy  standard     Possiblity  to  apply  for    a   CO2  trading  cerEficaEon     Input     Emission   Waste   Category   Output   Products   Remaining   Material   Carbonic:   oil,  coal,   plasEc   household,   paper,   bio  mass   nearly     Zero   1  KW  =  365g   CO2     Any  organic   waste  and   landfill   disposal   Electriciy   Syn  gas   Syn  fuel   Syn  petrol   Charcoal   Energy   Storage   High   quality   inorganic   output   (e.g.   metals,   glas,  stones   Substances   with  high   condensing   are   preferred     CO2   1KW=1,5  kg   CO2   NOx   SOx   heavy     Metals   Only  High   condensing   waste   Electricity     Heat   Contamina ted  ash   emissions   low  quality   metals   Wind             Noise   shadow   bird  Issues   ProducEon &Install  =   CO2   None   Electricity   None   LTC-­‐TECHNOLOGY   WIND   COMBUSTION   10  
  • 11. LTC  –  PLANT  SCENARIO  -­‐  1   BASIC  MODEL   1  T  /  H   The  innovaEve  patented   LTC  technology  can  be     Build  in  a  modular   method.     The  construcEon  can   therefore  be  adapted  to   Input  requirements.     It  is  recommended  to   start  small  and  extend   LTC  plants  in  phases.     LTC  plants  guaranty  high   efficiency  and  long  lifeEme     Use  of  Material:  8000  t/per  Year     Energy  Performance:  15  –  42  GW  /  per  Year  *     Energy  Supply:  aprox.  2500  inhabitants      aprox.  300  households     Plant  Area:    aprox.  225  m2       *  Energy  performance  depends  on  the  used  raw  material   11  
  • 12. LTC  –  PLANT  SCENARIO  –  2   BASIC  MODEL   3  T  /  H   Use  of  Material:   24’000  t/per  Year     Energy  Performance:   45  –  126  GW  /  per  Year  *     Energy  Supply:   aprox.  7’500  inhabitants   aprox.  900  households     Plant  Area:   aprox.  675  m2       *  Energy  performance  depends  on   the  used  raw  material   12  
  • 13. LTC  –  PLANT  SCENARIO  –  3   BASIC  MODEL   5  T  /  H   Use  of  Material:   40’000  t/per  Year     Energy  Performance:   75  –  201  GW  /  per  Year  *     Energy  Supply:   aprox.  12’500  lnhabitants   aprox.  1’500  households     Plant  Area:   aprox.  1’125  m2       *  Energy  performance  depends  on   the  used  raw  material   13  
  • 14. LTC  vs.  COMBUSTION   COMPARISON LTC-plots ensure highest efficiency, resistance and a long lifetime. Low running costs because of full automation and low personnel requirements. Simple and efficient installation at the location. Energy self-sufficient running because of supply by the plot. The operational control of the LTC Power Plants runs on remote maintenance and therefore has low need for servicing. 14  
  • 15. LTC  vs.  WIND  vs.  INCINERATORS   COMPARISON Used Tires 2 – 4 years Plastic Waste 3 – 4 years Elektronic Waste 2 – 3 years Sewage Sludge 6 – 8 years Municipal Waste 6 – 8 Years Biomass 4 – 6 years LTC - AMORTISATION WIND LTC AMORTISATION IN YEARS 20  YEARS   2  –  8  years   10-­‐13  years   *   INCINERATORS >20  years   *  The  amorEzaEon  depends  on  the  prices  payed  by  the  garbage  collectors  to  the  combustors.   15  
  • 16. LTC  vs.  WIND  vs.  COMBUSTION   EFFICIENCY   LTC  delivers  1.85  –  5  .0  MWh   of  net  electricity  per  ton   waste   depending  on  the   Input  heaEng  value  *     The  best  combusEon     method  produces  about   0.25  MW  of  electricity   per  ton     LTC  produces  recyclable   remaining  materials    and   only  30  %  of  CO2  emissions   compared  to  combusEon   .   With  the  new  zero  emission   Modul  it  is  nearly  zero  CO2     The  LTC  investment  is  about   10-­‐25  %  less  than  convenEonal   combusEon  plants   6   2.5   3.2   Electricity  per  ton  in  percentage   LTC   WIND   rated  power  at  6-­‐7   Beauford  Scale   COMBUSTION   16  
  • 17. LTC  –  RETURN  ON  INVESTMENT  -­‐  ROI   Household  Waste  1  t/h   HOUSE HOLD RUBBISH 1 t/h An average European house- hold consumes about 3.8 MWel/ a. 1 GW => 1.000 MW 1.000 MW : 3.8 MW => 263 households => 790 persons In Germany the total of household rubbish has stabilized at about 13.6 mio. tons. This corresponds to a per-capita amount of about 0.15 tons p.a. CAPACIITY HOUSEHOLD RUBBISH PLANT: 1 t/h Energy => 2,2 MW/el/t/h 8.050 operating hours per year => 17.710 MW/el/t/a => 17.71 GW/el/t/a FEED-IN TARIFFS * D => 1 MW = EUR 145,00 (EUR 140-150) * Depending on states INVESTMENT HOUSE HOLD RUBBISH PLANT: 1 t/h LTC-Plant / one-shot => EUR 11.000.000,00** Refunding per year (145 x 17.710) => EUR 2.567.950,00 ROI => 23,34%*** ** Production cots / Example *** Gross 17  
  • 18. LTC  vs.  WIND  vs.  COMBUSTION   CONSTRUCTION   TIME   Easy  and  efficient     installaEon     Modules   supplied  in  containers     Energy  Autonomous   operaEon  will  be  ensured   through  the    plant  delivery     LTC  plants  run  by  remote   maintenance  and   operaEonal  control     Minimal  low  labor     maintenance  requirements     LTC  construcEons  are     adapted  to  the   available  space   COMBUSTION: 3-5 WIND: 2-3 LTC: 1-1,5 CONSTRUCTION TIME IN YEARS 18  
  • 19. Contact  informaBon   LTC  PowerTech  UK  Ltd.  |  Kemp  House  |  152-­‐160  City  Road  |  London  EC1V  2NX  |   Reg.no.  9287593   www.ltcpowertech.com  |  All  Rights  Reserved    info@ltcpowertech.com     19