2022 COMP4010 Lecture4: AR Interaction

Mark Billinghurst
Mark BillinghurstDirector at HIT Lab NZ à University of South Australia
AR INTERACTION
COMP 4010 Lecture Four
Mark Billinghurst
August 18th 2022
mark.billinghurst@unisa.edu.au
REVIEW
AR RequiresTracking and Registration
• Registration
• Positioning virtual object wrt real world
• Fixing virtual object on real object when view is fixed
• Calibration
• Offline measurements
• Measure camera relative to head mounted display
• Tracking
• Continually locating the user’s viewpoint when view moving
• Position (x,y,z), Orientation (r,p,y)
Sources of Registration Errors
•Static errors
• Optical distortions (in HMD)
• Mechanical misalignments
• Tracker errors
• Incorrect viewing parameters
•Dynamic errors
• System delays (largest source of error)
• 1 ms delay = 1/3 mm registration error
Reducing Static Errors
•Distortion compensation
• For lens or display distortions
•Manual adjustments
• Have user manually alighn AR andVR content
•View-based or direct measurements
• Have user measure eye position
•Camera calibration (video AR)
• Measuring camera properties
Reducing dynamic errors (1)
•Reduce system lag
•Faster components/system modules
•Reduce apparent lag
•Image deflection
•Image warping
TRACKING
Frames of Reference
• Word-stabilized
• E.g., billboard or signpost
• Body-stabilized
• E.g., virtual tool-belt
• Screen-stabilized
• Heads-up display
Tracking Requirements
• Augmented Reality Information Display
• World Stabilized
• Body Stabilized
• Head Stabilized
Increasing Tracking
Requirements
Head Stabilized Body Stabilized World Stabilized
Tracking Technologies
§ Active
• Mechanical, Magnetic, Ultrasonic
• GPS, Wifi, cell location
§ Passive
• Inertial sensors (compass, accelerometer, gyro)
• Computer Vision
• Marker based, Natural feature tracking
§ Hybrid Tracking
• Combined sensors (eg Vision + Inertial)
Tracking Types
Magnetic
Tracker
Inertial
Tracker
Ultrasonic
Tracker
Optical
Tracker
Marker-Based
Tracking
Markerless
Tracking
Specialize
dTracking
Edge-Based
Tracking
Template-
BasedTracking
Interest Point
Tracking
Mechanical
Tracker
Why Optical Tracking for AR?
• Many AR devices have cameras
• Mobile phone/tablet, Video see-through display
• Provides precise alignment between video and AR overlay
• Using features in video to generate pixel perfect alignment
• Real world has many visual features that can be tracked from
• Computer Vision well established discipline
• Over 40 years of research to draw on
• Old non real time algorithms can be run in real time on todays devices
Common AR Optical Tracking Types
• Marker Tracking
• Tracking known artificial markers/images
• e.g. ARToolKit square markers
• Markerless Tracking
• Tracking from known features in real world
• e.g. Vuforia image tracking
• Unprepared Tracking
• Tracking in unknown environment
• e.g. SLAM tracking
Marker Based Tracking: ARToolKit
http://www.artoolkit.org
Natural Feature Tracking
• Use Natural Cues of Real Elements
• Edges
• Surface Texture
• Interest Points
• Model or Model-Free
• No visual pollution
Contours
Features Points
Surfaces
Detection and Tracking
Detection
Incremental
tracking
Tracking target
detected
Tracking target
lost
Tracking target
not detected
Incremental
tracking ok
Start
+ Recognize target type
+ Detect target
+ Initialize camera pose
+ Fast
+ Robust to blur, lighting
changes
+ Robust to tilt
Tracking and detection are complementary approaches.
After successful detection, the target is tracked incrementally.
If the target is lost, the detection is activated again
Marker vs.Natural FeatureTracking
• Marker tracking
• Usually requires no database to be stored
• Markers can be an eye-catcher
• Tracking is less demanding
• The environment must be instrumented
• Markers usually work only when fully in view
• Natural feature tracking
• A database of keypoints must be stored/downloaded
• Natural feature targets might catch the attention less
• Natural feature targets are potentially everywhere
• Natural feature targets work also if partially in view
Model BasedTracking
• Tracking from 3D object shape
• Example: OpenTL - www.opentl.org
• General purpose library for model based visual tracking
Tracking from an Unknown Environment
• What to do when you don’t know any features?
• Very important problem in mobile robotics - Where am I?
• SLAM
• Simultaneously Localize And Map the environment
• Goal: to recover both camera pose and map structure
while initially knowing neither.
• Mapping:
• Building a map of the environment which the robot is in
• Localisation:
• Navigating this environment using the map while keeping
track of the robot’s relative position and orientation
Parallel Tracking and Mapping
Tracking Mapping
New keyframes
Map updates
+ Estimate camera pose
+ For every frame
+ Extend map
+ Improve map
+ Slow updates rate
Parallel tracking and mapping uses two
concurrent threads, one for tracking and one for
mapping, which run at different speeds
Parallel Tracking and Mapping
Video stream
New frames
Map updates
Tracking Mapping
Tracked local pose
FAST SLOW
Simultaneous
localization and mapping
(SLAM)
in small workspaces
Klein/Drummond, U.
Cambridge
Visual SLAM
• Early SLAM systems (1986 - )
• Computer visions and sensors (e.g. IMU, laser, etc.)
• One of the most important algorithms in Robotics
• Visual SLAM
• Using cameras only, such as stereo view
• MonoSLAM (single camera) developed in 2007 (Davidson)
Combining Sensors andVision
• Sensors
• Produces noisy output (= jittering augmentations)
• Are not sufficiently accurate (= wrongly placed augmentations)
• Gives us first information on where we are in the world,
and what we are looking at
• Vision
• Is more accurate (= stable and correct augmentations)
• Requires choosing the correct keypoint database to track from
• Requires registering our local coordinate frame (online-
generated model) to the global one (world)
ARKit – Visual Inertial Odometry
• Uses both computer vision + inertial sensing
• Tracking position twice
• Computer Vision – feature tracking, 2D plane tracking
• Inertial sensing – using the phone IMU
• Output combined via Kalman filter
• Determine which output is most accurate
• Pass pose to ARKit SDK
• Each system compliments the other
• Computer vision – needs visual features
• IMU - drifts over time, doesn’t need features
ARKit –Visual Inertial Odometry
• Slow camera
• Fast IMU
• If camera drops out IMU takes over
• Camera corrects IMU errors
Conclusions
• Tracking and Registration are key problems
• Registration error
• Measures against static error
• Measures against dynamic error
• AR typically requires multiple tracking technologies
• Computer vision most popular
• Research Areas:
• SLAM systems, Deformable models, Mobile outdoor tracking
3: AR INTERACTION
Augmented Reality technology
• Combines Real and Virtual Images
• Needs: Display technology
• Interactive in real-time
• Needs: Input and interaction technology
• Registered in 3D
• Needs: Viewpoint tracking technology
How Do You Design an Interface for This?
AR Interaction
• Designing AR Systems = Interface Design
• Using different input and output technologies
• Objective is a high quality of user experience
• Ease of use and learning
• Performance and satisfaction
Typical Interface Design Path
1/ Prototype Demonstration
2/ Adoption of Interaction Techniques from
other interface metaphors
3/ Development of new interface metaphors
appropriate to the medium
4/ Development of formal theoretical models
for predicting and modeling user actions
Desktop WIMP
Virtual Reality
Augmented Reality
Interacting with AR Content
• You can see spatially registered AR..
how can you interact with it?
Different Types of AR Interaction
• Browsing Interfaces
• simple (conceptually!), unobtrusive
• 3D AR Interfaces
• expressive, creative, require attention
• Tangible Interfaces
• Embedded into conventional environments
• Tangible AR
• Combines TUI input + AR display
AR Interfaces as Data Browsers
• 2D/3D virtual objects are
registered in 3D
• “VR in Real World”
• Interaction
• 2D/3D virtual viewpoint control
• Applications
• Visualization, training
AR Information Browsers
• Information is registered
to
real-world context
• Hand held AR displays
• Interaction
• Manipulation of a window
into information space
• Applications
• Context-aware information
displays
Rekimoto, et al. 1997
NaviCam Demo (1997)
Navicam Architecture
Current AR Information Browsers
• Mobile AR
• GPS + compass
• Many Applications
• Wikitude
• Yelp
• Google maps
• …
Example: Google Maps AR Mode
• AR Navigation Aid
• GPS + compass, 2D/3D object placement
2022 COMP4010 Lecture4: AR Interaction
Advantages and Disadvantages
• Important class of AR interfaces
• Wearable computers
• AR simulation, training
• Limited interactivity
• Modification of virtual
content is difficult
Rekimoto, et al. 1997
3D AR Interfaces
• Virtual objects displayed in 3D
physical space and manipulated
• HMDs and 6DOF head-tracking
• 6DOF hand trackers for input
• Interaction
• Viewpoint control
• Traditional 3D user interface
interaction: manipulation, selection,
etc.
Kiyokawa, et al. 2000
AR 3D Interaction (2000)
Example: AR Graffiti
www.nextwall.net
2022 COMP4010 Lecture4: AR Interaction
Advantages and Disadvantages
• Important class of AR interfaces
• Entertainment, design, training
• Advantages
• User can interact with 3D virtual
object everywhere in space
• Natural, familiar interaction
• Disadvantages
• Usually no tactile feedback
• User has to use different devices for
virtual and physical objects
Oshima, et al. 2000
3. Augmented Surfaces and Tangible Interfaces
• Basic principles
• Virtual images are projected
on a surface
• Physical objects are used as
controls for virtual objects
• Support for collaboration
Wellner, P. (1993). Interacting with paper on the
DigitalDesk. Communications of the ACM, 36(7), 87-96.
Augmented Surfaces
• Rekimoto, et al. 1999
• Front projection
• Marker-based tracking
• Multiple projection surfaces
• Object interaction
Rekimoto, J., & Saitoh, M. (1999, May). Augmented
surfaces: a spatially continuous work space for hybrid
computing environments. In Proceedings of the SIGCHI
conference on Human Factors in Computing
Systems (pp. 378-385).
Augmented Surfaces Demo (1999)
https://www.youtube.com/watch?v=r4g_fvnjVCA
Tangible User Interfaces (Ishii 97)
• Create digital shadows
for physical objects
• Foreground
• graspable UI
• Background
• ambient interfaces
Tangible Interfaces - Ambient
• Dangling String
• Jeremijenko 1995
• Ambient ethernet monitor
• Relies on peripheral cues
• Ambient Fixtures
• Dahley, Wisneski, Ishii 1998
• Use natural material qualities
for information display
Tangible Interface: ARgroove
• Collaborative Instrument
• Exploring Physically Based
Interaction
• Map physical actions to
Midi output
• Translation, rotation
• Tilt, shake
ARGroove Demo (2001)
ARgroove in Use
Visual Feedback
•Continuous Visual Feedback is Key
•Single Virtual Image Provides:
• Rotation
• Tilt
• Height
i/O Brush (Ryokai, Marti, Ishii) - 2004
Ryokai, K., Marti, S., & Ishii, H. (2004, April). I/O brush: drawing with everyday objects as ink.
In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 303-310).
i/O Brush Demo (2005)
https://www.youtube.com/watch?v=04v_v1gnyO8
Many Other Examples
• Triangles (Gorbert 1998)
• Triangular based story telling
• ActiveCube (Kitamura 2000-)
• Cubes with sensors
• Reactable (2007- )
• Cube based music interface
Lessons from Tangible Interfaces
• Physical objects make us smart
• Norman’s “Things that Make Us Smart”
• encode affordances, constraints
• Objects aid collaboration
• establish shared meaning
• Objects increase understanding
• serve as cognitive artifacts
But There are TUI Limitations
• Difficult to change object properties
• can’t tell state of digital data
• Limited display capabilities
• projection screen = 2D
• dependent on physical display surface
• Separation between object and display
• ARgroove – Interact on table, look at screen
Advantages and Disadvantages
•Advantages
• Natural - user’s hands are used for interacting
with both virtual and real objects.
• No need for special purpose input devices
•Disadvantages
• Interaction is limited only to 2D surface
• Full 3D interaction and manipulation is difficult
Orthogonal Nature of Interfaces
3D AR interfaces Tangible Interfaces
Spatial Gap No – Interaction is
Everywhere
Yes – Interaction is
only on 2D surfaces
Interaction Gap
Yes – separate
devices for physical
and virtual objects
No – same devices for
physical and virtual
objects
Orthogonal Nature of Interfaces
3D AR interfaces Tangible Interfaces
Spatial Gap No – Interaction is
Everywhere
Yes – Interaction is
only on 2D surfaces
Interaction Gap
Yes – separate
devices for physical
and virtual objects
No – same devices for
physical and virtual
objects
4. Tangible AR: Back to the Real World
• AR overcomes display limitation of TUIs
• enhance display possibilities
• merge task/display space
• provide public and private views
• TUI + AR = Tangible AR
• Apply TUI methods to AR interface design
Billinghurst, M., Kato, H., & Poupyrev, I. (2008). Tangible augmented reality. ACM Siggraph Asia, 7(2), 1-10.
Space vs. Time - Multiplexed
• Space-multiplexed
• Many devices each with one function
• Quicker to use, more intuitive, clutter
• Real Toolbox
• Time-multiplexed
• One device with many functions
• Space efficient
• mouse
Tangible AR: Tiles (Space Multiplexed)
• Tiles semantics
• data tiles
• operation tiles
• Operation on tiles
• proximity
• spatial arrangements
• space-multiplexed
Poupyrev, I., Tan, D. S., Billinghurst, M., Kato, H., Regenbrecht, H., & Tetsutani, N. (2001,
July). Tiles: A Mixed Reality Authoring Interface. In Interact (Vol. 1, pp. 334-341).
Space-multiplexed Interface
Data authoring in Tiles
Tiles Demo (2001)
Proximity-based Interaction
Tangible AR: Time-multiplexed Interaction
• Use of natural physical object manipulations to control
virtual objects
• VOMAR Demo
• Catalog book:
• Turn over the page
• Paddle operation:
• Push, shake, incline, hit, scoop
Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., & Tachibana, K. (2000, October). Virtual object manipulation on a table-top AR
environment. In Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000) (pp. 111-119). IEEE.
VOMAR Interface
VOMAR Demo (2001)
Advantages and Disadvantages
•Advantages
• Natural interaction with virtual and physical tools
• No need for special purpose input devices
• Spatial interaction with virtual objects
• 3D manipulation with virtual objects anywhere in space
•Disadvantages
• Requires Head Mounted Display
5. Natural AR Interfaces
• Goal:
• Interact with AR content the same
way we interact in the real world
• Using natural user input
• Body motion
• Gesture
• Gaze
• Speech
• Input recognition
• Nature gestures, gaze
• Multimodal input
FingARtips (2004)
Tinmith (2001)
External Fixed Cameras
• Overhead depth sensing camera
• Capture real time hand model
• Create point cloud model
• Overlay graphics on AR view
• Perform gesture interaction
Billinghurst, M., Piumsomboon, T., & Bai, H. (2014). Hands in space: Gesture interaction with
augmented-reality interfaces. IEEE computer graphics and applications, 34(1), 77-80.
Examples
https://www.youtube.com/watch?v=7FLyDEdQ_vk
PhobiAR (2013)
https://www.youtube.com/watch?v=635PVGicxng
Google Glass (2013)
Head Mounted Cameras
• Attach cameras/depth sensor to HMD
• Connect to high end PC
• Computer vision capture/processing on PC
• Perform tracking/gesture recognition on PC
• Use custom tracking hardware
• Leap Motion (Structured IR)
• Intel RealSense (Stereo depth)
Project NorthStar (2018)
Meta2 (2016)
Project NorthStar Hand Interaction
Self Contained Systems
• Sensors and processors on device
• Fully mobile
• Customized hardware/software
• Example: Hololens 2 (2019)
• 3D hand tracking
• 21 points/hand tracked
• Gesture driven interface
• Constrained set of gestures
• Multimodal input (gesture, gaze, speech)
Hololens 2 Gesture Input Demo (MRTK)
https://www.youtube.com/watch?v=qfONlUCSWdg
Speech Input
• Reliable speech recognition
• Windows speech, Watson, etc.
• Indirect input with AR content
• No need for gesture
• Match with gaze/head pointing
• Look to select target
• Good for Quantitative input
• Numbers, text, etc.
• Keyword trigger
• “select”, ”hey cortana”, etc https://www.youtube.com/watch?v=eHMkOpNUtR8
Eye Tracking Interfaces
• Use IR light to find gaze direction
• IR sources + cameras in HMD
• Support implicit input
• Always look before interact
• Natural pointing input
• Multimodal Input
• Combine with gesture/speech
Camera
IR light
IR view
Processed image
Hololens 2
Gaze Demo
https://www.youtube.com/watch?v=UPH4lk1jAWs
Evolution of AR Interfaces
Tangible AR
Tangible input
AR overlay
Direct interaction
Natural AR
Freehand gesture
Speech, gaze
Tangible UI
Augmented surfaces
Object interaction
Familiar controllers
Indirect interaction
3D AR
3D UI
Dedicated
controllers
Custom devices
Browsing
Simple input
Viewpoint control
Expressiveness, Intuitiveness
DESIGNING AR INTERFACES
Interaction Design
“Designing interactive products to support
people in their everyday and working lives”
Preece, J., (2002). Interaction Design
• Design of User Experience with Technology
Bill Verplank on Interaction Design
https://www.youtube.com/watch?v=Gk6XAmALOWI
•Interaction Design involves answering three questions:
•What do you do? - How do you affect the world?
•What do you feel? – What do you sense of the world?
•What do you know? – What do you learn?
Bill Verplank
Typical Interaction Design Cycle
Develop alternative prototypes/concepts and compare them, And iterate, iterate, iterate....
PROTOTYPING
How Do You Prototype This?
Example: Google Glass
View Through Google Glass
Google Glass Prototyping
https://www.youtube.com/watch?v=d5_h1VuwD6g
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
Early Glass Prototyping
2022 COMP4010 Lecture4: AR Interaction
2022 COMP4010 Lecture4: AR Interaction
Tom Chi’s Prototyping Rules
1. Find the quickest path to experience
2. Doing is the best kind of thinking
3. Use materials that move at the speed of
thought to maximize your rate of learning
How can we quickly prototype
XR experiences with little or no
coding?
Prototyping in Interaction Design
Key Prototyping
Steps
● Quick visual design
● Capture key interactions
● Focus on user experience
● Communicate design ideas
● “Learn by doing/experiencing”
Why Prototype?
www.empathiccomputing.org
@marknb00
mark.billinghurst@unisa.edu.au
1 sur 105

Recommandé

2022 COMP4010 Lecture5: AR Prototyping par
2022 COMP4010 Lecture5: AR Prototyping2022 COMP4010 Lecture5: AR Prototyping
2022 COMP4010 Lecture5: AR PrototypingMark Billinghurst
332 vues205 diapositives
2022 COMP4010 Lecture3: AR Technology par
2022 COMP4010 Lecture3: AR Technology2022 COMP4010 Lecture3: AR Technology
2022 COMP4010 Lecture3: AR TechnologyMark Billinghurst
315 vues106 diapositives
2022 COMP4010 Lecture2: Perception par
2022 COMP4010 Lecture2: Perception2022 COMP4010 Lecture2: Perception
2022 COMP4010 Lecture2: PerceptionMark Billinghurst
161 vues175 diapositives
Comp4010 Lecture5 Interaction and Prototyping par
Comp4010 Lecture5 Interaction and PrototypingComp4010 Lecture5 Interaction and Prototyping
Comp4010 Lecture5 Interaction and PrototypingMark Billinghurst
916 vues147 diapositives
2022 COMP4010 Lecture 6: Designing AR Systems par
2022 COMP4010 Lecture 6: Designing AR Systems2022 COMP4010 Lecture 6: Designing AR Systems
2022 COMP4010 Lecture 6: Designing AR SystemsMark Billinghurst
156 vues176 diapositives
Comp4010 2021 Lecture2-Perception par
Comp4010 2021 Lecture2-PerceptionComp4010 2021 Lecture2-Perception
Comp4010 2021 Lecture2-PerceptionMark Billinghurst
1.6K vues105 diapositives

Contenu connexe

Tendances

Comp4010 lecture3-AR Technology par
Comp4010 lecture3-AR TechnologyComp4010 lecture3-AR Technology
Comp4010 lecture3-AR TechnologyMark Billinghurst
1.1K vues132 diapositives
Comp4010 Lecture13 More Research Directions par
Comp4010 Lecture13 More Research DirectionsComp4010 Lecture13 More Research Directions
Comp4010 Lecture13 More Research DirectionsMark Billinghurst
1.2K vues154 diapositives
2022 COMP4010 Lecture1: Introduction to XR par
2022 COMP4010 Lecture1: Introduction to XR2022 COMP4010 Lecture1: Introduction to XR
2022 COMP4010 Lecture1: Introduction to XRMark Billinghurst
389 vues126 diapositives
Comp4010 Lecture7 Designing AR Systems par
Comp4010 Lecture7 Designing AR SystemsComp4010 Lecture7 Designing AR Systems
Comp4010 Lecture7 Designing AR SystemsMark Billinghurst
1.7K vues156 diapositives
Comp4010 Lecture12 Research Directions par
Comp4010 Lecture12 Research DirectionsComp4010 Lecture12 Research Directions
Comp4010 Lecture12 Research DirectionsMark Billinghurst
1.6K vues59 diapositives
Developing VR Experiences with Unity par
Developing VR Experiences with UnityDeveloping VR Experiences with Unity
Developing VR Experiences with UnityMark Billinghurst
2.7K vues64 diapositives

Tendances(20)

Comp4010 Lecture13 More Research Directions par Mark Billinghurst
Comp4010 Lecture13 More Research DirectionsComp4010 Lecture13 More Research Directions
Comp4010 Lecture13 More Research Directions
Mark Billinghurst1.2K vues
Advanced Methods for User Evaluation in AR/VR Studies par Mark Billinghurst
Advanced Methods for User Evaluation in AR/VR StudiesAdvanced Methods for User Evaluation in AR/VR Studies
Advanced Methods for User Evaluation in AR/VR Studies
Mark Billinghurst3.1K vues
Comp 4010 2021 Lecture1-Introduction to XR par Mark Billinghurst
Comp 4010 2021 Lecture1-Introduction to XRComp 4010 2021 Lecture1-Introduction to XR
Comp 4010 2021 Lecture1-Introduction to XR
Mark Billinghurst1.8K vues
Comp4010 Lecture4 AR Tracking and Interaction par Mark Billinghurst
Comp4010 Lecture4 AR Tracking and InteractionComp4010 Lecture4 AR Tracking and Interaction
Comp4010 Lecture4 AR Tracking and Interaction
Mark Billinghurst1.3K vues

Similaire à 2022 COMP4010 Lecture4: AR Interaction

Mobile Augmented Reality par
Mobile Augmented RealityMobile Augmented Reality
Mobile Augmented RealityMarios Bikos
3.4K vues64 diapositives
COMP 4010 Lecture10: AR Tracking par
COMP 4010 Lecture10: AR TrackingCOMP 4010 Lecture10: AR Tracking
COMP 4010 Lecture10: AR TrackingMark Billinghurst
4.2K vues88 diapositives
ICS1020CV_2022.pdf par
ICS1020CV_2022.pdfICS1020CV_2022.pdf
ICS1020CV_2022.pdfVanessa Camilleri
1.5K vues34 diapositives
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot... par
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...Aritra Sarkar
26 vues63 diapositives
Lecture 5: 3D User Interfaces for Virtual Reality par
Lecture 5: 3D User Interfaces for Virtual RealityLecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual RealityMark Billinghurst
5K vues111 diapositives
Mainprojpresentation 150617092611-lva1-app6892 par
Mainprojpresentation 150617092611-lva1-app6892Mainprojpresentation 150617092611-lva1-app6892
Mainprojpresentation 150617092611-lva1-app6892ANJANA ANILKUMAR
179 vues28 diapositives

Similaire à 2022 COMP4010 Lecture4: AR Interaction(20)

Mobile Augmented Reality par Marios Bikos
Mobile Augmented RealityMobile Augmented Reality
Mobile Augmented Reality
Marios Bikos3.4K vues
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot... par Aritra Sarkar
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...
Elevation mapping using stereo vision enabled heterogeneous multi-agent robot...
Aritra Sarkar26 vues
Lecture 5: 3D User Interfaces for Virtual Reality par Mark Billinghurst
Lecture 5: 3D User Interfaces for Virtual RealityLecture 5: 3D User Interfaces for Virtual Reality
Lecture 5: 3D User Interfaces for Virtual Reality
Mainprojpresentation 150617092611-lva1-app6892 par ANJANA ANILKUMAR
Mainprojpresentation 150617092611-lva1-app6892Mainprojpresentation 150617092611-lva1-app6892
Mainprojpresentation 150617092611-lva1-app6892
ANJANA ANILKUMAR179 vues
Mobile AR Lecture 10 - Research Directions par Mark Billinghurst
Mobile AR Lecture 10 - Research DirectionsMobile AR Lecture 10 - Research Directions
Mobile AR Lecture 10 - Research Directions
Mark Billinghurst1.3K vues
FastCampus 2018 SLAM Workshop par Dong-Won Shin
FastCampus 2018 SLAM WorkshopFastCampus 2018 SLAM Workshop
FastCampus 2018 SLAM Workshop
Dong-Won Shin1.4K vues
Computer-Vision based Centralized Multi-agent System on Matlab and Arduino Du... par Aritra Sarkar
Computer-Vision based Centralized Multi-agent System on Matlab and Arduino Du...Computer-Vision based Centralized Multi-agent System on Matlab and Arduino Du...
Computer-Vision based Centralized Multi-agent System on Matlab and Arduino Du...
Aritra Sarkar26 vues
Fcv core szeliski_zisserman par zukun
Fcv core szeliski_zissermanFcv core szeliski_zisserman
Fcv core szeliski_zisserman
zukun373 vues
My presentation-Augmented Reality at DDIT Nadiad par VisualBee.com
My presentation-Augmented Reality at DDIT NadiadMy presentation-Augmented Reality at DDIT Nadiad
My presentation-Augmented Reality at DDIT Nadiad
VisualBee.com611 vues
Augmented reality (Access virtual world) par chirag thakkar
Augmented reality (Access virtual world)Augmented reality (Access virtual world)
Augmented reality (Access virtual world)
chirag thakkar892 vues
Intelligente visie maakt drones autonoom par EUKA
Intelligente visie maakt drones autonoomIntelligente visie maakt drones autonoom
Intelligente visie maakt drones autonoom
EUKA 969 vues
Introductory Level of SLAM Seminar par Dong-Won Shin
Introductory Level of SLAM SeminarIntroductory Level of SLAM Seminar
Introductory Level of SLAM Seminar
Dong-Won Shin2.5K vues
Augmented reality in E-commerce par Ashwin P
Augmented reality in E-commerceAugmented reality in E-commerce
Augmented reality in E-commerce
Ashwin P1.7K vues

Plus de Mark Billinghurst

Empathic Computing: Delivering the Potential of the Metaverse par
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the MetaverseMark Billinghurst
500 vues80 diapositives
Empathic Computing: Capturing the Potential of the Metaverse par
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the MetaverseMark Billinghurst
452 vues46 diapositives
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration par
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationMark Billinghurst
550 vues107 diapositives
Empathic Computing: Designing for the Broader Metaverse par
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader MetaverseMark Billinghurst
231 vues50 diapositives
ISS2022 Keynote par
ISS2022 KeynoteISS2022 Keynote
ISS2022 KeynoteMark Billinghurst
1.3K vues51 diapositives
Novel Interfaces for AR Systems par
Novel Interfaces for AR SystemsNovel Interfaces for AR Systems
Novel Interfaces for AR SystemsMark Billinghurst
404 vues84 diapositives

Plus de Mark Billinghurst(13)

Empathic Computing: Delivering the Potential of the Metaverse par Mark Billinghurst
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the Metaverse par Mark Billinghurst
Empathic Computing: Capturing the Potential of the MetaverseEmpathic Computing: Capturing the Potential of the Metaverse
Empathic Computing: Capturing the Potential of the Metaverse
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration par Mark Billinghurst
Talk to Me: Using Virtual Avatars to Improve Remote CollaborationTalk to Me: Using Virtual Avatars to Improve Remote Collaboration
Talk to Me: Using Virtual Avatars to Improve Remote Collaboration
Empathic Computing: Designing for the Broader Metaverse par Mark Billinghurst
Empathic Computing: Designing for the Broader MetaverseEmpathic Computing: Designing for the Broader Metaverse
Empathic Computing: Designing for the Broader Metaverse
Empathic Computing and Collaborative Immersive Analytics par Mark Billinghurst
Empathic Computing and Collaborative Immersive AnalyticsEmpathic Computing and Collaborative Immersive Analytics
Empathic Computing and Collaborative Immersive Analytics
Empathic Computing: Developing for the Whole Metaverse par Mark Billinghurst
Empathic Computing: Developing for the Whole MetaverseEmpathic Computing: Developing for the Whole Metaverse
Empathic Computing: Developing for the Whole Metaverse
Research Directions in Transitional Interfaces par Mark Billinghurst
Research Directions in Transitional InterfacesResearch Directions in Transitional Interfaces
Research Directions in Transitional Interfaces
Mark Billinghurst1.4K vues
Advanced Methods for User Evaluation in Enterprise AR par Mark Billinghurst
Advanced Methods for User Evaluation in Enterprise ARAdvanced Methods for User Evaluation in Enterprise AR
Advanced Methods for User Evaluation in Enterprise AR
Mark Billinghurst1.2K vues

Dernier

NTGapps NTG LowCode Platform par
NTGapps NTG LowCode Platform NTGapps NTG LowCode Platform
NTGapps NTG LowCode Platform Mustafa Kuğu
287 vues30 diapositives
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ... par
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...ShapeBlue
48 vues17 diapositives
20231123_Camunda Meetup Vienna.pdf par
20231123_Camunda Meetup Vienna.pdf20231123_Camunda Meetup Vienna.pdf
20231123_Camunda Meetup Vienna.pdfPhactum Softwareentwicklung GmbH
49 vues73 diapositives
Uni Systems for Power Platform.pptx par
Uni Systems for Power Platform.pptxUni Systems for Power Platform.pptx
Uni Systems for Power Platform.pptxUni Systems S.M.S.A.
60 vues21 diapositives
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue par
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueShapeBlue
63 vues15 diapositives
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue par
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueVNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueShapeBlue
134 vues54 diapositives

Dernier(20)

NTGapps NTG LowCode Platform par Mustafa Kuğu
NTGapps NTG LowCode Platform NTGapps NTG LowCode Platform
NTGapps NTG LowCode Platform
Mustafa Kuğu287 vues
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ... par ShapeBlue
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
Import Export Virtual Machine for KVM Hypervisor - Ayush Pandey - University ...
ShapeBlue48 vues
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue par ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlueCloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
CloudStack Object Storage - An Introduction - Vladimir Petrov - ShapeBlue
ShapeBlue63 vues
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue par ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlueVNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
VNF Integration and Support in CloudStack - Wei Zhou - ShapeBlue
ShapeBlue134 vues
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... par ShapeBlue
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
ShapeBlue52 vues
Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O... par ShapeBlue
Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O...Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O...
Declarative Kubernetes Cluster Deployment with Cloudstack and Cluster API - O...
ShapeBlue59 vues
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... par TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc130 vues
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T par ShapeBlue
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&TCloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
CloudStack and GitOps at Enterprise Scale - Alex Dometrius, Rene Glover - AT&T
ShapeBlue81 vues
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or... par ShapeBlue
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
Zero to Cloud Hero: Crafting a Private Cloud from Scratch with XCP-ng, Xen Or...
ShapeBlue128 vues
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online par ShapeBlue
KVM Security Groups Under the Hood - Wido den Hollander - Your.OnlineKVM Security Groups Under the Hood - Wido den Hollander - Your.Online
KVM Security Groups Under the Hood - Wido den Hollander - Your.Online
ShapeBlue154 vues
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ... par ShapeBlue
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
Backup and Disaster Recovery with CloudStack and StorPool - Workshop - Venko ...
ShapeBlue114 vues
Webinar : Desperately Seeking Transformation - Part 2: Insights from leading... par The Digital Insurer
Webinar : Desperately Seeking Transformation - Part 2:  Insights from leading...Webinar : Desperately Seeking Transformation - Part 2:  Insights from leading...
Webinar : Desperately Seeking Transformation - Part 2: Insights from leading...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... par ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue105 vues
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue par ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlueCloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
CloudStack Managed User Data and Demo - Harikrishna Patnala - ShapeBlue
ShapeBlue68 vues
Why and How CloudStack at weSystems - Stephan Bienek - weSystems par ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue172 vues
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... par James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson142 vues
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue par ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
ShapeBlue75 vues

2022 COMP4010 Lecture4: AR Interaction

  • 1. AR INTERACTION COMP 4010 Lecture Four Mark Billinghurst August 18th 2022 mark.billinghurst@unisa.edu.au
  • 3. AR RequiresTracking and Registration • Registration • Positioning virtual object wrt real world • Fixing virtual object on real object when view is fixed • Calibration • Offline measurements • Measure camera relative to head mounted display • Tracking • Continually locating the user’s viewpoint when view moving • Position (x,y,z), Orientation (r,p,y)
  • 4. Sources of Registration Errors •Static errors • Optical distortions (in HMD) • Mechanical misalignments • Tracker errors • Incorrect viewing parameters •Dynamic errors • System delays (largest source of error) • 1 ms delay = 1/3 mm registration error
  • 5. Reducing Static Errors •Distortion compensation • For lens or display distortions •Manual adjustments • Have user manually alighn AR andVR content •View-based or direct measurements • Have user measure eye position •Camera calibration (video AR) • Measuring camera properties
  • 6. Reducing dynamic errors (1) •Reduce system lag •Faster components/system modules •Reduce apparent lag •Image deflection •Image warping
  • 8. Frames of Reference • Word-stabilized • E.g., billboard or signpost • Body-stabilized • E.g., virtual tool-belt • Screen-stabilized • Heads-up display
  • 9. Tracking Requirements • Augmented Reality Information Display • World Stabilized • Body Stabilized • Head Stabilized Increasing Tracking Requirements Head Stabilized Body Stabilized World Stabilized
  • 10. Tracking Technologies § Active • Mechanical, Magnetic, Ultrasonic • GPS, Wifi, cell location § Passive • Inertial sensors (compass, accelerometer, gyro) • Computer Vision • Marker based, Natural feature tracking § Hybrid Tracking • Combined sensors (eg Vision + Inertial)
  • 12. Why Optical Tracking for AR? • Many AR devices have cameras • Mobile phone/tablet, Video see-through display • Provides precise alignment between video and AR overlay • Using features in video to generate pixel perfect alignment • Real world has many visual features that can be tracked from • Computer Vision well established discipline • Over 40 years of research to draw on • Old non real time algorithms can be run in real time on todays devices
  • 13. Common AR Optical Tracking Types • Marker Tracking • Tracking known artificial markers/images • e.g. ARToolKit square markers • Markerless Tracking • Tracking from known features in real world • e.g. Vuforia image tracking • Unprepared Tracking • Tracking in unknown environment • e.g. SLAM tracking
  • 14. Marker Based Tracking: ARToolKit http://www.artoolkit.org
  • 15. Natural Feature Tracking • Use Natural Cues of Real Elements • Edges • Surface Texture • Interest Points • Model or Model-Free • No visual pollution Contours Features Points Surfaces
  • 16. Detection and Tracking Detection Incremental tracking Tracking target detected Tracking target lost Tracking target not detected Incremental tracking ok Start + Recognize target type + Detect target + Initialize camera pose + Fast + Robust to blur, lighting changes + Robust to tilt Tracking and detection are complementary approaches. After successful detection, the target is tracked incrementally. If the target is lost, the detection is activated again
  • 17. Marker vs.Natural FeatureTracking • Marker tracking • Usually requires no database to be stored • Markers can be an eye-catcher • Tracking is less demanding • The environment must be instrumented • Markers usually work only when fully in view • Natural feature tracking • A database of keypoints must be stored/downloaded • Natural feature targets might catch the attention less • Natural feature targets are potentially everywhere • Natural feature targets work also if partially in view
  • 18. Model BasedTracking • Tracking from 3D object shape • Example: OpenTL - www.opentl.org • General purpose library for model based visual tracking
  • 19. Tracking from an Unknown Environment • What to do when you don’t know any features? • Very important problem in mobile robotics - Where am I? • SLAM • Simultaneously Localize And Map the environment • Goal: to recover both camera pose and map structure while initially knowing neither. • Mapping: • Building a map of the environment which the robot is in • Localisation: • Navigating this environment using the map while keeping track of the robot’s relative position and orientation
  • 20. Parallel Tracking and Mapping Tracking Mapping New keyframes Map updates + Estimate camera pose + For every frame + Extend map + Improve map + Slow updates rate Parallel tracking and mapping uses two concurrent threads, one for tracking and one for mapping, which run at different speeds
  • 21. Parallel Tracking and Mapping Video stream New frames Map updates Tracking Mapping Tracked local pose FAST SLOW Simultaneous localization and mapping (SLAM) in small workspaces Klein/Drummond, U. Cambridge
  • 22. Visual SLAM • Early SLAM systems (1986 - ) • Computer visions and sensors (e.g. IMU, laser, etc.) • One of the most important algorithms in Robotics • Visual SLAM • Using cameras only, such as stereo view • MonoSLAM (single camera) developed in 2007 (Davidson)
  • 23. Combining Sensors andVision • Sensors • Produces noisy output (= jittering augmentations) • Are not sufficiently accurate (= wrongly placed augmentations) • Gives us first information on where we are in the world, and what we are looking at • Vision • Is more accurate (= stable and correct augmentations) • Requires choosing the correct keypoint database to track from • Requires registering our local coordinate frame (online- generated model) to the global one (world)
  • 24. ARKit – Visual Inertial Odometry • Uses both computer vision + inertial sensing • Tracking position twice • Computer Vision – feature tracking, 2D plane tracking • Inertial sensing – using the phone IMU • Output combined via Kalman filter • Determine which output is most accurate • Pass pose to ARKit SDK • Each system compliments the other • Computer vision – needs visual features • IMU - drifts over time, doesn’t need features
  • 25. ARKit –Visual Inertial Odometry • Slow camera • Fast IMU • If camera drops out IMU takes over • Camera corrects IMU errors
  • 26. Conclusions • Tracking and Registration are key problems • Registration error • Measures against static error • Measures against dynamic error • AR typically requires multiple tracking technologies • Computer vision most popular • Research Areas: • SLAM systems, Deformable models, Mobile outdoor tracking
  • 28. Augmented Reality technology • Combines Real and Virtual Images • Needs: Display technology • Interactive in real-time • Needs: Input and interaction technology • Registered in 3D • Needs: Viewpoint tracking technology
  • 29. How Do You Design an Interface for This?
  • 30. AR Interaction • Designing AR Systems = Interface Design • Using different input and output technologies • Objective is a high quality of user experience • Ease of use and learning • Performance and satisfaction
  • 31. Typical Interface Design Path 1/ Prototype Demonstration 2/ Adoption of Interaction Techniques from other interface metaphors 3/ Development of new interface metaphors appropriate to the medium 4/ Development of formal theoretical models for predicting and modeling user actions Desktop WIMP Virtual Reality Augmented Reality
  • 32. Interacting with AR Content • You can see spatially registered AR.. how can you interact with it?
  • 33. Different Types of AR Interaction • Browsing Interfaces • simple (conceptually!), unobtrusive • 3D AR Interfaces • expressive, creative, require attention • Tangible Interfaces • Embedded into conventional environments • Tangible AR • Combines TUI input + AR display
  • 34. AR Interfaces as Data Browsers • 2D/3D virtual objects are registered in 3D • “VR in Real World” • Interaction • 2D/3D virtual viewpoint control • Applications • Visualization, training
  • 35. AR Information Browsers • Information is registered to real-world context • Hand held AR displays • Interaction • Manipulation of a window into information space • Applications • Context-aware information displays Rekimoto, et al. 1997
  • 38. Current AR Information Browsers • Mobile AR • GPS + compass • Many Applications • Wikitude • Yelp • Google maps • …
  • 39. Example: Google Maps AR Mode • AR Navigation Aid • GPS + compass, 2D/3D object placement
  • 41. Advantages and Disadvantages • Important class of AR interfaces • Wearable computers • AR simulation, training • Limited interactivity • Modification of virtual content is difficult Rekimoto, et al. 1997
  • 42. 3D AR Interfaces • Virtual objects displayed in 3D physical space and manipulated • HMDs and 6DOF head-tracking • 6DOF hand trackers for input • Interaction • Viewpoint control • Traditional 3D user interface interaction: manipulation, selection, etc. Kiyokawa, et al. 2000
  • 46. Advantages and Disadvantages • Important class of AR interfaces • Entertainment, design, training • Advantages • User can interact with 3D virtual object everywhere in space • Natural, familiar interaction • Disadvantages • Usually no tactile feedback • User has to use different devices for virtual and physical objects Oshima, et al. 2000
  • 47. 3. Augmented Surfaces and Tangible Interfaces • Basic principles • Virtual images are projected on a surface • Physical objects are used as controls for virtual objects • Support for collaboration Wellner, P. (1993). Interacting with paper on the DigitalDesk. Communications of the ACM, 36(7), 87-96.
  • 48. Augmented Surfaces • Rekimoto, et al. 1999 • Front projection • Marker-based tracking • Multiple projection surfaces • Object interaction Rekimoto, J., & Saitoh, M. (1999, May). Augmented surfaces: a spatially continuous work space for hybrid computing environments. In Proceedings of the SIGCHI conference on Human Factors in Computing Systems (pp. 378-385).
  • 49. Augmented Surfaces Demo (1999) https://www.youtube.com/watch?v=r4g_fvnjVCA
  • 50. Tangible User Interfaces (Ishii 97) • Create digital shadows for physical objects • Foreground • graspable UI • Background • ambient interfaces
  • 51. Tangible Interfaces - Ambient • Dangling String • Jeremijenko 1995 • Ambient ethernet monitor • Relies on peripheral cues • Ambient Fixtures • Dahley, Wisneski, Ishii 1998 • Use natural material qualities for information display
  • 52. Tangible Interface: ARgroove • Collaborative Instrument • Exploring Physically Based Interaction • Map physical actions to Midi output • Translation, rotation • Tilt, shake
  • 55. Visual Feedback •Continuous Visual Feedback is Key •Single Virtual Image Provides: • Rotation • Tilt • Height
  • 56. i/O Brush (Ryokai, Marti, Ishii) - 2004 Ryokai, K., Marti, S., & Ishii, H. (2004, April). I/O brush: drawing with everyday objects as ink. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 303-310).
  • 57. i/O Brush Demo (2005) https://www.youtube.com/watch?v=04v_v1gnyO8
  • 58. Many Other Examples • Triangles (Gorbert 1998) • Triangular based story telling • ActiveCube (Kitamura 2000-) • Cubes with sensors • Reactable (2007- ) • Cube based music interface
  • 59. Lessons from Tangible Interfaces • Physical objects make us smart • Norman’s “Things that Make Us Smart” • encode affordances, constraints • Objects aid collaboration • establish shared meaning • Objects increase understanding • serve as cognitive artifacts
  • 60. But There are TUI Limitations • Difficult to change object properties • can’t tell state of digital data • Limited display capabilities • projection screen = 2D • dependent on physical display surface • Separation between object and display • ARgroove – Interact on table, look at screen
  • 61. Advantages and Disadvantages •Advantages • Natural - user’s hands are used for interacting with both virtual and real objects. • No need for special purpose input devices •Disadvantages • Interaction is limited only to 2D surface • Full 3D interaction and manipulation is difficult
  • 62. Orthogonal Nature of Interfaces 3D AR interfaces Tangible Interfaces Spatial Gap No – Interaction is Everywhere Yes – Interaction is only on 2D surfaces Interaction Gap Yes – separate devices for physical and virtual objects No – same devices for physical and virtual objects
  • 63. Orthogonal Nature of Interfaces 3D AR interfaces Tangible Interfaces Spatial Gap No – Interaction is Everywhere Yes – Interaction is only on 2D surfaces Interaction Gap Yes – separate devices for physical and virtual objects No – same devices for physical and virtual objects
  • 64. 4. Tangible AR: Back to the Real World • AR overcomes display limitation of TUIs • enhance display possibilities • merge task/display space • provide public and private views • TUI + AR = Tangible AR • Apply TUI methods to AR interface design Billinghurst, M., Kato, H., & Poupyrev, I. (2008). Tangible augmented reality. ACM Siggraph Asia, 7(2), 1-10.
  • 65. Space vs. Time - Multiplexed • Space-multiplexed • Many devices each with one function • Quicker to use, more intuitive, clutter • Real Toolbox • Time-multiplexed • One device with many functions • Space efficient • mouse
  • 66. Tangible AR: Tiles (Space Multiplexed) • Tiles semantics • data tiles • operation tiles • Operation on tiles • proximity • spatial arrangements • space-multiplexed Poupyrev, I., Tan, D. S., Billinghurst, M., Kato, H., Regenbrecht, H., & Tetsutani, N. (2001, July). Tiles: A Mixed Reality Authoring Interface. In Interact (Vol. 1, pp. 334-341).
  • 70. Tangible AR: Time-multiplexed Interaction • Use of natural physical object manipulations to control virtual objects • VOMAR Demo • Catalog book: • Turn over the page • Paddle operation: • Push, shake, incline, hit, scoop Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., & Tachibana, K. (2000, October). Virtual object manipulation on a table-top AR environment. In Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR 2000) (pp. 111-119). IEEE.
  • 73. Advantages and Disadvantages •Advantages • Natural interaction with virtual and physical tools • No need for special purpose input devices • Spatial interaction with virtual objects • 3D manipulation with virtual objects anywhere in space •Disadvantages • Requires Head Mounted Display
  • 74. 5. Natural AR Interfaces • Goal: • Interact with AR content the same way we interact in the real world • Using natural user input • Body motion • Gesture • Gaze • Speech • Input recognition • Nature gestures, gaze • Multimodal input FingARtips (2004) Tinmith (2001)
  • 75. External Fixed Cameras • Overhead depth sensing camera • Capture real time hand model • Create point cloud model • Overlay graphics on AR view • Perform gesture interaction Billinghurst, M., Piumsomboon, T., & Bai, H. (2014). Hands in space: Gesture interaction with augmented-reality interfaces. IEEE computer graphics and applications, 34(1), 77-80.
  • 77. Head Mounted Cameras • Attach cameras/depth sensor to HMD • Connect to high end PC • Computer vision capture/processing on PC • Perform tracking/gesture recognition on PC • Use custom tracking hardware • Leap Motion (Structured IR) • Intel RealSense (Stereo depth) Project NorthStar (2018) Meta2 (2016)
  • 78. Project NorthStar Hand Interaction
  • 79. Self Contained Systems • Sensors and processors on device • Fully mobile • Customized hardware/software • Example: Hololens 2 (2019) • 3D hand tracking • 21 points/hand tracked • Gesture driven interface • Constrained set of gestures • Multimodal input (gesture, gaze, speech)
  • 80. Hololens 2 Gesture Input Demo (MRTK) https://www.youtube.com/watch?v=qfONlUCSWdg
  • 81. Speech Input • Reliable speech recognition • Windows speech, Watson, etc. • Indirect input with AR content • No need for gesture • Match with gaze/head pointing • Look to select target • Good for Quantitative input • Numbers, text, etc. • Keyword trigger • “select”, ”hey cortana”, etc https://www.youtube.com/watch?v=eHMkOpNUtR8
  • 82. Eye Tracking Interfaces • Use IR light to find gaze direction • IR sources + cameras in HMD • Support implicit input • Always look before interact • Natural pointing input • Multimodal Input • Combine with gesture/speech Camera IR light IR view Processed image Hololens 2
  • 84. Evolution of AR Interfaces Tangible AR Tangible input AR overlay Direct interaction Natural AR Freehand gesture Speech, gaze Tangible UI Augmented surfaces Object interaction Familiar controllers Indirect interaction 3D AR 3D UI Dedicated controllers Custom devices Browsing Simple input Viewpoint control Expressiveness, Intuitiveness
  • 86. Interaction Design “Designing interactive products to support people in their everyday and working lives” Preece, J., (2002). Interaction Design • Design of User Experience with Technology
  • 87. Bill Verplank on Interaction Design https://www.youtube.com/watch?v=Gk6XAmALOWI
  • 88. •Interaction Design involves answering three questions: •What do you do? - How do you affect the world? •What do you feel? – What do you sense of the world? •What do you know? – What do you learn? Bill Verplank
  • 89. Typical Interaction Design Cycle Develop alternative prototypes/concepts and compare them, And iterate, iterate, iterate....
  • 91. How Do You Prototype This?
  • 101. Tom Chi’s Prototyping Rules 1. Find the quickest path to experience 2. Doing is the best kind of thinking 3. Use materials that move at the speed of thought to maximize your rate of learning
  • 102. How can we quickly prototype XR experiences with little or no coding?
  • 103. Prototyping in Interaction Design Key Prototyping Steps
  • 104. ● Quick visual design ● Capture key interactions ● Focus on user experience ● Communicate design ideas ● “Learn by doing/experiencing” Why Prototype?